IBM Watson
Information Retrieval

!.'i

=S

IBM Watson

IBM Watson beats humans @ Jeopardy!

|

-] - =r'
N 24

|

v
e

'|.|r’ |
» O ??,14?| i
§ 17071 |
J [

|
000 ’ $
- . .
I |

i |

What is IBM Watson

Watson is a question answering computer system
capable of answering questions posed in natural language.
Watson was named after IBM's first CEO, industrialist
Thomas |. Watson.

Software: IBM's DeepQA software, Apache UIMA
framework, various programming languages, SUSE Linux
over Apache Hadoop.

Hardware: cluster of 90 IBM Power 750 servers, 2.880
POWER7 processor threads and 16 terabytes of RAM. Cost:
about 3 million $

Data: millions of documents including encyclopedias,
dictionaries, thesauri, newswire articles, and literary works.
Watson also used databases, taxonomies, and ontologies
(DBPedia, WordNet, and Yago). For Jeopardy! all data was
stored in RAM for Watson to be competitive with humans.
Watson parses this data to build its knowledge.
Operation: Watson parses questions and employs various
technologies (Natural Language Processing, Information
Retrieval, Knowledge Representation and Reasoning, and
Machine Learning) on its data to spot probable answers.

The DeepQA Framework

Question

Primary
Search

Question &
Tapic
Analysis

Candidate
Answer
Generation

———

Hypothesis
Generalion

Evidence
Retrieval

Hypothesis and
Evidence Scoring

Leamed Modeis
help combine amd
weigh the Evidence

Deep
Evidence
Scoring

.

Final Canfidence
Merging &
Ranking

Answer &
Confidence

B0 TIBM Caparassh

1. Question decomposition: When the question is
presented, Watson parses it in order to extract its major
features.

2. Hypothesis Generation: Watson searches the corpus
(which consists of structured & unstructured knowledge)
for passages that might contain a valuable response.

3. Hypothesis and evidence scoring: Watson compares
the text of the question and the text of all potential
responses with specific reasoning algorithms. Each one of
these algorithms executes a different comparison (e. g:
search for the matching of terms and synonyms, examine
the temporal and spatial features) and then produces one
or more scores that indicate the response's degree of
relevance(inference) to the question.

4. Synthesis: Each resulting score is weighted against a
statistical model that captures the algorithm's
performance at the establishment of inference between
two similar passages for that domain, during Watson's
training period. This statistical model is then used to
summarize a level of confidence as Watson's metric of
evidence that the candidate answer is inferred by the
auestion.

5. Final Confidence Merging and Ranking: The process

- Ay

Watson Experience Manager (Data Science class of

IBM Watson Experience Manager #

Corpus Management

e
3arpyska

0t BOKYMEHTOB

Configure and Train Watson

- - @

Manage Corpus Train Watson Configure Watson Test Watson

= R
‘ﬂbnﬁnﬁﬁﬁnﬁh

For a given topic - subject: Some serious drawbacks:

® A team collects possible questions (in natural language) on the topic ® Huge number of

® A team creates a corpus of documents (html pdf etc) that potentially contain questions, answers and
answers to these questions '

® Another team matches each question to text excerpts inside the documents documents needed
that are potential answers to the question (order of thousands)

® An expert team evaluates the question answer pairs ® Black-box algorithms

® Watson is automatically trained and learns a topic model and training

® Watson is ready to be deployed as a web service and answer questionson @ Not obvious integration

the topic

MLl o vt rm i pmrm rmrmm Lnh o~ Mk mmmtm A A tcm mmmememem o mirar A A N A mm Rl omn el o mem o m A A o~ e~

as a service

Information Retrieval

IR System Components

Document
Collection

|

| Document Normalisation |

| Indexer \

IR System

Indexes

Query |——

ul
Query Norm.

By
Ranking/Matching Module

|

Set of relevant
documents

D1: “the Health Observances for March ”

D2: “the Health oriented Calendar”

D3: “the Awareness News for March Awareness”

QUERY: “march health awareness”

D=3 ;; IDF=log(%) df; = number of documents containing term j
]

COUNTS TFy; WEIGHTS, W= WEIGHTS W_Fp,; « IDF;
Fq,+IDF;

