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Agnostic PAC Learning

Domain X , labels Y , hypothesis classH = {h : (h : X → Y)}
Mostly binary classification Y = {−1, 1}
(Fixed unknown) distribution D over X × Y
Training set S = {(x1, y1), . . . , (xm, ym)} ∼ Dm

Loss of hypothesis h ∈ H: LD(h) = IPr(x,y)∼D[h(x) 6= y]

In general, (possibly surrogate) loss function ` : H× (X ×Y)→ IR≥0 :

1 0-1 loss: `(h, (x, y)) =

{
1 if h(x) 6= y
0 if h(x) = y

2 Absolute-value loss: `(h, (x, y)) = |h(x)− y|
3 Cost-sensitive loss: `(h, (x, y)) = Cost(h(x), y).
4 Squared loss (linear regression): `(h, (x, y)) = (h(x)− y)2

5 Hinge loss (SVM): `(h, (x, y)) = max{1− y · h(x), 0}
6 Exponential loss (logistic regression): `(h, (x, y)) = ln(1 + e−y·h(x))

Loss of hypothesis h ∈ H (wrt. `): LD(h) = IExp(x,y)∼D[`(h, (x, y))]
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Agnostic PAC Learning

ClassH is agnostically PAC learnable if for all ε, δ, there is #samples
= mH(ε, δ) and algorithm A so that for any m ≥ mH(ε, δ) and any D,

IPrS∼Dm

[
LD(A(S)) ≤ ε+ min

f∈H
LD(f )

]
≥ 1− δ

Empirical Risk Minimization (ERM): ERMH(S) = arg minh∈H LS(h)

Uniform convergence : ERM on ε
2 -representative training sets.

Training set S ε-representative if ∀h ∈ H, |LS(h)− LD(h)| ≤ ε .
LD(ERMH(S)) = εapp + εest

εapp due to restriction to (possibly too simple) hypothesis classH
εest due to misrepresentation of S wrt classH

For finite hypothesis classH, d 2 ln(2|H|/δ)
ε2 e samples suffice for

ε
2 -representative training set.
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Agnostic PAC Learning and Convex Optimization

ERM on representative training set S wrt (surrogate) convex loss `:
convex optimization !
LD(ERMH(S)) = εapp + εopt + εest

εopt = |minh Lsur
D (h)−minh L0-1

D (h)| (estimation of 0-1 loss by `).

(Projected) Gradient Descent of convex f : S→ IR on convex ⊆ IRd :

xt+1 = arg min
x∈S

∥∥∥[xt − η∇f (xt)
]
− x
∥∥∥

Theorem : For step size η = ε/G2 and #steps T ≥ D2G2/ε2,

f
(∑

t xt/T
)
≤ f (x∗) + ε

Gradient Descent step on all training data is too expensive : online
learning through online convex optimization!
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Online Learning as a Game

We fixH and loss ` (known to algo) [and D (unknown to algo)].
On each step t = 1, . . . ,T:

1 Learner picks hypothesis ht ∈ H
2 Training example (xt, yt) is chosen (may be from D, but even by

adversary)
3 Learner incurs loss `t(ht, (xt, yt))

Goal is to minimize regret :

Regret(T) = sup
(x1,y1),...(xT,yT)

(
T∑

t=1

`t(ht, (xt, yt))− min
h∗∈H

T∑
t=1

`t(h∗, (xt, yt))

)

(Online) algorithm is no-regret if Regret(T)/T → 0 as T →∞
Any no-regret online algorithm can be used for learning!
We focus on regret minimization for this and next lecture.
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Online Learning: Basic Setting

Two actions: H and L (binary classification).
On each day t = 1, . . . ,T:

1 Learner picks action it ∈ {H,L}
2 Adversary picks loss vector `t = (`H

t , `
L
t ) ∈ [0, 1]2

3 Learner learns `t and incurs loss `it
t

Goal is to minimize regret (loss wrt. best fixed action in hindsight):

Regret(T) = sup
`1,...,`T

(
T∑

t=1

`it
t − min

i∈{H,T}

T∑
t=1

`i
t

)

(Online learning) algorithm is no-regret if Regret(T)/T → 0 as T →∞
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Online Learning: Follow the Leader

Follow the Leader (FTL):

it = arg min
i∈{H,L}

t−1∑
τ=1

`i
τ

Two obvious concerns with FTL:
1 Deterministic action choice, given the past (randomness always

helps against the unknown).
2 Action choices can be very unstable (different choice each day).

