Yield and
ructure Criteria

12-1 Introduction

fom the preceding study of the text, it should be apparent that in numer-
@s technical problems, the state of stress and strain at critical points may
i . very complex. Idealized mathematical procedures for determining
* those states, as well as their transformations to different coordinates, are
‘awailable. However, the precise response of real materials to such stresses
~amd strains defies accurate formulations. A number of questions remain
mssettled and are part of an active area of materials research. As yet, no
_eamprehensive theory can provide accurate predictions of material behav-
‘#ox under the multitude of static, dynamic, impact, and cyclic loading, as
well as temperature effects. Only the classical idealization of yield and
ure criteria for materials is discussed here. Of necessity, they are used
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Fig 12-1 Typical transition curves for stress or energy

to fracture versus temperature for low-carbon steel
(adapted from Manjoine, see footnote d1),

emphasized that, in classifying materials in this manner, one refers to the
brittle or ductile state of the material, as this characteristic is greatly
affected by temperature as well as by the state of stress itself. For example,
some low-carbon steels, below their transition temperatures of about 10°C
(+50°F), ‘become brittle, lose their excellent ductile properties,! and
behave like different materials (Fig. 12-1). Experimental evidence shows
that the transition temperature is sensitive to the rate of load application.
For the faster rates, the transition temperature tends to occur at a higher
temperature.

Most of the information on yielding and fracture of materials under the
action of biaxial stresses comes from experiments on thin-walled cylinders.
A typical arrangement for such an experiment is shown in Fig. 12-2. The
ends of the thin-walled cylinder of the material being investigated are
closed by substantial caps. This forms the hollow interior of a cylindrical
pressure vessel. By pressurizing the available space until the yielding or
bursting occurs, the elements of the wall are subjected to biaxial stresses of
a constant ratio oy /o, = 2. By applying an additional tensile force P to the
caps, the o, stress is increased to any predetermined amount g, + o”. By
applying a comprehensive force, the o, stress can be minimized or elimi-
nated. Actual compressive stress in the longitudinal direction is undesir-
able, as the tube may buckle. By maintaining a fixed ratio between the
principal stresses until the failure point is reached, the desired data on a
material are obtained. Analogous experiments with tubes simultaneously
subjected to torque, axial force, and pressure are also used. An interpreta-
tion of these data, together with all other related experimental evidence,

'See M. J. Manjoine, “Influence of rate of strain and temperature on yield stresses of mild
steel,” . Appl. Mech., ASME (1944), A211-218.

pump

Fig.12-2 Arrangement for:coj
trolled ratios of principal stresses.

Connectionto
high-pressure |
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e maximum shear-stress theory, or simply the maximum shear theory,
ts from the observation that in a ductile material, slip occurs during

-

elding along critically oriented planes This suggests that the maximum
“stress plays the key role, and it is assumed that yu,ldmg of the mater-
depends only on the maximum shear stress that is attained within an
ment. Therefore, whenever a certain critical value 7, is reached, yielding

i an element commences.? For a given material, this value usually is set

- “qllal to the shear stress at yield in simple tension or compression. Hence,
secording to Eq. 11-9,if o, = *0, # Oand 0, =

=,

=iy t + )= e (12-1)
2

h means that if oy, is the yield-point stress found, for example, in a
ple tension test, the corresponding maximum shear stress is half as

This conclusion also follows easily from Mohr’s circle of stress.
In applying this criterion to a biaxial plane stress problem, two differ-
cases arise. In one case, the signs of the principal stresses o, and o,
e the same. Taking them, for example, to be tensile, as in Fig. 12-3(a),
setting o5 = 0, the resulting Mohr’s principal stress circles are as
in Fig. 12-3(b). Here the maximum shear stress is of the same mag-
e as would occur in a simple uniaxial stress, as in Figs. 12-3(a) and
Therefore if |oy| > |o,|, then according to Eq. 12-1, |oy| must not

Sxmlldrly, if |oy| > |o-1| |or,| must not be greater than oy,

(12-2)

@, and the max1mum shéar stress Toax = (loi] + Iorz|) /2. lhe alternative
@ble slip planes are identified in Fig. 12-3(d) and (f). This maximum

s theory appears to have been originally proposed by C. A. Coulomb in 1773. In 1868,

presented the results of his work on the flow of metals under great pressures to the
demy. Now this theory often bears his name.

