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Introduction

What is a quantum computer?

▪ A quantum computer is a machine that performs 

calculations based on the laws of quantum mechanics, 

which is the behavior of particles at the sub-atomic 

level.



Introduction

▪ “I think I can safely say that nobody 

understands quantum mechanics” - Feynman

▪ 1982 - Feynman proposed the idea of creating 

machines based on the laws of quantum 

mechanics instead of the laws of classical 

physics.

▪ 1985 - David Deutsch developed the quantum turing 

machine, showing that quantum circuits are universal.

▪ 1994 - Peter Shor came up with a quantum 

algorithm to factor very large numbers in polynomial 

time.

▪1997 - Lov Grover develops a quantum search 

algorithm with O(√N) complexity
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Representation of Data  - Qubits

A bit of data is represented by a single atom that is in one of 

two states denoted by |0> and |1>.  A single bit of this form is 

known as a qubit

A physical implementation of a qubit could use the two energy 

levels of an atom.  An excited state representing |1> and a 

ground state representing |0>.
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Representation of Data - Superposition

A single qubit can be forced into a superposition of the two states 

denoted by the addition of the state vectors:

|> =  |0> +  |1>

Where  and  are complex numbers and | |   +  |  |   = 1

1 2

1 2 1 2
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A qubit in superposition is in both of the 

states |1> and |0 at the same time 



Representation of Data - Superposition

Light pulse of 

frequency  for time 

interval t/2

State |0> State |0> + |1>

▪Consider a 3 bit qubit register.  An equally weighted 

superposition of all possible states would be denoted by:

|> =     |000> + |001> + . . . +     |111>
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Data Retrieval

▪ In general, an n qubit register can represent the numbers 0 

through 2^n-1 simultaneously.

Sound too good to be true?…It is!

▪ If we attempt to retrieve the values represented within a 

superposition, the superposition randomly collapses to 

represent just one of the original values. 

In our equation:  |> =  |0> +  |1> ,  represents the 

probability of the superposition collapsing to |0>.  The ’s 

are called probability amplitudes.  In a balanced 

superposition,  = 1/√2   where n is the number of qubits.

1 2 1

n



Relationships among data - Entanglement

▪Entanglement is the ability of quantum systems to exhibit 

correlations between states within a superposition.

▪Imagine two qubits, each in the state |0> + |1> (a superposition 

of the 0 and 1.)  We can entangle the two qubits such that the 

measurement of one qubit is always correlated to the 

measurement of the other qubit.
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▪Due to the nature of quantum physics, the destruction of 

information in a gate will cause heat to be evolved which can 

destroy the superposition of qubits.

Operations on Qubits - Reversible Logic

A B   C

0 0 0

0 1 0

1 0 0

1 1 1

Input Output

A

B

C

In these 3 cases, 

information is 

being destroyed

Ex.

The AND Gate

▪This type of gate cannot be used.  We must use 

Quantum Gates.



Quantum Gates

▪ Quantum Gates are similar to classical gates, but do not have 

a degenerate output. i.e. their original input state can be derived 

from their output state, uniquely.  They must be reversible.

▪This means that a deterministic computation can be performed 

on a quantum computer only if it is reversible.  Luckily, it has 

been shown that any deterministic computation can be made 

reversible.(Charles Bennet, 1973)



Quantum Gates - Hadamard

▪Simplest gate involves one qubit and is called a Hadamard 

Gate (also known as a square-root of NOT gate.)  Used to put 

qubits into superposition.
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Note: Two Hadamard gates used in 

succession can be used as a NOT gate



Quantum Gates - Controlled NOT  

▪A gate which operates on two qubits is called a Controlled-

NOT (CN) Gate.  If the bit on the control line is 1, invert 

the bit on the target line.

A - Target

B - Control

A B   A’ B’

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 1

Input Output

Note: The CN gate has a similar 

behavior to the XOR gate with some 

extra information to make it reversible.

A’

B’



Example Operation - Multiplication By 2

Carry Bit

Carry 

Bit

Ones 

Bit   

Carry 

Bit

Ones 

Bit

0 0 0 0

0 1 1 0

Input Output

Ones Bit

▪ We can build a reversible logic circuit to calculate multiplication 

by 2 using CN gates arranged in the following manner:

0
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Quantum Gates - Controlled Controlled NOT (CCN) 

A - Target

B - Control 1

C - Control 2

A B   C A’ B’ C’

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 1 1

Input Output

A’

B’

C’

▪A gate which operates on three qubits is called a 

Controlled Controlled NOT (CCN) Gate.  Iff the bits on 

both of the control lines is 1,then the target bit is inverted.



A Universal Quantum Computer

▪ The CCN gate has been shown to be a universal reversible 

logic gate as it can be used as a NAND gate.

A - Target

B - Control 1

C - Control 2

A B   C A’ B’ C’

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 1 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 0 1 1

Input OutputA’

B’

C’

When our target input is 1, our target 

output is a result of a NAND of B and C.
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Shor’s Algorithm

▪Shor’s algorithm shows (in principle,) that a quantum 

computer is capable of factoring very large numbers in 

polynomial time. 