TERMS Q | bl | D2 | D3 | df D/df; IDF,; Q D1 D2 D3
Health 1 1 1 0 2 3/2=1.5 0.1761 0.1761 0.1761 | 0.1761 0
Observances 0 1 0 0 1 3/1=3 0.4771 0 0.4771 0 0
For 0 1 0 1 2 3/2=1.5 0.1761 0 0.1761 0 0.0881
March 1 1 0 1 2 3/2=1.5 0.1761 0.1761 0.1761 0 0.0881
Awareness 1 0 0 2 1 3/1=3 0.4771 0.4771 0 0 0.4771
Oriented 0 0 1 0 1 3/1=3 0.4771 0 0 0.4771 0
Calendar 0 0 1 0 1 3/1=3 0.4771 0 0 0.4771 0
News 0 0 0 1 1 3/1=3 0.4771 0 0 0 0.2285
the 0 1 1 1 3 3/3=1 0 0 0 0 0

@ Ranking search results: why it is important (as opposed to
just presenting a set of unordered Boolean results)

@ Term frequency: This is a key ingredient for ranking.
@ Tf-idf ranking: best known traditional ranking scheme

@ And one explanation for why it works: Zipf's Law

@ Vector space model: One of the most important formal
models for information retrieval (along with Boolean and
probabilistic models)

Boolean Retrieval Model

Processing Boolean queries

« To process a simple conjunctive query such as “Brutus AND
Calpurnia® using an inverted index and the basic Boolean retrieval
model, we follow these steps:

1. Locate Brutus in the Dictionary

2. Retrieve its postings

3. Locate Calpurnia in the Dictionary
4. Retrieve its postings

5. Intersect the two postings lists

B | — [T] 2] 3] N N[BT
[Caessar | — [TT 2] 4] 5] 6B 12T ... 1
| Calpurnia | — |2 [31 [54 | 101 |

— — s,

Dictionary Fla-;ingh

Ranked retrieval

@ Thus far, our queries have been Boolean.
@ Documents either match or don't.

@ Good for expert users with precise understanding of their
needs and of the collection.

@ Also good for applications: Applications can easily consume
1000s of results.

@ Not good for the majority of users

@ Don’t want to write Boolean queries or wade through 1000s
of results.

@ This is particularly true of web search.

Problem with Boolean search: Feast or famine

@ Boolean queries often have either too few or too many results.

standard AND user AND dlink AND 650
— 200,000 hits Feast!

standard AND user AND dlink AND 650
AND no AND card AND found
— 0 hits Famine!

@ In Boolean retrieval, it takes a lot of skill to come up with a
query that produces a manageable number of hits.

@ In ranked retrieval, “feast or famine” is less of a problem.

@ Condition: Results that are more relevant are ranked higher
than results that are less relevant. (i.e., the ranking algorithm

works.)

Scoring as the basis of ranked retrieval

@ Rank documents in the collection according to how relevant
they are to a query

@ Assign a score to each query-document pair, say in [0, 1].
@ This score measures how well document and query "match”.

@ If the query consists of just one term ...

lioness |

@ Score should be 0 if the query term does not occur in the
document.
@ The more frequent the query term in the document, the higher

the score
@ We will look at a number of alternatives for doing this.

Take 1: Jaccard coefficient

@ A commonly used measure of overlap of two sets
@ Let A and B be two sets
@ Jaccard coefficient:

AN B

JACCARD(A, B) = AUB

(A#£Qor B#0D)
@ JACCARD(A,A) =1
@ JACCARD(A,B)=0if ANB=0
@ A and B don't have to be the same size.

@ Always assigns a number between 0 and 1.

Jaccard coefficient: Example

@ What is the query-document match score that the Jaccard
coefficient computes for:

“ides of March" .
“Caesar died in March” I

@ JACCARD(q,d) =1/6

What's wrong with Jaccard?

@ It doesn't consider term frequency (how many occurrences a
term has).
@ Rare terms are more informative than frequent terms.
@ Jaccard does not consider this information.

@ We need a more sophisticated way of normalizing for the
length of a document.
o Later in this lecture, we'll use |[AN B|/+/|AU B| (cosine) ...
@ ...instead of |[AN B|/|AU B| (Jaccard) for length
normalization.

Binary incidence matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
BruTUS 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Each document is represented as a binary vector ¢ {0,1}/V].

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 157 73 0 0 0 1
BruTUS 4 15F 0 2 0 0
CAESAR 232 227 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA LT 0 0 0 0 0
MERCY 2 0 3 8 5 3
WORSER 2 0 1 1 1 5

Each document is now represented as a count vector € NIVI,

Bag of words model

We do not consider the order of words in a document.

Represented the same way:

John is quicker than Mary
Mary is quicker than John J

This is called a bag of words model.

In a sense, this is a step back: The positional index was able
to distinguish these two documents.

