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PAC Learning

Domain X, binary labels ) = {—1, +1},
hypothesis class H = {h: (h: X — V)}

(Fixed unknown) distribution D over domain X
Labeled training data (x1,¥1), ..., (Xm,Ym) € X X Y
The training set distributed according to D: S = (x1,...,xy) ~ D"

Realizability assumption: 3f € H that correctly determines the
labelsof all x € X, i.e., Vx; € X, yi = f(xi).
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PAC Learning

Domain X, binary labels ) = {—1, +1},

hypothesis class H = {h: (h: X — V)}

(Fixed unknown) distribution D over domain X

Labeled training data (x1,¥1), ..., (Xm,Ym) € X X Y

The training set distributed according to D: S = (x1,...,xy) ~ D"

Realizability assumption: 3f € H that correctly determines the
labelsof all x € X, i.e., Vx; € X, yi = f(xi).

Loss of hypothesis i € H: Lp ¢(h) = Pryplh(x) # f(x)]
Class # is PAC learnable if for all ¢, §, there is # samples = m (¢, §)
and algorithm A so that for any m > my (e, 6), D and f,

]PI'SNDm I:L'D,f(A(S)) S 6] 2 1-9¢

Empirical Risk Minimization (ERM): output any hypothesis h not
suffering any loss on S (recall realizability!)
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PAC Learning

Domain X, binary labels ) = {—1, +1},

hypothesis class H = {h: (h: X — V)}

(Fixed unknown) distribution D over domain X

Labeled training data (x1,¥1), ..., (Xm,Ym) € X X Y

The training set distributed according to D: S = (x1,...,xy) ~ D"
Realizability assumption: 3f € H that correctly determines the
labelsof all x € X, i.e., Vx; € X, yi = f(xi).

Loss of hypothesis i € H: Lp ¢(h) = Pryplh(x) # f(x)]

Class # is PAC learnable if for all ¢, §, there is # samples = m (¢, §)
and algorithm A so that for any m > my (e, 6), D and f,

]PI'SNDm I:L'D,f(A(S)) S 6] 2 1-9¢
Empirical Risk Minimization (ERM): output any hypothesis h not
suffering any loss on S (recall realizability!)

VC dimension:

@ H shatters C C X if each of the 2/C! possible labelings of C can be
produced by some h € H.
o VC dimension of H = sup{|C| : H shatters C}
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Agnostic PAC Learning

Domain X, labels Y, hypothesis class H = {h: (h: X — )}
(Fixed unknown) distribution D over X x )

Training set S = {(x1, 1), - . » (Xm, Ym)} ~ D"

Loss of hypothesis i € H: Lp(h) = Pr y~p[h(x) # Y]

Class H is agnostically PAC learnable if for all ¢, §, there is #samples
=my (g, d) and algorithm A so that for any m > my(e,0) and D,

Provpe |Lp(A(S)) < < +minLo(f)| > 1~

Empirical Risk Minimization (ERM): arg miny,ecy; Ls(h)
Uniform convergence: ERM on 5-representative training sets

For finite hypothesis class H, [w]

5-representative training set.

samples suffice for
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Online Learning: Setting

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:

@ Learner picks action i; € {H,L}

@ Adversary picks loss vector £; = (¢ /L) € [0,1]?

@ Learner learns #; and incurs loss ¢}
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Online Learning: Setting

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:

@ Learner picks action i; € {H,L}

@ Adversary picks loss vector £; = (¢ /L) € [0,1]?

@ Learner learns £, and incurs loss
Goal is to minimize regret (loss wrt. best fixed action in hindsight):

T
Regret(T) = sup (ZE’ IGI?I}nT} E;)
=1

15 ;T

(Online learning) algorithm is no-regret if Regret(T)/T — 0 at T — oo
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Online Learning: Follow the Leader

Follow the Leader (FTL):
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Online Learning: Follow the Leader

Follow the Leader (FTL):

Two obvious caveats with FTL:

© Deterministic action choice, given the past (randomness always
helps against the unknown).

© Action choices can be very unstable (different choice each day).
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Online Learning: Follow the Leader

Follow the Leader (FTL):

Two obvious caveats with FTL:

© Deterministic action choice, given the past (randomness always
helps against the unknown).

© Action choices can be very unstable (different choice each day).

Lower bound : Any deterministic algorithm has linear, i.e., Q(T),
regret.
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Online Learning: Follow the Leader

Follow the Leader (FTL):

Two obvious caveats with FTL:

© Deterministic action choice, given the past (randomness always
helps against the unknown).

