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Agnostic PAC Learning

Domain X, labels Y, hypothesis class H = {h: (h: X — )}
Mostly binary classification Y = {—1,1}

(Fixed unknown) distribution D over X’ x Y

Training set S = {(x1,11), - - - » (Xmy Ym)} ~ D"

Loss of hypothesis i € H: Lp(h) = Pr y~plh(x) # Y]
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Agnostic PAC Learning

Domain X, labels Y, hypothesis class H = {h: (h: X — )}

Mostly binary classification Y = {—1,1}

(Fixed unknown) distribution D over X’ x Y

Training set S = {(x1,11), - - - » (Xmy Ym)} ~ D"

Loss of hypothesis i € H: Lp(h) = Pr y~plh(x) # Y]

In general, (possibly surrogate) loss function £ : H x (X xY) = Rx>g:
© 0-11oss: (I, (x,y)) = { : ﬂgg ig
@ Absolute-value loss: ¢(h, (x,y)) = |h(x) —y|
@ Cost-sensitive loss: £(h, (x,y)) = Cost(h(x),y).
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Agnostic PAC Learning

Domain X, labels Y, hypothesis class H = {h: (h: X — )}

Mostly binary classification Y = {—1,1}

(Fixed unknown) distribution D over X’ x Y

Training set S = {(x1,11), - - - » (Xmy Ym)} ~ D"

Loss of hypothesis i € H: Lp(h) = Pr y~plh(x) # Y]

In general, (possibly surrogate) loss function £ : H x (X xY) = Rx>g:
© 0-11oss: (I, (x,y)) = { : ﬂgg ig
@ Absolute-value loss: ¢(h, (x,y)) = |h(x) —y|
@ Cost-sensitive loss: £(h, (x,y)) = Cost(h(x),y).
@ Squared loss (linear regression): ¢(h, (x,y)) = (h(x) —y)
@ Hinge loss (SVM): £(h, (x,y)) = max{l —y - h(x),0}

) = In(1 4 e ¥h)

2

@ Exponential loss (logistic regression): ¢(h, (x,y)
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Agnostic PAC Learning

Domain X, labels Y, hypothesis class H = {h: (h: X — )}
Mostly binary classification Y = {—1,1}
(Fixed unknown) distribution D over X’ x Y
Training set S = {(x1,11), - - - » (Xmy Ym)} ~ D"
Loss of hypothesis i € H: Lp(h) = Pr y~plh(x) # Y]
In general, (possibly surrogate) loss function £ : H x (X xY) = Rx>g:
© 0-11oss: (I, (x,y)) = { : ﬂgg ig
@ Absolute-value loss: ¢(h, (x,y)) = |h(x) —y|
@ Cost-sensitive loss: £(h, (x,y)) = Cost(h(x),y).
Q Squared loss (linear regression): £(h, (x,y)) = (h(x) — y)?
@ Hinge loss (SVM): £(h, (x,y)) = max{l —y - h(x),0}
O Exponential loss (logistic regression): ¢(h, (x,y)) = In(1 + e~ V")
Loss of hypothesis h € H (wrt. £): Lp(h) = Exp, y)~’D[ (h, (x,¥))]
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Agnostic PAC Learning

Class # is agnostically PAC learnable if for all ¢, §, there is #samples
=my (g, d) and algorithm A so that for any m > my(e,d) and any D,

Prspn {LD(A(S)) <e +]Icléi£LD(f)] >1-9§
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Agnostic PAC Learning

Class # is agnostically PAC learnable if for all ¢, §, there is #samples
=my (g, d) and algorithm A so that for any m > my(e,d) and any D,

Prspn {LD(A(S)) <e +]Icléi£LD(f)] >1-9§

Empirical Risk Minimization (ERM): ERMy,(S) = arg minycy Ls(h)
Uniform convergence : ERM on 5-representative training sets.
Training set S e-representative if Vh € #H, |Ls(h) — Lp(h)| < ¢.
Lp(ERMy(S)) = €app + cest

@ &4pp due to restriction to (possibly too simple) hypothesis class H

@ ce5t due to misrepresentation of S wrt class H
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Agnostic PAC Learning

Class # is agnostically PAC learnable if for all ¢, §, there is #samples
=my (g, d) and algorithm A so that for any m > my(e,d) and any D,

Prspn {LD(A(S)) <e +]Icléi£LD(f)] >1-9§

Empirical Risk Minimization (ERM): ERMy,(S) = arg minycy Ls(h)
Uniform convergence : ERM on 5-representative training sets.
Training set S e-representative if Vh € #H, |Ls(h) — Lp(h)| < ¢.
Lp(ERMy(S)) = €app + cest

@ &4pp due to restriction to (possibly too simple) hypothesis class H

@ ce5t due to misrepresentation of S wrt class H

For finite hypothesis class H, [W]

5-representative training set.

samples suffice for
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Agnostic PAC Learning and Convex Optimization

ERM on representative training set S wrt (surrogate) convex loss £:
convex optimization !