We will look at “recovering” positional information later in
this course.

For now: bag of words model

Term frequency tf

The term frequency tf; 4 of term t in document d is defined
as the number of times that t occurs in d.

We want to use tf when computing query-document match
scores.

But how?
Raw term frequency is not what we want because:

A document with tf = 10 occurrences of the term is more
relevant than a document with tf = 1 occurrence of the term.

But not 10 times more relevant.

Relevance does not increase proportionally with term
frequency.

Instead of raw frequency: Log frequency weighting

@ The log frequency weight of term t in d is defined as follows

W L]. —|— |Og10 tft,d |f tft,d > 0
LA otherwise J

the, g Wt o
0 0
1 1
2 1.3
10 2
1000 | 4
@ Score for a document-query pair: sum over terms t in both g

and d:

tf-matching-score(q, d) = » . ~g(1 + log tfr 4)

@ The score is 0 if none of the query terms is present in the
document.

Frequency in document vs. frequency in collection

@ In addition, to term frequency (the frequency of the term in
the document) ...

@ ...we also want to use the frequency of the term in the
collection for weighting and ranking.

@ Now: excursion to an important statistical observation about
language.

Zipf's law

@ How many frequent vs. infrequent terms should we expect in
a collection?

@ In natural language, there are a few very frequent terms and
very many very rare terms.

The i*" most frequent term has
frequency cf; proportional to 1//:

cf; x-}—

@ cf; is collection frequency: the number of occurrences of the
term t; in the collection.

The it" most frequent term has

frequency cf; proportional to 1/i:
1

@ So if the most frequent term (the) occurs cf; times, then the
second most frequent term (of) has half as many occurrences
sz = %Cfl

@ ...and the third most frequent term (and) has a third as
many occurrences cf3 = %cfl etc.

@ Equivalent: cf; = ci¥ and log cf; = log c + klogi (for k = —1)

@ Example of a power law

Zipf's Law: Examples from 5 Languages

Top 10 most frequent words in a large language sample:

English
the 61,847
> of 29,3901
: and 26,817
1 a 21,626
in 18,214
6 to 16,284
it 10,875
is 0,082
) to 9,343
0 was 0,236

der

> die
3 und
1 in

den

6 von
7 ZU
; das

mit

0 sich

German

7,377,879
7,036,092
4,813,169
3,768,565
2,717,150
2,250,642
1,992,268
1,983,589
1,878,243
1,680,106

5 la
6 el
; es
8y

9 en
0 lo

Spanish
que 32,894
> de 32,116
3 no 29,897
a 22,313
21,1237
18,112
16,620
15,743
15,303
14,010

ltalian

non
di

3 che

6 la
7 1l

Ln

0 per

25,757
22,868
22,738
18,624
17,600
16,404
14,765
14,460
13,915
10,501

Dutch
de 4,770
en 2,709
het/'t 2,469
van 2,259
ik 1,999
te 1,935
dat 1,875
3 die 1,807
in 1,639
een 1,637

Absolute frequency of token

this is a log-scale plot

jawbone

10
10

10

10° 10°%

Frequency rank of token

Zipf's law: Rank x Frequency ~ Constant

English: Rank R | Word Frequency f | R x f
10 | he 877 8770
20 | but 410 8200
30 | be 294 8820
800 | friends 10 8000
1000 | family 8 8000
German: Rank R | Word Frequency f R xf
10 | sich 1,680,106 | 16,801,060
100 | immer 197,502 | 19,750,200
500 | Mio 36,116 | 18,059,500
1,000 | Medien 19,041 | 19,041,000
5,000 | Miete 3,755 | 19,041,000
10,000 | vorlaufige 1.664 | 16,640,000

Other collections (allegedly) obeying power laws

@ Sizes of settlements

@ Frequency of access to web pages

@ Income distributions amongst top earning 3% individuals
@ Korean family names

@ Size of earth quakes

@ Word senses per word

@ Notes in musical performances

>
| -

Q

)

wn

>
&
Y—
o
N

()

e

T

Desired weight for rare terms

@ Rare terms are more informative than frequent terms.

@ Consider a term in the query that is rare in the collection
(e.g., ARACHNOCENTRIC).

@ A document containing this term is very likely to be relevant.

@ — We want high weights for rare terms like
ARACHNOCENTRIC.

Desired weight for frequent terms

@ Frequent terms are less informative than rare terms.

@ Consider a term in the query that is frequent in the collection
(e.g., GOOD, INCREASE, LINE).

@ A document containing this term is more likely to be relevant
than a document that doesn't ...