"smgle crystals, slip occurs along preferential planes and in preferential directions. In

of this phenomenon, the effective component of the shear stress causing slip must be

 determined. Here it is assumed that because of the random orientation of numerous

; the material has isotropic properties, and so by determining 7, one finds the critical

LSS




Slip plane

Slip planes
(a) (b)
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Slip plane

Slip planes

(d)
Fig.12-3  Planes of 7,,,, for biaxial stress,

(e) (f)

shear stress cannot exceed the shear

yield criterion in simple tension {Le,
Tmax = 0y,/2). Hence,

(12-3)

or, for impending yield,

= *1 (12-4)

S
.

YD s yp
A plot of this equation

gives the two sloping lines shown in Fig. 12-4.
Dividing Egs. 12-2 by o

Fig.12-4  Yield criterion based on .
yp Puts them into the same form as Eq. 12-4. These

maximum shear stress.
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sdified cquations, 01/oy, = +1 and oy/0,, =
-4 as two vertical and two horizontal line
 0,/0,, as coordinates of a point in this pri
ortant conclusions can be reached.
a point defined by 0y/0y, and o/o
124, a material begins and continues to yield. No such stress points can
outside the hexagon because one of the three yield criteria equations
n before for perfectly plastic ms

*1, plot, respectively, in
s. Then, by treating a/ay,
ncipal stress space, some

w falls on the hexagon shown in

_ n indicate that a material behaves elastically.
te that, according to the maximum shear theory, if hydrostatic tensile
mpressive stresses are added (ic., stresses such that o7 = ¢} = }),
change in the material response is predicted, Adding these stresses
: h' ;shifts the Mohr’s circles of stress along the ¢-
same. Also note that since the maximum s}
Irrespective of material di
erial is isotropic.
The derived yield criterion for
tred to as the Tresca yield conditio

ticity.

axis, and 7,,,  remains
1ear stresses are defined on
rectional properties, it is implicit that the

perfectly plastic material is often
n and is one of the widely used laws

ther widely acce
 is based on eners o
2N

under combined stress, the yield criterion for combined stress is
gablished,

In order to derive the expression giving the yield condition for com-
ied stress, the procedure of resolving the general state of stress must be

loyed. This is based on the concept of superposition. For example, it is
sssible to consider the stress tensor of the three principal stresses—a, o,
i 03— to consist of two additive component tensors. The elements of one
mponent tensor are defined as the mean “hydrostatic” stress:

= e o
()‘ = eem— D

: (12-5)

*The first attempt to use the {otal encrgy as the criterion of

yiclding was made by E.
ts present form, the

Beltrami of Italy in 1885. In i theory was proposed by M. T. Huber of
Foland in 1904 and was further developed and explained by R. von Mises (1913) and H.
Eencky (1925), both of Germany and the United States,
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The elements of the other tensor are (0, — o), (0, = ), and (o4 — o).
Writing this in matrix representation, one has

o 0520 o
U isasetiOf) = [0 - ; o (12-6)
0“0 oy 0

This resolution of the general state of stress is shown schematically in
Fig. 12-5. The special case of resolving the uniaxial state of the stress
in the figure has been carried a step further. The sum of the stresses in
Fig. 12-5(f) and (g) corresponds to the last tensor of Eq. 12-6.

For the three-dimensional state of stress, the Mohr’s circle for the first
tensor component of Eq. 12-6 degenerates into a point located at o on the
o-axis. Therefore, the stresses associated with this tensor are the same in
every possible direction. For this reason, this tensor is called the spherical
stress tensor. Alternatively, from Eq. 5-23, which states that dilatation of an
elastic body is proportional to @, this tensor is also called the dilatational
Stress tensor.