Lower bound : Any deterministic algorithm has linear, i.e., Ω(T),
regret.

Proof : loss for action it (chosen by the algorithm) = 1, and loss for
other action = 0.
Any deterministic algorithm incurs loss = T, while best action
incures loss ≤ T/2.
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Online Learning: Randomization

Two actions: H and L (binary classification).
On each day t = 1, . . . ,T:

1 Learner picks action H with probability pt (and L with
probability 1− pt).

2 Adversary picks loss vector `t = (`H
t , `

L
t ) ∈ [0, 1]2

3 Learner learns `t and incurs expected loss

f (pt; `t) = pt`
H
t + (1− pt)`

L
t

Goal is to minimize expected regret :

Exp-Regret(T) = sup
`1,...,`T

(
T∑

t=1

f (pt; `t)− min
p∈[0,1]

T∑
t=1

f (p; `t)

)

Randomization potentially allows for improved stability .
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):

pt = arg min
p∈[0,1]

t−1∑
τ=1

f (p; `τ ) = arg min
p∈[0,1]

Ft−1(p)

Is randomized FTL really different from deterministic FTL?
Theorem : For any loss sequence `1, . . . , `T, FTL has:

Exp-RegretFTL(T) =
T∑

t=1

f (pt; `t)− min
p∈[0,1]

T∑
t=1

f (p; `t)︸ ︷︷ ︸
expected regret

≤
T∑

t=1

|pt − pt+1|︸ ︷︷ ︸
instability

For the analysis, we define Be the Leader (BTL):

p∗t = arg min
p∈[0,1]

t∑
τ=1

f (p; `τ ) = arg min
p∈[0,1]

Ft(p)
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Regret of Be the Leader

Lemma : For any loss sequence `1, . . . , `T, RegretBTL(T) ≤ 0

By induction on t, we show that for any t ≥ 1:

t∑
τ=1

f (p∗τ ; `t)︸ ︷︷ ︸
loss of BTL up to t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
loss of best fixed action up to t

= Ft(p∗t )︸ ︷︷ ︸
by definition of p∗t

t+1∑
τ=1

f (p∗τ ; `τ ) = f (p∗t+1; `t+1) +

t∑
τ=1

f (p∗τ ; `τ )

≤ f (p∗t+1; `t+1) + min
p∈[0,1]

Ft(p) induction hypth.

≤ f (p∗t+1; `t+1) + Ft(p∗t+1) Ft(p∗t ) ≤ Ft(p∗t+1)

= Ft+1(p∗t+1) by dfn of Ft+1(p)

Dimitris Fotakis Online Learning and Online Convex Optimization



Regret of Be the Leader

Lemma : For any loss sequence `1, . . . , `T, RegretBTL(T) ≤ 0
By induction on t, we show that for any t ≥ 1:

t∑
τ=1

f (p∗τ ; `t)︸ ︷︷ ︸
loss of BTL up to t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
loss of best fixed action up to t

= Ft(p∗t )︸ ︷︷ ︸
by definition of p∗t

t+1∑
τ=1

f (p∗τ ; `τ ) = f (p∗t+1; `t+1) +

t∑
τ=1

f (p∗τ ; `τ )

≤ f (p∗t+1; `t+1) + min
p∈[0,1]

Ft(p) induction hypth.

≤ f (p∗t+1; `t+1) + Ft(p∗t+1) Ft(p∗t ) ≤ Ft(p∗t+1)

= Ft+1(p∗t+1) by dfn of Ft+1(p)

Dimitris Fotakis Online Learning and Online Convex Optimization



Regret of Be the Leader

Lemma : For any loss sequence `1, . . . , `T, RegretBTL(T) ≤ 0
By induction on t, we show that for any t ≥ 1:

t∑
τ=1

f (p∗τ ; `t)︸ ︷︷ ︸
loss of BTL up to t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
loss of best fixed action up to t

= Ft(p∗t )︸ ︷︷ ︸
by definition of p∗t

t+1∑
τ=1

f (p∗τ ; `τ ) = f (p∗t+1; `t+1) +

t∑
τ=1

f (p∗τ ; `τ )

≤ f (p∗t+1; `t+1) + min
p∈[0,1]

Ft(p) induction hypth.