© Action choices can be very unstable (different choice each day).
Lower bound : Any deterministic algorithm has linear, i.e., Q(T),
regret.
Proof : loss for action i; (chosen by the algorithm) = 1, and loss for
other action = 0.

Any deterministic algorithm incurs loss = T, while best action
incures loss < T/2.
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Online Learning: Randomization

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:
@ Learner picks action H with probability p; (and L with
probability 1 — p;.
@ Adversary picks loss vector £ = (¢, () € [0,1]?
@ Learner learns ¢; and incurs expected loss

fpi; &) = pett' + (1 — pi)ty
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Online Learning: Randomization

Two actions: H and L (binary classification).
Oneachdayt=1,...,T:
@ Learner picks action H with probability p; (and L with
probability 1 — p;.
@ Adversary picks loss vector £ = (¢, () € [0,1]?
@ Learner learns ¢; and incurs expected loss

fpi; &) = pett' + (1 — pi)ty

Goal is to minimize expected regret:

15 7T

Exp-Regret(T) = sup (Zf pri ) — Ten[(l)lh Zf p; t)

Randomization potentially allows for improved stability .
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
pr = arg m[[l)n1 Zf p; ;) = arg mml] Fi_1(p)
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
pr = arg m[[l)n1 Zf p; ;) = arg mml] Fi_1(p)

Is randomized FTL really different from deterministic FTL?

Dimitris Fotakis PAC Learning and Online Learning



Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
pr = arg m[[l)n1 Zf p; ;) = arg mml] Fi_1(p)

Is randomized FTL really different from deterministic FTL?

For any loss sequence 1, ..., £r, FTL has:
T
Exp-Regret,, (T) = ;f (pr; &) — 16%2 Zf pi ) < Z|Pt Pl
expected regret stability
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Online Learning: (Randomized) Follow the Leader

Follow the Leader (FTL):
pr = arg m[[l)n1 Zf p; ;) = arg mml] Fi_1(p)

Is randomized FTL really different from deterministic FTL?

For any loss sequence 1, ..., £r, FTL has:
T
Exp-Regret,, (T) = ;f (pr; &) — 16%2 Zf pi ) < Z|Pt Pl
expected regret stability

For the analysis, we define Be the Leader (BTL):

_ _ F
pi = arg min Zf pitr) = arg min Fi(p)
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Regret of FTL Against BTL

Lemma: For any loss sequence 41, ..., £,

T
Regret,, (T) < Regret,, (T) + Z Pt — prsa
t=1

stability
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Regret of FTL Against BTL

Lemma: For any loss sequence 41, ..., £,

T
Regret,, (T) < Regretyy, (T) + Y _ |pi — pra1]
t=1

stability

T T T
S it = D flpiil) + Y (Flpis ) —Flpis )
t=1 t=1 t=1
T T
= (i) + Y (pe—pE — 47 by dinof f(pi; &)
t=1 t=1
T T
< fre) + > lpe—pil losses £ € [0, 1]2
t=1 t=1
T T
=> fore)+ Y Ipr = praal by difn, pf = pria
t=1 t=1
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regret,,, (T) <0
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regret,,, (T) <0

By induction on f, we show that for any t > 1:

t

* : *
> fpit) < min F;(p) = F(p)
—t pe0,1] ——
. , by definition of p;
loss of BTL up to ¢ loss of best fixed action up to ¢
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Regret of Be the Leader

Lemma: For any loss sequence £, ..., £r, Regret,,, (T) <0

By induction on f, we show that for any t > 1:

t

> flprit) < min F;(p) = F(p)
= 7 by defmivon of
N———— - - y definition of p;
loss of BTL up to loss of best fixed action up to ¢
t+1
Zf p‘r? pt—&-laef-‘rl +Zf PT»
=1
<f(piy1;41) + m[(i)rh Fi(p) induction hypth.
pell,
< f(Piias 1) + Fe(pia) F(pf) < Fe(piia)
= Fry1(piyq) by dfn of F;11(p)
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Convexity and Stability
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(a) Two linear functions that are close to each (b) For convex functions, closeness of the
other can have very far minima. functions implies closeness of their minima.
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Convexity and Stability
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(a) Two linear functions that are close to each (b) For convex functions, closeness of the
other can have very far minima. functions implies closeness of their minima.

1/n-strongly convex functionf : S - R wrtnorm || - ||, if Vx,y € S:

f) = fy) + (V). x = y) + 5 lx — yl?
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Convexity and Stability
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(a) Two linear functions that are close to each (b) For convex functions, closeness of the
other can have very far minima. functions implies closeness of their minima.

1/n-strongly convex functionf : S - R wrtnorm || - ||, if Vx,y € S:

f) = fy) + (V). x = y) + 5 lx — yl?