LD(ERMH(S)) = Eapp + Eopt + Eest

@ copt = | miny, L™ (h) — miny, L% (h)| (estimation of 0-1 loss by ¢).
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Agnostic PAC Learning and Convex Optimization

ERM on representative training set S wrt (surrogate) convex loss £:
convex optimization !

LD (ERMH (S)) = Eapp + Eopt + Eest
@ copt = | miny, L™ (h) — miny, L% (h)| (estimation of 0-1 loss by ¢).

(Projected) Gradient Descent of convex f : S — IR on convex C R?:

ey ]
Xi41 arglypelgH[xt nVf(x)] —x
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Agnostic PAC Learning and Convex Optimization

ERM on representative training set S wrt (surrogate) convex loss £:
convex optimization !

LD (ERMH (S)) = Eapp + Eopt + Eest
@ copt = | miny, L™ (h) — miny, L% (h)| (estimation of 0-1 loss by ¢).

(Projected) Gradient Descent of convex f : S — IR on convex C R?:
<oy~ |
X141 = arg min H [xt =0 Vf(x)] —x

Theorem : For step size ) = £/G? and #steps T > D?G? /<2,

fO2x/T) <f(x) +e
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Agnostic PAC Learning and Convex Optimization

ERM on representative training set S wrt (surrogate) convex loss £:
convex optimization !

LD (ERMH (S)) = Eapp + Eopt + Eest
@ copt = | miny, L™ (h) — miny, L% (h)| (estimation of 0-1 loss by ¢).

(Projected) Gradient Descent of convex f : S — IR on convex C R?:
<oy~ |
X141 = arg min H [xt =0 Vf(x)] —x

Theorem : For step size ) = £/G? and #steps T > D?G? /<2,
fO2x/T) <f(x) +e

Gradient Descent step on all training data is too expensive: online
learning through online convex optimization!
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Online Learning as a Game

We fix H and loss ¢ (known to algo) [and D (unknown to algo)].
Oneachstept=1,...,T:

@ Learner picks hypothesis i; € H

@ Training example (x¢, y¢) is chosen (may be from D, but even by
adversary)

@ Learner incurs loss ¢ (hy, (x¢, 1¢))
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Online Learning as a Game

We fix H and loss ¢ (known to algo) [and D (unknown to algo)].
Oneachstept=1,...,T:
@ Learner picks hypothesis i; € H

@ Training example (x¢, y¢) is chosen (may be from D, but even by
adversary)

@ Learner incurs loss ¢ (hy, (x¢, 1¢))

Goal is to minimize regret:

T T
Regret(T) = sup fo(hh (x¢,y¢)) — min th(h*y (xt,yt))
Cery1)se-Ceroyr) \ =1 e t=1

(Online) algorithm is no-regret if Regret(T)/T — 0as T — oo
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Online Learning as a Game

We fix H and loss ¢ (known to algo) [and D (unknown to algo)].
Oneachstept=1,...,T:

@ Learner picks hypothesis i; € H

@ Training example (x¢, y¢) is chosen (may be from D, but even by
adversary)

@ Learner incurs loss ¢ (hy, (x¢, 1¢))

Goal is to minimize regret:

T T

Regret(T) = sup Z ff(hh (xt, yt)) — I{lln Z ft(l’l*, (xt,yt))
(ryn),e-(eryr) \ 3 hen i

(Online) algorithm is no-regret if Regret(T)/T — 0as T — oo

Any no-regret online algorithm can be used for learning!

We focus on regret minimization for this and next lecture.
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Online Learning: Basic Setting

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:

@ Learner picks action i; € {H,L}

@ Adversary picks loss vector £ = (¢ ¢F) € [0,1]?