General state of stress

(e) (f)
Uniaxial state of stress

Fig.12-5 Resolution of principal stresses into spherical (dilatational) and deviatoric (distortional) stresses.




The last tensor of Eq. 12-6 is called the deviatoric or distortional stress
or. A good reason for the choice of these terms may be seen from
g, 12-5(f) and (g). The state of stress consisting of tension and compres-
';‘“ on the mutually perpendicular planes is equivalent to pure shear
ess. The latter system of stresses is known to cause no volumetric
nges in isotropic materials, but instead distorts or deviates the element
Bom its initial cubic shape.

aving established the basis for resolving or decomposing the state of
into dilatational and distortional components, one may find the
0 energy due to distortion. For this purpose, first the strain energy per
L volume (i.e., strain density) for a three-dimensional state of stress
st be found. Since this quantity does not depend on the choice of coor-
te axes, it is convenient to express it in terms of principal stresses and

Thus, generalizing Eq. 3-13 for three dimensions u
one has

sing superposi-

il 1 1 .
Ug= U = 5 %181 .4 5 9282 a g, 790 (12-7)
ere, by substituting for strains, Eqs. 5-14, expressed in terms of principal
esses, after simplifications, become

Uptal = 2 (of + a3+ (r%) — %(010‘2 + 0,05 + 030) (12-8)

£ strain energy per unit volume due to the dilatational stresses can be
mined from this equation by first setting o,
acing p by o = (0 + o, + 0,)/3. Thus,

3(l:=2v {0y
( o )p2 - (oi 't oy 4 ia5)? (12-9)

= 0, = 03 = p, and then

U dilatation —

substracting Eq. 12-9 from E
G=En(l +v),

A

q. 12-8, simplifying, and noting from Eq.5-21
one finds the distortion strain energy for combined

1
Usistortion = 1726 [(01 = 02)% + (o, - 03)> + (03 - o))l (12-10)

ording to the basic assumption of the distortion-energy theory, the
ession of Eq. 12-10 must be equated to the maximum elastic distortion

By in simple tension. The latter condition occurs when one of

the princi-
stresses reaches the yield point, 0yp, Of the material. The distortion strain

gy for this is 2039/ 12G. Equating this to Eq. 12-10 after minor simplifica-
s, one obtains the basic law for yielding of an ideally plastic material:

(12-11)

SEC.12-3. MAXIMUM DISTORTION-ENERGY THEORY =525
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For plane stress, o3 = 0, and Eq. 12-11 in dimensionless form becomes

! (5’-‘-)2—<i’¢ i’—z->+("—2)2=1 (12-12)
1 Ty Ty Oyp Typ

; This is an equation of an ellipse, a plot of which is shown in Fig. 12-6. Any
stress falling within the ellipse indicates that the material behaves elasti-
cally. Points on the ellipse indicate that the material is yielding. This is the
same interpretation as that given carlier for Fig. 12-4. On unloading, the
material behaves elastically.

This theory does not predict changes in the material response when
hydrostatic tensile or compressive stresses are added. Since only differences
i of the stresses are involved in Eq. 12-11, adding a constant stress to each does
i not alter the yield condition. For this reason, in the three-dimensional stress
space, the yield surface becomes a cylinder with an axis having all three
direction cosines equal to 1/V/3, Such a cylinder is shown in Fig. 12-7(a). The
ellipse in Fig. 12-6 is simply the intersection of this cylinder with the o~
plane. It can also be shown that the yield surface for the maximum shear ~ Fig. 126 Yield criterion based on
stress criterion is a hexagon that fits into the tube, shown in Fig. 12-7. maximum distortion energy.