≤ f (p∗t+1; `t+1) + Ft(p∗t+1) Ft(p∗t ) ≤ Ft(p∗t+1)

= Ft+1(p∗t+1) by dfn of Ft+1(p)

Dimitris Fotakis Online Learning and Online Convex Optimization



Regret of Be the Leader

Lemma : For any loss sequence `1, . . . , `T, RegretBTL(T) ≤ 0
By induction on t, we show that for any t ≥ 1:

t∑
τ=1

f (p∗τ ; `t)︸ ︷︷ ︸
loss of BTL up to t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
loss of best fixed action up to t

= Ft(p∗t )︸ ︷︷ ︸
by definition of p∗t

t+1∑
τ=1

f (p∗τ ; `τ ) = f (p∗t+1; `t+1) +

t∑
τ=1

f (p∗τ ; `τ )

≤ f (p∗t+1; `t+1) + min
p∈[0,1]

Ft(p) induction hypth.

≤ f (p∗t+1; `t+1) + Ft(p∗t+1) Ft(p∗t ) ≤ Ft(p∗t+1)

= Ft+1(p∗t+1) by dfn of Ft+1(p)

Dimitris Fotakis Online Learning and Online Convex Optimization



Regret of Be the Leader

Lemma : For any loss sequence `1, . . . , `T, RegretBTL(T) ≤ 0
By induction on t, we show that for any t ≥ 1:

t∑
τ=1

f (p∗τ ; `t)︸ ︷︷ ︸
loss of BTL up to t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
loss of best fixed action up to t

= Ft(p∗t )︸ ︷︷ ︸
by definition of p∗t

t+1∑
τ=1

f (p∗τ ; `τ ) = f (p∗t+1; `t+1) +

t∑
τ=1

f (p∗τ ; `τ )

≤ f (p∗t+1; `t+1) + min
p∈[0,1]

Ft(p) induction hypth.

≤ f (p∗t+1; `t+1) + Ft(p∗t+1) Ft(p∗t ) ≤ Ft(p∗t+1)

= Ft+1(p∗t+1) by dfn of Ft+1(p)

Dimitris Fotakis Online Learning and Online Convex Optimization



Regret of Be the Leader

Lemma : For any loss sequence `1, . . . , `T, RegretBTL(T) ≤ 0
By induction on t, we show that for any t ≥ 1:

t∑
τ=1

f (p∗τ ; `t)︸ ︷︷ ︸
loss of BTL up to t

≤ min
p∈[0,1]

Ft(p)︸ ︷︷ ︸
loss of best fixed action up to t

= Ft(p∗t )︸ ︷︷ ︸
by definition of p∗t

t+1∑
τ=1

f (p∗τ ; `τ ) = f (p∗t+1; `t+1) +

t∑
τ=1

f (p∗τ ; `τ )

≤ f (p∗t+1; `t+1) + min
p∈[0,1]

Ft(p) induction hypth.

≤ f (p∗t+1; `t+1) + Ft(p∗t+1) Ft(p∗t ) ≤ Ft(p∗t+1)

= Ft+1(p∗t+1) by dfn of Ft+1(p)

Dimitris Fotakis Online Learning and Online Convex Optimization



Regret of FTL Against BTL
Lemma : For any loss sequence `1, . . . , `T,

RegretFTL(T) ≤ RegretBTL(T) +

T∑
t=1

|pt − pt+1|︸ ︷︷ ︸
instability

T∑
t=1

f (pt; `t) =

T∑
t=1

f (p∗t ; `t) +

T∑
t=1

(
f (pt; `t)− f (p∗t ; `t)

)

=

T∑
t=1

f (p∗t ; `t) +

T∑
t=1

(pt − p∗t )(`H
t − `L

t ) by dfn of f (pt; `t)

≤
T∑

t=1

f (p∗t ; `t) +
T∑

t=1

|pt − p∗t | losses `t ∈ [0, 1]2

=
T∑

t=1

f (p∗t ; `t) +
T∑

t=1

|pt − pt+1| by dfn, p∗t = pt+1
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Convexity and Stability

1/η-strongly convex function f : S→ IR wrt norm ‖ · ‖, if ∀ x, y ∈ S:

f (x) ≥ f (y) + 〈∇f (y), x− y〉+ 1
2η‖x− y‖2

Functions f , g : S→ IR be 1/η-strongly convex wrt some norm ‖ · ‖
and h(x) = g(x)− f (x) be L-Lipschitz wrt ‖ · ‖.
Then, ‖x∗f − x∗g‖ ≤ η · L, with x∗f , x

∗
g minimizers of f , g.
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Convexity and Stability

Functions f , g : [0, 1]→ IR be 1/η-strongly convex and
h(x) = g(x)− f (x) be L-Lipschitz.
Then, |pf − pg| ≤ η · L, with pf , pg minimizers of f , g.
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Convexity Through Regularization

If cumulative loss Ft(·) was 1/η-strongly convex (for all t), stability
could be bounded as:

T∑
t=1

|pt − pt+1| ≤ η · T ,

because Ft(p)− Ft−1(p) = f (p; `t) is 1-Lipschitz (due to `t ∈ [0, 1]2).