@ Learner learns 4 and incurs loss £}
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Online Learning: Basic Setting

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:
@ Learner picks action i; € {H,L}
@ Adversary picks loss vector £ = (¢ ¢F) € [0,1]?
@ Learner learns #¢; and incurs loss éi’

Goal is to minimize regret (loss wrt. best fixed action in hindsight):

T
Regret(T) = sup (ZE’ - ier?hilr;} E;)
=1

£y,....Lr

(Online learning) algorithm is no-regret if Regret(T)/T — 0as T — oo

Dimitris Fotakis Online Learning and Online Convex Optimization



Online Learning: Follow the Leader

Follow the Leader (FTL):
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Online Learning: Follow the Leader

Follow the Leader (FTL):

Two obvious concerns with FTL:

@ Deterministic action choice, given the past (randomness always
helps against the unknown).

@ Action choices can be very unstable (different choice each day).
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Online Learning: Follow the Leader

Follow the Leader (FTL):

Two obvious concerns with FTL:

@ Deterministic action choice, given the past (randomness always
helps against the unknown).
@ Action choices can be very unstable (different choice each day).

Lower bound : Any deterministic algorithm has linear, i.e., Q(T),
regret.
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Online Learning: Follow the Leader

Follow the Leader (FTL):

Two obvious concerns with FTL:
@ Deterministic action choice, given the past (randomness always
helps against the unknown).
@ Action choices can be very unstable (different choice each day).

Lower bound : Any deterministic algorithm has linear, i.e., Q(T),
regret.

Proof: loss for action i; (chosen by the algorithm) = 1, and loss for
other action = 0.

Any deterministic algorithm incurs loss = T, while best action
incures loss < T/2.
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Online Learning: Randomization

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:

@ Learner picks action H with probability p; (and L with
probability 1 — py).

@ Adversary picks loss vector £ = (¢, (F) € [0,1]?

@ Learner learns ¢; and incurs expected loss

flpi; &) = pett' + (1 — pi)ty
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Online Learning: Randomization

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:

@ Learner picks action H with probability p; (and L with
probability 1 — py).
@ Adversary picks loss vector £ = (¢, (F) € [0,1]?
@ Learner learns ¢; and incurs expected loss
fpss &) = peti + (1= po)tr
Goal is to minimize expected regret:

Exp-Regret(T) = sup. (Zf pr; €:) — min Zf P,&)

£y,....lr pel0,1]

Randomization potentially allows for improved stability .
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
t—1
= i ) = in F;_;
pi = arg min ;f(P ) = arg min Fri(p)
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
t—1

= 1 ,ET = i F,’
P i 2 ) e iy o)

Is randomized FTL really different from deterministic FTL?
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
t—1

= L) = in Fy_
pr = arg min ;ﬂp ) = arg min Fi_(p)

Is randomized FTL really different from deterministic FTL?

Theorem: For any loss sequence ¢y, ..., £r, FTL has:
T
Exp-Regret,p; (T) = > f(pi; &) — refhlg Zf pidy) < Zhﬂt Pl
=1
expected regret instability
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
t—1

= L) = in Fy_
pr = arg min ;ﬂp ) = arg min Fi_(p)

Is randomized FTL really different from deterministic FTL?

Theorem: For any loss sequence ¢y, ..., £r, FTL has:
T
Exp-Regret,p; (T) = > f(pi; &) — refhlg Zf pidy) < Zhﬂt Pl
=1
expected regret instability

For the analysis, we define Be the Leader (BTL):

= = F
pi = arg min Zf pite) = arg mmin Fi(p)
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regrety,, (T) <0
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regrety,, (T) <0

By induction on f, we show that for any t > 1:

t

* : *
> fprit) < min Fi(p) = F(p/)
—i pe(0.1] ——
S S— by definition of p;
loss of BTL up to ¢ loss of best fixed action up to ¢
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regrety,, (T) <0

By induction on f, we show that for any t > 1:

t

* : *
> fprit) < min Fi(p) = F(p/)
—i pe(0.1] ——
S S— by definition of p;
loss of BTL up to ¢ loss of best fixed action up to ¢

t+1 t

Zf p-rv Pt+1,£t+1) Zf(Pi»fr)

=1
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regrety,, (T) <0

By induction on f, we show that for any t > 1:

t

> fprit) < min Fy(p) = F(p)
— pel01] ~——
N . by definition of p;
loss of BTL up to ¢ loss of best fixed action up to ¢

t+1 t

Zf prile) = f(piyaibisa) + Zf(Pi»fr)