The fundamental relation given by Eq. 12-11 may also be derived by
formulating the second invariant, Eq. 11-26, of the deviatoric stresses
given by the last matrix in Eq. 12-6. Such an approach is generally favored
in the mathematical theory of plasticity. The derivation given before gives
greater emphasis to physical behavior. As can be noted from the structure
of Eq. 12-11 and the accompanying Figs. 12-6 and 12-7, it is a continuous

Centerline of
cylinder and
hexagon

Circle of Mises

Hexagon of
Tresca

01

03

(a) (b) View along the axis of the cylinder
Fig.12-7 Yield surfaces for triaxial state of stress.
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SEC.12-4. COMPARISON OF MAXIMUM-SHEAR AND DISTORTION-ENERGY THEORIES FOR PLANE STRESS

function, making it attractive in analytical and numerical applications.
“This widely used constitutive equation for perfectly plastic material is
often referred to as the Huber-Hencky-Mises, or simply the von Mises,
yield condition.

Both the maximum shear stress and the distortion-energy yield condi-
tions have been used in the study of viscoelastic phenomena under com-
‘bined stress. Extension of these ideas to strain-hardening materials is also
g‘i)ossible. Such topics, however, are beyond the scope of this text.

12-4. Comparison of Maximum-shear
and Distortion-energy Theories
for Plane Stress

Plane stress problems occur especially frequently in practice and are
-~ largely emphasized in this text. Therefore, it is useful to make a comparison
 between the two most widely used yield criteria for ductile materials for
this case. The maximum shear-stress criterion directs its attention to the
maximum shear stress in an element. The distortion-energy criterion does
tliis in a more comprehensive manner by considering in three dimensions
the energy caused by shear deformations. Since shear stresses are the main
parameters in both approaches, the differcnce between the two is not ~Oyp
Rarge. A comparison between them for plane stress is shown in Fig. 12-8.

Here the Tresca hexagon for the maximum shear-stress theory and the von

Mises ellipse for the maximum distortion-energy theory have the mean-

. s already described. Either one of the lines gives a criterion for yield for 4
a perfectly plastic material. Yield of a material is said to begin whenever

«either uniaxial or biaxial stresses reach the bounding lines. If a stress point

fior the principal stresses oy and o falls within these curves, a material Fig. 12-8 Comparison of Tresca and
. behaves elastically. Since no strain-hardening behavior (see Fig. 2-18) is von Mises yield criteria.

. mscluded in these mathematical models, no stress points can lie outside the

giva as yielding continued as the stress level given by the curves. More

j ced theories are not considered in this text.f

It can be seen from Fig. 12-8 that the discrepancy between the two theo-

- mies is not very large, the maximum shear-stress theory being in general more

| oomservative. As to be expected, the uniaxial stresses given by both are equal

those corresponding to simple tension or compression. It is assumed that

02‘

Torsion

—Oyp

A’ln the past, this condition has also been referred to as the octahedral shearing stress the-
See A. Nadai, Theory of Flow and Fracture of Solids (New York: McGraw-Hill, 1950),

i, or A. P Boresi and O. M. Sidebottom, Advanced Mechanics of Materials, 4th ed. (New

Wiley, 1985), 18.

K Washizu, Variational Methods in Elasticity and Plasticity, 2nd ed. (New York: Pergamon,

v L_E.Malvern, Introduction to the Mechanics of a Continuous Medium (Englewood Cliffs:
woe Hall, 1969).
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these basic stresses are of equal magnitude. The yield criteria in the second
and fourth quadrant indicate smaller strengths at yield than that for uniaxial
stresses. The largest discrepancy occurs when two of the principal stresses
are equal but of opposite sign. This condition develops, for example, in tor-
sion of thin-walled tubes. According to the maximum shear-stress theory,
when oy = ¥ g,, these stresses at yield can reach only ,,/2. The maximum
distortion-energy theory limits this stress to Clnl V3 = 0.5770,,. Points cor-
responding to these stresses are identified in Fig. 12-8. These values of yield
in shear stress are frequently used in design applications.

12-5. Maximum Normal-stress Theory

The maximum normal-stress theory, or simply the maximum stress theory,’
asserts that failure or fracture of a material occurs when the maximum
normal stress at a point reaches a critical value regardless of the other
stresses. Only the largest principal stress must be determined to apply this
criterion. The critical value of stress o, is usually determined in a tensile
experiment, where the failure of a specimen is defined to be either exces-
sively large elongation or fracture. Usually, the latter is implied.