The algorithm is dependant on

▪Modular Arithmetic

▪Quantum Parallelism

▪Quantum Fourier Transform



Shor’s Algorithm - Periodicity

▪ Choose N = 15 and x = 7 and we get the following:

7   mod 15 = 1

7   mod 15 = 7

7   mod 15 = 4

7   mod 15 = 13

7   mod 15 = 1

0

1

2

3

4

▪ An important result from Number Theory:

F(a) = x  mod N is a periodic function
a

.

.

.



Shor’s Algorithm - In Depth Analysis

To Factor an odd integer N  (Let’s choose 15) :

1. Choose an integer q such that N  < q < 2N     let’s pick 256

2. Choose a random integer x such that GCD(x, N) = 1 let’s pick 7

3. Create two quantum registers (these registers must also be 

entangled so that the collapse of the input register corresponds to 

the collapse of the output register)

• Input register: must contain enough qubits to represent 

numbers as large as q-1.  up to 255, so we need 8 qubits

• Output register: must contain enough qubits to represent 

numbers as large as N-1. up to 14, so we need 4 qubits

2 2



Shor’s Algorithm - Preparing Data

4. Load the input register with an equally weighted 

superposition of all integers from 0 to q-1.  0 to 255

5. Load the output register with all zeros.  

The total state of the system at this point will be:

1

√256
∑ |a, 000>
a=0

255

Input 

Register

Output 

Register

Note: the comma here 

denotes that the 

registers are entangled



Shor’s Algorithm - Modular Arithmetic

6. Apply the transformation x mod N to each number in 

the input register, storing the result of each computation 

in the output register.

a

Input Register 7   Mod 15 Output Register

|0> 7   Mod 15 1

|1> 7   Mod 15 7

|2> 7   Mod 15 4

|3> 7   Mod 15 13

|4> 7   Mod 15 1

|5> 7   Mod 15 7

|6> 7   Mod 15 4

|7> 7   Mod 15 13

a

0

1

7

6

5

4

3

2

Note that we are using decimal 

numbers here only for simplicity.

.

.



Shor’s Algorithm - Superposition Collapse

7. Now take a measurement on the output register.  This will 

collapse the superposition to represent just one of the results 

of the transformation, let’s call this value c.

Our output register will collapse  to represent one of 

the following: 

|1>, |4>, |7>, or |13

For sake of example, lets choose |1>



Shor’s Algorithm - Entanglement

8. Since the two registers are entangled, measuring the output 

register will have the effect of partially collapsing the input 

register into an equal superposition of each state between 0 

and q-1 that yielded c (the value of the collapsed output 

register.)

Now things really get interesting !

Since the output register collapsed to |1>, the input register 

will partially collapse to:

|0> +       |4> +       |8> +       |12>, . . .

The probabilities in this case are         since our register is 

now in an equal superposition of 64 values (0, 4, 8, . . . 252)

1

√64

1

√64
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√64

1

√64

1

√64



Shor’s Algorithm - QFT

We now apply the Quantum Fourier transform on the 

partially collapsed input register.  The fourier transform has 

the effect of taking a state |a> and transforming it into a 

state given by:

1

√q
∑ |c> * e
c=0

q-1

2iac / q



Shor’s Algorithm - QFT

1

√256
∑ |c> * e
c=0

255

2iac / 256

1

√64
∑ |a> , |1>

a A

Note: A is the set of all values that 7   mod 15 yielded 1.  

In our case A = {0, 4, 8, …, 252}

So the final state of the input register after the QFT is:

a

1

√64
∑                                     ,  |1>

a A

1

√256
∑ |c> * e
c=0

255

2iac / 256



Shor’s Algorithm - QFT

The QFT will essentially peak the probability amplitudes at 

integer multiples of q/4 in our case 256/4, or 64.

|0>, |64>, |128>, |192>, …

So we no longer have an equal superposition of states, the 

probability amplitudes of the above states are now higher 

than the other states in our register.  We measure the register, 

and it will collapse with high probability to one of these 

multiples of 64, let’s call this value p.

With our knowledge of q, and p, there are methods of 

calculating the period (one method is the continuous fraction 

expansion of the ratio between q and p.)



Shor’s Algorithm - The Factors :) 

10. Now that we have the period, the factors of N can be 

determined by taking the greatest common divisor of N 

with respect to x ^ (P/2) + 1 and x ^ (P/2) - 1.  The idea 

here is that this computation will be done on a classical 

computer.

We compute:

Gcd(7 + 1, 15)  = 5

Gcd(7 - 1, 15)  = 3

We have successfully factored 15!

4/2

4/2



Shor’s Algorithm - Problems

▪ The QFT comes up short and reveals the wrong period.  This 

probability is actually dependant on your choice of q.  The 

larger the q, the higher the probability of finding the correct 

probability.

▪ The period of the series ends up being odd

If either of these cases occur, we go back to 

the beginning and pick a new x.
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Conclusion

▪ In 2001, a 7 qubit machine was built and programmed to run 

Shor’s algorithm to successfully factor 15.

▪ What algorithms will be discovered next?

▪Can quantum computers solve NP Complete problems in 

polynomial time?