=1

<f(piy1;841) + m[(i)rh Fi(p) induction hypth.
pelo,
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regrety,, (T) <0

By induction on f, we show that for any t > 1:

t

> fprit) < min Fy(p) = F(p)
— pel01] ~——
N . by definition of p;
loss of BTL up to ¢ loss of best fixed action up to ¢

t+1 t

Zf prile) = f(piyaibisa) + Zf(Pi»fr)

=1

<f(piy1;841) + m[(i)rh Fi(p) induction hypth.
pelo,

< f(pivas 1) + Fe(pia) Fi(pf) < Fi(piyq)
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regrety,, (T) <0

By induction on f, we show that for any t > 1:

t

> fprit) < min Fy(p) = F(p)
! < b d?/_/ f
—— - - y definition of p;’
loss of BTL up to ¢ loss of best fixed action up to ¢
t+1 t
Zf prile) = f(piyaibisa) + Zf(Pi»fr)
=1
< f(piy1; bis1) + m[(i)rh Fi(p) induction hypth.
pell,
< f(Preas lga) + Frpiga) Fi(p) < Fi(piyq)
= Fry1(piyq) by dfn of F;11(p)
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Regret of FTL Against BTL

Lemma: For any loss sequence 41, ..., £,

T
Regret,; (T) < Regret;, (T) + Z Pt — prsa
=1

instability
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Regret of FTL Against BTL

Lemma: For any loss sequence 41, ..., £,

T
Regret,; (T) < Regret;, (T) + Z Pt — prsa
=1

instability

T T T

> Flpit) =Y flprie) + > (fpi o) ~f(pi3 )
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Regret of FTL Against BTL

Lemma: For any loss sequence 41, ..., £,

T
Regret,, (T) < Regret,, (T) + Z Pt — el

instability
T T
> flpite) = Zf piit) + Y (Flpae) —fi: )
t=1 t=1
T T
= fie)+ D (e —p(E —£5) by dinof f(pi; &)
t=1 t=1
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Regret of FTL Against BTL

Lemma: For any loss sequence 41, ..., £,

T
Regret,, (T) < Regret,, (T) + Z Pt — el

instability
T T T
D flpst) =Y fpit) Z ( fps &) — f(pi %ft))

=1 =1 —1
T T

= flpist) Z N~ ) by dfnof f(pr: &)
=1 i—1
T T

<> flprie) Z losses £; € [0,1]?
=1 -1
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Regret of FTL Against BTL

Lemma: For any loss sequence 41, ..., £,

T
Regret,, (T) < Regret,, (T) + Z Pt — el

instability

T T
D_fpiit) = 3 _fpis e + (f(pt;m—f(p:;et))
t=1

fpis ) + (Pt PG = &) by dfnof f(pi; &)

M-~ T

~

1

. TFM@ |\M~1

T
< fre)+ > lpe— il losses £; € [0, 1]2
t=1 t=1
T T
= i)+ lpr — prya by dfn, p; = pi11
t=1 t=1
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Convexity and Stability

Py

o 4 P

(a) Two linear functions that are close to each
other can have very far minima.

grum
Eine.
has to

fe leteen

Slic and gry

9 ?h\ 3 A P

(b) For convex functions, closeness of the
functions implies closeness of their minima.
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Convexity and Stability

Py

green

PR Eine
gl to
T+ e e tsen
1) r
P Lc and groy
¥ P ¥
o 4 P B 1 P
(a) Two linear functions that are close to each (b) For convex functions, closeness of the
other can have very far minima. functions implies closeness of their minima.

1/n-strongly convex functionf : S - R wrtnorm || - ||, if Vx,y € S:

f) = f@) + (V). x = y) + 5 lx — vl
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Convexity and Stability

ke
Ld o . L
o 4 P B 1 P
(a) Two linear functions that are close to each (b) For convex functions, closeness of the
other can have very far minima. functions implies closeness of their minima.

1/n-strongly convex functionf : S - R wrtnorm || - ||, if Vx,y € S:

f) = f@) + (V). x = y) + 5 lx — vl

Functions f,g : S — R be 1/5-strongly convex wrt some norm || - ||
and h(x) = g(x) — f(x) be L-Lipschitz wrt || - ||
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Convexity and Stability

?1»\
)]
/ — F®)
R
ke
Ld . L
° v F ° B B v F
(a) Two linear functions that are close to each (b) For convex functions, closeness of the
other can have very far minima. functions implies closeness of their minima.