Experimental evidence indicates that this theory applies well to brittle
materials in all ranges of stresses, providing a tensile principal stress exists.
Failure is characterized by the separation, or the cleavage, fracture. This
mechanism of failure differs drastically from the ductile fracture, which is
accompanied by large deformations due to slip along the planes of maxi-
mum shear stress.

The maximum stress theory can be interpreted on graphs, as can the
other theories. This is done in Fig. 12-9. Failure occurs if points fall on the
surface. Unlike the previous theories, this stress criterion gives a bounded
surface of the stress space.

12-6. Comparison of Yield
and Fracture Criteria

Comparison of some classical experimental results with the yield and frac-
ture criteria presented before is shown in Fig. 12-10.8 Note the particularly
good agreement between the maximum distortion-energy theory and

"This theory is gencrally credited to W. J. M. Rankine, an eminent British cducator
(1820-1872). An analogous theory based on the maximum strain, rather than stress, being the
basic criterion of failure was proposed by the great French clastician, B. de Saint-Venant
(1797-1886). Experimental evidence does not corroborate the latter approach.

$The experimental points shown on this figure are based on classical experiments by scy-
cral investigators. The figure is adapted from a compilation made by G. Murphy, Advanced
Mechanics of Materials (New York: McGraw-Hill, 1964), 83.

(b)

Fig. 12-9 Fracture envelope bascd

maximum stress criterion.

o
122 ?’*&
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Fig.12-10 Comparison of yield and fracture criteria with test data.

rimental results for ductile materials. However, the maximum normal-
ss theory appears to be best for brittle materials and can be unsafe for
diactile materials.

~ All the theories for uniaxial stress agree since the simple tension test is
&standard of comparison. Therefore, if one of the principal stresses at a
pont is large in comparison with the other, all theories give practically the
same results. The discrepancy between the criteria is greatest in the second
| fourth quadrants, when both principal stresses are numerically equal.
In the development of the theories discussed before, it has been
assumed that the properties of material in tension and compression are
ﬂe——the plots shown in several of the preceding figures have two axes of
ssmmetry. On the other hand, it is known that some materials, such as
- mocks, cast iron, concrete, and soils, have drastically different properties
ending on the sense of the applied stress. This is the greatest flaw in
applying the classical idealizations to materials having large differences in
wleir mechanical behavior in tension and compression. An early attempt to
adopt the maximum shear theory to achieve better agreement with experi-
ments was made by Duguet in 1885.9 The improved model recognizes the
Bigher strengths of brittle materials in biaxial compression than in tension.
Therefore, the region in biaxial tension in the principal stress space is made

*A.Nadai, Theory of Flow and Fracture of Solids (New York: McGraw-Hill, 1950).
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smaller than it is for biaxial compression; see Fig. 12-11. In the second and
fourth quadrants, a linear change between the two aforementioned regions
is assumed. A. A. Griffith,10 in a sense, refined the explanation for the pre-
vious observations by introducing the idea of surface energy at micro-
scopic cracks and showing the greater seriousness of tensile stresses
compared with compressive ones with respect to failure. According to this
theory, an existing crack will rapidly propagate if the available elastic
strain energy release rate is greater than the increase in the surface energy
of the crack. The original Griffith concept has been considerably expanded
by G. R. Irwin.11

Another important attempt for rationalizing fracture of materials
having different properties in tension and compression is due to Mohr,12
In this approach, several different experiments must be conducted on the
same material. For example, if the results of experiments in tension, com-
pression, and shear are available, the results can be represented on the
same plot using their respective largest principal stress circles, as shown
in Fig. 12-12(a). The points of contact of the envelopes with the stress cir-
cles define the state of stress at a fracture. For cxample, if such a point is
A (or A"), the stresses and the plane(s) on which they can be found using
the established procedure for Mohr’s circle of stress (Section 11-7). The
corresponding planes for points A or A are shown in Fig, 12-12(b), and a
material such as duraluminum does fracture in tension at a flat angle, as
shown. Similarly, by relating the fracture planes to either point B or B/,
the fracture occurs at a steep angle characteristic of concrete cylinders
tested in compression, as in Fig. 12-12(c). Such agreements with experi-
ments support the assumed approach.