@ ...but words like GOOD, INCREASE and LINE are not sure
indicators of relevance.

@ — For frequent terms like GOOD, INCREASE, and LINE, we
want positive weights . ..

@ ...but lower weights than for rare terms.

Document frequency

@ We want high weights for rare terms like ARACHNOCENTRIC.

@ We want low (positive) weights for frequent words like GOOD,
INCREASE, and LINE.

@ We will use document frequency to factor this into computing
the matching score.

@ The document frequency is the number of documents in the
collection that the term occurs in.

@ df; is the document frequency, the number of documents that
t occurs in.

@ df; is an inverse measure of the informativeness of term t.

@ We define the idf weight of term t as follows:

idf weight

|dfr = |Og10 g
5

(N is the number of documents in the collection.)
@ idf; is a measure of the informativeness of the term.

@ log Eﬁ’-— instead of Eﬁ’,— to “dampen” the effect of idf

@ Note that we use the log transformation for both term
frequency and document frequency.

Examples for idf

1,000,000

Compute idf; using the formula: idf; = log;q =

term df; | idf;
calpurnia 1 6
animal 100 4
sunday 1000 3
fly 10,000 2
under 100,000 1
the 1,000,000 0

Collection frequency vs. Document frequency

Collection Document

Term frequency frequency
INSURANCE 10440 3997
TRY 10422 8760

@ Collection frequency of t: number of tokens of t in the
collection

@ Document frequency of t: number of documents t occurs in

@ Clearly, INSURANCE is a more discriminating search term and
should get a higher weight.

@ This example suggests that df (and idf) is better for weighting
than cf (and “icf").

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and
its idf weight.

tf-idf weight

N
Wed = (1 + logtf; 4) - log T
£

tf-weight
idf-weight

Best known weighting scheme in information retrieval

Alternative names: tf.idf, tf x idf

Summary: tf-idf

@ Assign a tf-idf weight for each term t in each document d:
we.g = (1 + logtf; 4) - log diff
@ The tf-idf weight ...

@ ...increases with the number of occurrences within a
document. (term frequency)
@ ...increases with the rarity of the term in the collection.

(inverse document frequency)

Binary incidence matrix

ANTHONY
BruTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER

Anthony
and
Cleopatra

1

etk d (O et

Julius
Caesar

OO0 M o

The
Tempest

-0 O O O O

Hamlet

o OO O

Othello

= -0 O = O O

Each document is represented as a binary vector ¢ {0,1}/V].

Macbeth

O = O O M= O

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 157 73 0 0 0 1
BruTUS 4 15F 0 2 0 0
CAESAR 232 227 0 2 1 0
CALPURNIA 0 10 0 0 0 0
CLEOPATRA LT 0 0 0 0 0
MERCY 2 0 3 8 5 3
WORSER 2 0 1 1 1 5

Each document is now represented as a count vector € NIVI,

ANTHONY
BruTUS
CAESAR
CALPURNIA
CLEOPATRA
MERCY
WORSER

Anthony

and

Cleopatra

Dl
1.21
8.59
0.0
2.85
1.51
1.37

Julius
Caesar

3.8
6.10
2.54
1.54
0.0
0.0
0.0

The

Tempest

0.0
0.0
0.0
0.0
0.0
1.90
0.11

Hamlet

0.0
1.0
1.51
0.0
0.0
0.12
4.15

Binary — count — weight matrix

Othello Macbeth
0.0 0.35
0.0 0.0
0.25 0.0
0.0 0.0
0.0 0.0
5.25 0.88
0.25 1.95

Each document is now represented as a real-valued vector of tf-idf weights
c RIVI

Documents as vectors

@ Each document is now represented as a real-valued vector of
tf-idf weights € RIVI.

@ So we have a |V/|-dimensional real-valued vector space.

@ Terms are axes of the space.

@ Documents are points or vectors in this space.

9

Very high-dimensional: tens of millions of dimensions when
you apply this to web search engines

@ Each vector is very sparse - most entries are zero.

Queries as vectors

@ Key idea 1: do the same for queries: represent them as vectors
in the high-dimensional space

@ Key idea 2: Rank documents according to their proximity to
the query

@ proximity ~ negative distance

@ This allows us to rank relevant documents higher than
nonrelevant documents

How do we formalize vector space similarity?

First cut: (negative) distance between two points

(= distance between the end points of the two vectors)

9
Q

@ Euclidean distance?

@ Euclidean distance is a bad idea . ..
)

... because Euclidean distance is large for vectors of different
lengths.