1/n-strongly convex functionf : S - R wrtnorm || - ||, if Vx,y € S:
f) = f@) + (V). x = y) + 5 lx — vl

Functions f,g : S — R be 1/5-strongly convex wrt some norm || - ||
and h(x) = g(x) — f(x) be L-Lipschitz wrt || - ||
<17+ L, with x7, xg minimizers of f, 8.

Then, Hx;‘ —x3
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Convexity and Stability
Functions f, g : [0,1] — R be 1/n-strongly convex and

h(x) = g(x) — f(x) be L-Lipschitz.
< 1 - L, with pf, p, minimizers of f, g.

)

Then, [ —

/ "

/

, . .
Az (or =g

By Lipschitzness of the
difference of the two /
functions / By strict convexity of
both functions

C-D<Llps — gl
E 1 2
}BEE(W*PQ)

4

Figure 3: The proof of Lemma 3 follows immediately by noting that ¢ — D = A + B in the above figure,
together with the fact that C'— D < L|py — py| by Lipschitzness of the difference of the two functions

and A+ B > %(pf — pg)? by the strict convexity of the two functions.
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Convexity Through Regularization

If cumulative loss F;(-) was 1/n-strongly convex (for all #), stability
could be bounded as:

T

dolpi—pal <n-T,

t=1

because Fi(p) — Fi_1(p) = f(p; &) is 1-Lipschitz (due to £; € [0,1]?).
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Convexity Through Regularization

If cumulative loss F;(-) was 1/n-strongly convex (for all #), stability
could be bounded as:

T

dolpi—pal <n-T,

t=1

because Fi(p) — Fi_1(p) = f(p; &) is 1-Lipschitz (due to £; € [0,1]?).
But our cumulative loss F;(-) is not strongly convex!
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Convexity Through Regularization

If cumulative loss F;(-) was 1/n-strongly convex (for all #), stability
could be bounded as:

T

> lpe—pal <n-T,
t=1
because Fi(p) — Fi_1(p) = f(p; &) is 1-Lipschitz (due to £; € [0,1]?).
But our cumulative loss F;(-) is not strongly convex!
Make it strongly convex through regularization !
Fi(p) = Fi(p) + R(p)/n, where R(-) any 1-strongly convex function:
® R(p) =p*/2
° R(p) =pln(p) + (1 —p)In(l —p)
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Follow / Be the Regularized Leader

Fi(p) = Yo f(pi£-) and Fi(p) = 320, f(pi £2) + R(p) /1
FTRL: p; = arg minyepo1) [1—1(p)

BTRL: p; = arg minyeo,1 [ (p)
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Follow / Be the Regularized Leader

Fi(p) = Yo f(pi£-) and Fi(p) = 320, f(pi £2) + R(p) /1
FTRL: p; = arg minyepo1) [1—1(p)

BTRL: p; = arg minyeo,1 [ (p)
Theorem:

2 R
Regretyre, (T) <n-T+ maxpep) [R(p)|
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Follow / Be the Regularized Leader

Fi(p) = Yo f(pi£-) and Fi(p) = 320, f(pi £2) + R(p) /1
FTRL: p; = arg minyepo1) [1—1(p)

BTRL: p; = arg minyeo,1 [ (p)
Theorem:

2 R
Regretyre, (T) <n-T+ maxpep) [R(p)|

Let R* = maxye(o 1) |R(p)|-
Setting n = \/2R* /T, we get Regret ., (T) < 2v2R*T
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Follow / Be the Regularized Leader

Fi(p) = Yo f(pi£-) and Fi(p) = 320, f(pi £2) + R(p) /1
FTRL: p; = arg minyepo1) [1—1(p)

BTRL: p; = arg minyeo,1 [ (p)
Theorem:

2 R
Regretyre, (T) <n-T+ maxpep) [R(p)|

Let R* = maxye(o 1) |R(p)|-
Setting n = \/2R* /T, we get Regret ., (T) < 2v2R*T

Lower bound on Regret, (T) for any online (even randomized)
optimization algorithm A?
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Regret of FTRL Against BTRL

T
Regret ., (T) < Regrety ., (T) + Z Pt — Prya]
t=1

< Regretpp, (T) +n-T
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Regret of FTRL Against BTRL

T
Regrety, (T) < Regretyp, (T) + Z Pt — Prs1]
t=1
< Regretpp, (T) +n-T

Proof: Second inequality from strong convexity, because p;, p;11 are
minimizers of 1/n-strongly convex functions F;_1(p) and F;(p) with
difference f;(p) which is 1-Lipschitz.
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Regret of FTRL Against BTRL

T
Regrety, (T) < Regretyp, (T) + Z Pt — Prs1]
t=1
< Regretpp, (T) +n-T

Proof: Second inequality from strong convexity, because p;, p;11 are
minimizers of 1/n-strongly convex functions F;_1(p) and F;(p) with
difference f;(p) which is 1-Lipschitz.