Functions f, g : S — R be 1/5-strongly convex wrt some norm || - ||
and h(x) = g(x) — f(x) be L-Lipschitz wrt || - ||
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Convexity and Stability
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(a) Two linear functions that are close to each (b) For convex functions, closeness of the
other can have very far minima. functions implies closeness of their minima.

1/n-strongly convex functionf : S - R wrtnorm || - ||, if Vx,y € S:
f) = fy) + (V). x = y) + 5 lx — yl?

Functions f, g : S — R be 1/5-strongly convex wrt some norm || - ||
and h(x) = g(x) — f(x) be L-Lipschitz wrt || - ||
Then, [lx; — x| <7 L, with x}, x; minimizers of f, g.
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Convexity and Stability

Functions f, g : [0,1] — R be 1/n-strongly convex and

h(x) = g(x) — f(x) be L-Lipschitz.

Then, ‘pf —Pg

By Lipschitzness of the
difference of the two
functions

C-D=Llps—p

< 1 - L, with pf, p, minimizers of f, g.

g(p)

/ 1 2
[ Ay v

By strict convexity of
both functions

E 1 2
}BEE(W*PQ)

4

Figure 3: The proof of Lemma 3 follows immediately by noting that ¢ — D = A + B in the above figure,
together with the fact that C'— D < L|py — py| by Lipschitzness of the difference of the two functions
and A+ B > %(pf — pg)? by the strict convexity of the two functions.
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Convexity Through Regularization

If cumulative loss F,(-) was 1/n-strongly convex (for all #), stability
could be bounded as:

T

Yol —pal <n-T,

t=1

because Fi(p) — Fi_1(p) = f(p; &) is 1-Lipschitz (due to £; € [0,1]?).
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Convexity Through Regularization

If cumulative loss F,(-) was 1/n-strongly convex (for all #), stability
could be bounded as:

T

Yol —pal <n-T,

t=1

because Fi(p) — Fi_1(p) = f(p; &) is 1-Lipschitz (due to £; € [0,1]?).
But our cumulative loss Fy(-) is not strongly convex!
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Convexity Through Regularization

If cumulative loss F,(-) was 1/n-strongly convex (for all #), stability
could be bounded as:

T

Yol —pal <n-T,
t=1
because Fi(p) — Fi_1(p) = f(p; &) is 1-Lipschitz (due to £; € [0,1]?).
But our cumulative loss Fy(-) is not strongly convex!
Make it strongly convex through regularization !
Fi(p) = Fi(p) + R(p)/n, where R(-) any 1-strongly convex function:
® R(p) =p*/2
® R(p) =pln(p) + (1 —p)In(l —p)
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Follow / Be the Regularized Leader

Fi(p) = o1 f(p &) and Fy(p) = Yo f(pi £-) + R(p) /0
FTRL: ijt = arg minpe[o’l] ﬁf,] (p)

BTRL: p; = arg minyepo,1 [ (p)
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Follow / Be the Regularized Leader

Fi(p) = o1 f(p &) and Fy(p) = Yo f(pi £-) + R(p) /0
FTRL: ijt = arg minpe[o’l] ﬁf,] (p)

BTRL: p; = arg minyepo,1 [ (p)
Theorem:

2maxpep, [R(p)

Regrety, (T) <n-T +
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Follow / Be the Regularized Leader

Fi(p) = Y01 f(pi &) and Fi(p) = Y0, f(p: ) + R(p) /n
FTRL: ijt = arg minpe[o’l] Ff,] (p)
BTRL: p; = arg minyepo,1 [ (p)

Theorem:

2maxpep, [R(p)

Regrety, (T) <n-T +

Let R* = maxye(o 1) [R(p)]-
Setting n = \/2R* /T, we get Regret, ., (T) < 2v2R*T

Dimitris Fotakis PAC Learning and Online Learning



Follow / Be the Regularized Leader

Fi(p) = Yo f(pi£-) and Fi(p) = 320, f(pi £2) + R(p) /1
FTRL: p; = arg minyepo1) [11(p)

BTRL: p; = arg minyepo,1 [ (p)
Theorem:

2maxpep, [R(p)

Regrety, (T) <n-T +

Let R* = maxye(o 1) [R(p)]-
Setting n = \/2R* /T, we get Regret, ., (T) < 2v2R*T

Lower bound on Regret, (T) for any online (even randomized)
optimization algorithm A?
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Regret of FTRL Against BTRL

T
Regret ., (T) < Regrety., (T) + Z Pt — praal
=1

< Regretp e, (T) +1n-T
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Regret of FTRL Against BTRL

T
Regret ., (T) < Regrety., (T) + Z Pt — praal
t=1
< Regretp e, (T) +1n-T

Proof : Second inequality from strong convexity, because p;, p;11 are
minimizers of 1/n-strongly convex functions F;_1(p) and F,(p) with
difference f;(p) which is 1-Lipschitz.
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Regret of FTRL Against BTRL

T
Regret ., (T) < Regrety., (T) + Z Pt — praal
t=1
< Regretp e, (T) +1n-T

Proof : Second inequality from strong convexity, because p;, p;11 are
minimizers of 1/n-strongly convex functions F;_1(p) and F,(p) with
difference f;(p) which is 1-Lipschitz.