The data from Fig, 12-12(a) can be replotted in the principal stress
space, as in Fig. 12-12(d). Since in the first quadrant, the minimum principal
stress o3 = 0, and in the third quadrant, o3 = 0 is the maximum principal
stress, per Fig. 12-12(a)-(c), in these quadrants the fracture lines in the
principal stress space are similar to those of Fig. 12-11. Moreover, if the
material strengths in tension and compression are the same, a hexagon

" identical to that shown in Fig. 12-10 is obtained. However, whereas the

hexagon in Fig. 12-10 gives a yield condition for ductile materials, in the

present context it defines a fracture criterion for brittle materials,
Extrapolation of Mohr envelopes beyond the range of test data is not

advisable. In many applications, this may mean that parts of the stress cir-

YA. A. Griffith, “The phenomena of rupture and flow of solids,” Philosophical
Transactions of the Royal Society of London, Series A, 221 (1920), 163198,

1G. R. Irwin, “Fracture mechanics,” Proceedings, First Symposium on Naval Structural
Mechanics (Long Island City, NY: Pergamon, 1958), 557. Also see A Symposium on Fracture
Toughness Testing and Its Applications, American Society for Testing and Materials Special
Technical Publication No, 381 (Philadelphia, PA: American Society for Testing and Materials
and Washington, DC: National Aecronautics and Space Administration, 1965).

12As noted earlier, Otto Mohr was also principally responsible for the development of the
stress circle bearing his name,

Griffith

Fig.12-11 Plausible fracture criteria
for brittle materials,
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mterpolation along the failure envelopes between these two partial end
tress circles is justified, and a stress circle for other conditions can be

avely, straight-line envelopes can be used.

. The use of straight lines for asymptotes has a rational basis and has
. been found particularly advantageous in soil mechanics. For a loose granu-
lar media such as sand, the straight-line Mohr envelopes correspond to the
Emiting condition of dry friction, p = tan ¢; see Fig 12-13. Any circle tan-
geat to the envelope, as at B, gives the state of critical stress. If some cohe-
sion can be developed by the media, the origin O is moved to the right such
that at zero stress, the 7 intercept is equal to the cohesion. As soils basically
cannot transmit tensile stresses, in specialized literature it is customary to
direct the compression axis to the right.

- Unlike the maximum distortion-energy theory, the fracture theory
based on Mohr envelopes, using the largest principal stress circles, neglects
dependence on the intermediate principal stress.

- Sometimes the yield and fracture criteria discussed before are inconve-
- ment to apply. In such cases, interaction curves such as in Fig. 9-16 can be
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(~05, Os)

(d)

212 (a) Mohr envelopes, (b) failure planes at A and A’, (c) failure planes at B and B’, (d) Mohr envelope

Fig. 12-13  Mohr envelopes for cohe-
sionless granular media.
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used to advantage. Experimentally determined curves of this type, unless
complicated by a local or buckling phenomenon, are equivalent to the
strength criteria discussed here.

In the design of members in the next chapter, departures will be made
from strict adherence to the yield and fracture criteria established here,
although, unquestionably, these theories provide the rational basis for design.

12-7. Failure Surface for Brittle Materials

The analytical approach applicable to brittle materials has reached signifi-
cant maturity such that it can be included in a text on engineering mechan-
ics of solids. The available treatment in three-dimensional stress space
resembles the yield surface of the von Mises criterion (Fig. 12-7), with a
significant difference. The enclosed stress space is capped in the direction
of tensile stresses, and the enclosing surface gradually expands. In the limit
it becomes a cone, rather than a tube of the Mises criterion.