T
Regretypg, (T) — Regretyy, (T) = Z(f(ﬁﬁet) —f(pr; 4r)
t=1
T
<> PPl
t=1

T
=LY |pt— praal
t=1
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Regret of Be the Regularized Leader

(T) < 2 maxyepo,1 [R(p)|

Regretp o, < m
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Regret of Be the Regularized Leader

2 max, R
Regrety, (T) < 222eeen K0l
Proof: Letft( ) _f(P§ £;) for brevity.

e Letfy(p) = R(p)/n and pj = arg minye(o,1] R(p)/n-
@ Using induction on t, we show that forall t > 1,

Z fr(p2) < Ei(pf)  (including fake action j§ at 7 = 0)

Dimitris Fotakis Online Learning and Online Convex Optimization



Regret of Be the Regularized Leader

2 max, R
Regrety, (T) < 222eeen K0l
Proof: Letft( ) _f(P§ £;) for brevity.

o Letfo(p) = R(p)/nand p; = argminyeo 1) R(p)/n-
@ Using induction on t, we show that forall t > 1,

Z fr(p2) < Ei(pf)  (including fake action j§ at 7 = 0)

@ Then, using the claim above,

Zﬁ Pi) = gﬁ P) < my o)+ i, th
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Regret of Be the Regularized Leader

2 max, R
Regrety, (T) < 222eeen K0l
Proof: Letft( ) _f(P§ £;) for brevity.

o Letfo(p) = R(p)/nand p; = argminyeo 1) R(p)/n-
@ Using induction on t, we show that forall t > 1,

Z fr(p2) < Ei(pf)  (including fake action j§ at 7 = 0)

@ Then, using the claim above,

T

400 < iy 2A0) < g 01+ iy 350

t=0

e Hence, by rearranging:

T
S i)~ min Zﬁ ) < masx R(p) /- min Rp)/n < ma [R(p)|/n
t=1 >

pe0,1] pe0,1] pel0,1]
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Regret of Follow the Regularized Leader

Theorem:

2 maxyeo,1) R(p)|
n

Regrety o, (T) <n-T +
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Regret of Follow the Regularized Leader

Theorem:

2 maxyeo,1) R(p)|
n

Regrety o, (T) <n-T +

Let R* = max,cpo,1) [R(p)].
Setting 7 = \/2R*/T, we get Regret, ., (T) < 2v/2R*T
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Regret of Follow the Regularized Leader

Theorem:

2 maxyeo,1) R(p)|
n

Regrety o, (T) <n-T +

Let R* = Hla.Xpe[oﬁl] |R(p)|
Setting n = \/2R* /T, we get Regret, ., (T) < 2v2R*T
Multiplicative weight updates:

@ Negative entropy E~ (p) = pIn(p) + (1 — p) In(1 — p) is 1-strongly
convex wrt L; norm.

e Using E~ (p) as regularizer, results in the following update rule
for expected loss f(ps; &) = pilH + (1 — py)¢-:

P = pi- e & pi(1— el
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Regret of Follow the Regularized Leader

Theorem:

2 maxyeo,1) R(p)|
n

Regrety o, (T) <n-T +

Let R* = Hla.Xpe[oﬁl] |R(p)|
Setting n = \/2R* /T, we get Regret, ., (T) < 2v2R*T
Multiplicative weight updates:

@ Negative entropy E~ (p) = pIn(p) + (1 — p) In(1 — p) is 1-strongly
convex wrt L; norm.

e Using E~ (p) as regularizer, results in the following update rule
for expected loss f(ps; &) = pilH + (1 — py)¢-:

prr=pi-e " m pi(1 - ty!)
e If ¢ € [0,1]%, setting = 1/In(2)/T, yields regret 2,/T In(2)
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