T
Regretyrp, (T) — Regretpy, (T) = Z(f(f’t?et) —f(pii L))
t=1
T
<> o il
t=1

T
=LY |pt— praal
t=1
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Regret of Be the Regularized Leader

2 maxy,ep,1 [R(p)|

Regrety p, (T) < ;

Dimitris Fotakis PAC Learning and Online Learning



Regret of Be the Regularized Leader

2 maxy,ep,1 [R(p)|
Regrety p, (T) < —

Proof: Let f;(p) = f(p; ;) for brevity.

o Letfo(p) = R(p)/nand p; = argminyeo 1) R(p)/n-
e Using induction on ¢, we show that forall f > 1,

Z (%) < E:(pf) (including fake action % at 7 = 0)
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Regret of Be the Regularized Leader

2 maxy,ep,1 [R(p)|
Regrety p, (T) < —

Proof: Let f;(p) = f(p; ;) for brevity.

o Letfo(p) = R(p)/nand p; = argminyeo 1) R(p)/n-
e Using induction on ¢, we show that forall f > 1,

Z (%) < E:(pf) (including fake action % at 7 = 0)

@ Then, using the claim above,

thpt ) < min Zf ) < max fo(p) + min Zﬂ

pel0.1] 4 pel0,1] pel0,1]
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Regret of Be the Regularized Leader

2 maxy,ep,1 [R(p)|
Regrety p, (T) < —

Proof: Let f;(p) = f(p; ;) for brevity.

o Letfo(p) = R(p)/nand p; = argminyeo 1) R(p)/n-
e Using induction on ¢, we show that forall f > 1,

Z fr(pX) < F(py) (including fake action fj at 7 = 0)

@ Then, using the claim above,

thpt ) < min Zf ) < max fo(p) + min Zﬂ

pel0] pelo,1] pel0,1]

@ Hence, by rearranging:

T
> _fipi)— min th p) < max R(p)/n— min R(p)/n <2 max |R(p)|/1
t=1

pe0,1] pe0,1] pel0,1] pe€l0,1]

Dimitris Fotakis PAC Learning and Online Learning



Regret of Follow the Regularized Leader

Theorem:

2 maxpe [0,1] |R(p) ‘

Regrety o, (T) <n-T + »
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Regret of Follow the Regularized Leader

Theorem:

2 maxpe [0,1] |R(p) ‘

Regrety o, (T) <n-T + »

Let R* = max,cpo,1) [R(p)]-
Setting 7 = \/2R*/T, we get Regret, ., (T) < 2v/2R*T
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Regret of Follow the Regularized Leader

Theorem:

2 maxpe [0,1] |R(p) ‘

Regrety o, (T) <n-T + »

Let R* = Hla.Xpe[oﬁl] |R(p)|
Setting n = \/2R* /T, we get Regret ., (T) < 2v2R*T
Multiplicative weight updates:

@ Negative entropy E~ (p) = pIn(p) + (1 — p) In(1 — p) is 1-strongly
convex wrt L; norm.

e Using E~ (p) as regularizer, results in the following update rule
for expected loss f(ps; &) = pilH + (1 — py) ¢4

Pis1 = Pr - e & pe(1— 775?)
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Regret of Follow the Regularized Leader

Theorem:

2 maxpe [0,1] |R(p) ‘

Regrety o, (T) <n-T + "

Let R* = Hla.Xpe[oﬁl] |R(p)|
Setting n = \/2R* /T, we get Regret ., (T) < 2v2R*T
Multiplicative weight updates:

@ Negative entropy E~ (p) = pIn(p) + (1 — p) In(1 — p) is 1-strongly
convex wrt L; norm.

e Using E~ (p) as regularizer, results in the following update rule
for expected loss f(ps; &) = pilH + (1 — py) ¢4

Pis1 = Pr - e & pe(1— 775?)

o If ¢ € [0,1]%, setting = 1/In(2)/T, yields regret 2,/T In(2)
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