The surface in stress space, such as shown in Fig, 12-7, that defines the
ultimate strength values for any principal stress ratio is usually called the
failure surface, or strength model, of the material. The failure surface of
concrete, serving as an illustration for a brittle material, is described here
by a modification of the five-parameter surface of William and Warnke.!3
The modified failure surface!* shown in Fig. 12-14(a) is described by

an + bVa(n? — 1) + b?
an? + b*

To(0y, 0) = T

(12-13)

where
8 =17 -l b= n, ~ ap m =008l (12-14)

and oy is the hydrostatic stress, defined in Eq. 11-31, and 0 is the Lode
angle, given by Eq. 11-29.

Equation 12-13 defines the form of the failure surface in the deviatoric
plane o, = const and describes a smooth convex (elliptical) curve depicted
in Fig. 12-14(b). Parameters 7, and 7, in Eq. 12-14 are functions of the
hydrostatic stress, defined as roots of the quadratic equations

TC
7+ A(VE + 0‘0> +'B'=0 (12-15)
2 + A(% B+ (;0) +B=0 (12-16)

13See K. J. William and E. P. Warnke, “Constitutive model for the triaxial behavior of con-
crete,” Int. Association for Bridge and Struct. Engrg. Proc., 19, (1975), 1-30.

See T. A. Balan, F. C. Filippou, and E. P. Popoy, “ Constitutive model for 3D cyclic analy-
sis of concrete structures,” J. Engrg. Mechanics, ASCE, 123, no. 2 (February 1997), 143-153.




SEC. 12-7.

FAILURE SURFACE FOR BRITTLE MATERIALS 533

' iifoeey

0,
V202000,
'{'c"o“ozo.
30202583525
’0:::0:0‘ ¥

(a)

To } %

T
Eoit 4 Re

Oo

Re 02 =03

O3

T

(c)
12-14 Failure surface of concrete: (a) general view; (b) deviatoric view; (c) meridianal view.
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A= %(1 -a)2+a) B= - ZR2 (12-17)

O N

4 - o
2+ a

R R :
« R B (12-18)
R, are the uniaxial compression and tensile strengths, respectively.
i should be noted that Eqgs. 12-15 and 12-16 represent the compression
60°) and the tension (0 = 0°) meridians of the material failure sur-
1 the plane o, = o3 (sometimes called the Rendulic plane), as can
in Fig. 12-14(c), the meridianal sections are the parabolic curves,
pass through a set of characteristic points that define the following
pih parameters of the material:

R, R, = uniaxial compression and tensile strengths, respectively
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~1.4 ~1.2 -1.0_.0:8
Tl

————— Envelope of experimental data
~= Concrete failure criterion

Fig. 12-15 Comparison of experimental results
with analytical prediction.

R,. = biaxial compression strengths defined as

e % (1-a+ \/(1 - o)’ + 16

The meridianal curves intersect the hydrostatic axis at the point of
equitriaxial extension (triaxial tensile strength), which can be expressed in
terms of uniaxial compression and tensile strength as

e 8 2R,
il G A2 + a)

In Fig. 12-15 the material strength predicted by the failure surface is
compared with plane stress experimental data.!s The particular concrete was
calibrated by the following strength parameters: R, =32.1 MPa (4.66 ksi)
and R, = 3.1 MPa (0.45 ksi). The resulting failure trace of the strength model
in plane ¢, = () provides very close agreement with considered experimen-
tal data.

Careful recent experimental research on concrete specimens of differ-
ent strengths strongly corroborates this approach. This work now has been
extended to include strain-hardening effects and has been implemented
for use with a computer.16

Adopted from H. Kupfer, H. K, Hilsdorf, and H. Rusch, “Behavior of concrete under
biaxial stresses,” ACI J, 66, no. 8 (1969), 656-666.

16C. Bedard and M. D, Kostovos, “Application of N1 FEA to concrete structures,” /. Struct,

Div. ASCE, 111 (8T12) (1985); Z. P, Bazant, ed., Mechanics of Geomaterials: Rocks, Concrete,
Soils (Chichester: Wi ley, 1985).