But our cumulative loss Ft(·) is not strongly convex!
Make it strongly convex through regularization !

F̃t(p) = Ft(p) + R(p)/η , where R(·) any 1-strongly convex function:
R(p) = p2/2
R(p) = p ln(p) + (1− p) ln(1− p)

R(p) = ln(
p

1−p )
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Follow / Be the Regularized Leader

Ft(p) =
∑t
τ=1 f (p; `τ ) and F̃t(p) =

∑t
τ=1 f (p; `τ ) + R(p)/η

FTRL: p̃t = arg minp∈[0,1] F̃t−1(p)

BTRL: p̃∗t = arg minp∈[0,1] F̃t(p)

Theorem :

RegretFTRL(T) ≤ η · T +
2 maxp∈[0,1] |R(p)|

η

Let R∗ = maxp∈[0,1] |R(p)|.

Setting η =
√

2R∗/T, we get RegretFTRL(T) ≤ 2
√

2R∗T

Lower bound on RegretA(T) for any online (even randomized)
optimization algorithm A?
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Regret of FTRL Against BTRL

RegretFTRL(T) ≤ RegretBTRL(T) +

T∑
t=1

|p̃t − p̃t+1|

≤ RegretBTRL(T) + η · T

Proof : Second inequality from strong convexity, because p̃t, p̃t+1 are
minimizers of 1/η-strongly convex functions F̃t−1(p) and F̃t(p) with
difference ft(p) which is 1-Lipschitz.

RegretFTRL(T)− RegretBTRL(T) =

T∑
t=1

(f (p̃t; `t)− f (p̃∗t ; `t))

≤
T∑

t=1

|p̃t − p̃∗t |

= L
T∑

t=1

|p̃t − p̃t+1|
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Regret of Be the Regularized Leader

RegretBTRL(T) ≤ 2 maxp∈[0,1] |R(p)|
η

Proof : Let ft(p) = f (p; `t) for brevity.
Let f0(p) = R(p)/η and p̃∗0 = arg minp∈[0,1] R(p)/η.
Using induction on t, we show that for all t ≥ 1,

t∑
τ=0

fτ (p̃∗τ ) ≤ F̃t(p̃∗t ) (including fake action p̃∗0 at τ = 0)

Then, using the claim above,

T∑
t=0

ft(p̃∗t ) ≤ min
p∈[0,1]

T∑
t=0

ft(p) ≤ max
p∈[0,1]

f0(p) + min
p∈[0,1]

T∑
t=1

ft(p)

Hence, by rearranging:

T∑
t=1

ft(p̃∗t )− min
p∈[0,1]

T∑
t=1

ft(p) ≤ max
p∈[0,1]

R(p)/η− min
p∈[0,1]

R(p)/η ≤ max
p∈[0,1]

|R(p)|/η
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Regret of Follow the Regularized Leader

Theorem :

RegretFTRL(T) ≤ η · T +
2 maxp∈[0,1] |R(p)|

η

Let R∗ = maxp∈[0,1] |R(p)|.

Setting η =
√

2R∗/T, we get RegretFTRL(T) ≤ 2
√

2R∗T

Multiplicative weight updates :
Negative entropy E−(p) = p ln(p) + (1− p) ln(1− p) is 1-strongly
convex wrt L1 norm.
Using E−(p) as regularizer, results in the following update rule
for expected loss f (pt; `t) = pt`

H
t + (1− pt)`

L
t :

pt+1 = pt · e−η`
H
t ≈ pt(1− η`H

t )

If `t ∈ [0, 1]2, setting η =
√

ln(2)/T, yields regret 2
√

T ln(2)
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Using E−(p) as regularizer, results in the following update rule
for expected loss f (pt; `t) = pt`

H
t + (1− pt)`

L
t :

pt+1 = pt · e−η`
H
t ≈ pt(1− η`H

t )

If `t ∈ [0, 1]2, setting η =
√

ln(2)/T, yields regret 2
√

T ln(2)
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