Why distance is a bad idea

POOR _ d>:Rich poor gap grows
14 di: Ranks of starving poets swell

q: [rich poor]

da: Record baseball salaries in 2010
> RICH

0 1

The Euclidean distance of g and ds is large although the
distribution of terms in the query g and the distribution of terms in
the document d, are very similar.

Use angle instead of distance

©

Rank documents according to angle with query

Thought experiment: take a document d and append it to
itself. Call this document d’. d’ is twice as long as d.

“Semantically” d and d’ have the same content.

The angle between the two documents is 0, corresponding to
maximal similarity . ..

.. .even though the Euclidean distance between the two
documents can be quite large.

From angles to cosines

@ The following two notions are equivalent.

@ Rank documents according to the angle between query and
document in decreasing order

@ Rank documents according to cosine(query,document) in
Increasing order

@ Cosine is a monotonically decreasing function of the angle for
the interval [0°, 180°]

50 00 150 200 250 300 350

Length normalization

@ How do we compute the cosine?

@ A vector can be (length-) normalized by dividing each of its
components by its length — here we use the L, norm:

[Ixll2 = /22 %7

@ This maps vectors onto the unit sphere ...

® ...since after normalization: ||x||2 = />, x? = 1.0

@ As a result, longer documents and shorter documents have
weights of the same order of magnitude.

@ Effect on the two documents d and d’ (d appended to itself)
from earlier slide: they have identical vectors after
length-normalization.

Cosine similarity between query and document

- 174
- d . Z!; |]_ql
d

os(f =@ = oo RSN

Q| [l

@ g; is the tf-idf weight of term / in the query.
@ d; is the tf-idf weight of term / in the document.
o |G| and |d| are the lengths of § and d.

@ This is the cosine similarity of g and d...... or, equivalently,
the cosine of the angle between ¢ and d.

Cosine for normalized vectors

@ For normalized vectors, the cosine is equivalent to the dot
product or scalar product.

o COS(Ein Ei) - (_j g = Zi qi- d

o (if G and d are length-normalized).

Components of tf-idf weighting

Term frequency Document frequency Normalization
n (natural) tf 4 n (no) 1 n {none)
: ik
| {logarithm) 1 + log(tf:,q) t (idf) log a’\—#— ¢ (cosine)
0.5xtf, . : N—df, :
a (augmented) 0.5+ —f—’d p (prob idf) max{0,log ==} | u {pivoted L/u
maxe(t1:,q4) . unique)
1 if tﬂ)d B4) . o
b (boolean) {0 ot b (byte size) 1/CharLength®,
a<l
1+log(tf o)
k: {log ave) THoz(ave,o(7a))

Best known combination of weighting options

Default: no weighting

tf-idf example

@ We often use different weightings for queries and documents.

@ Notation: ddd.qqq

Example:

Document:

Ilogarithmic tf
n o df weighting

E’osine normalization

Query:
:Iogarithmic tf
:| means idf

n lo normalization

tf-idf example: Inc.ltn

Query: “best car insurance”. Document: “car insurance auto insurance”.

word query document product
tf-raw tf-wght df idf weight | tf-raw tf-wght weight n'lized

auto 0 0 5000 23 0 1 1 1 052 |0

best 1 1 50000 1.3 1.3 0 0 0 0 0

car 1 1 10000 2.0 2.0 1 1 1 0.52 | 1.04

insurance | 1 1 1000 3.0 3.0 2 1.3 1.3 0.68 | 2.04

Key to columns: tf-raw: raw (unweighted) term frequency, tf-wght: logarithmically weighted
term frequency, df: document frequency, idf: inverse document frequency, weight: the final
weight of the term in the query or document, n'lized: document weights after cosine
normalization, product: the product of final query weight and final document weight

VTP 12 +132 ~ 1.92
1/1.92 = 0.52
1.3/1.92 =~ 0.68

Final similarity score between query and document: >~ wgi - wgi =0+0+1.04 +2.04 = 3.08

Summary: Ranked retrieval in the vector space model

@ Represent the query as a weighted tf-idf vector
@ Represent each document as a weighted tf-idf vector

@ Compute the cosine similarity between the query vector and
each document vector

@ Rank documents with respect to the query
@ Return the top K (e.g., K = 10) to the user

	IBM Watson Information Retrieval
	IBM Watson
	2011: IBM Watson beats humans @ Jeopardy!
	What is IBM Watson
	The DeepQA Framework
	Watson Experience Manager (Data Science class of 2016)
	Information Retrieval
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	The Zipf mystery
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

