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Dynamics and Equilibria

Algorithmic Game Theory '23
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Nash Equilibria

Pure Nash equilibrium (PNE). Strategy profile s on pure strategies
where no player has incentive to deviate:

∀i ∈ N, s′i ∈ Si : ci(s) ≤ ci(s′i, s−i)

Mixed Nash equilibrium (MNE). Strategy profile s (mixed strategies
allowed) where no player has incentive to deviate:

∀i ∈ N, s′i ∈ Si : E[ci(s)] ≤ E[ci(s′i, s−i)]

Strong Nash equilibrium. Strategy profile s on pure strategies where
in no deviating coalition one player in the coalition
benefits without some other in the coalition losing.
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Correlated Equilibria

Correlated equilibrium (CorEq). Distribution σ on strategy profiles
where no player has incentive to deviate from her (any)
assigned pure strategy to any of her (pure) strategies if
the others are playing according to the distribution:

∀i ∈ N, si, s′i ∈ Si : Es∼σ[ci(s)|si] ≤ Es∼σ[ci(s′i, s−i)|si]

Interpretation:
A central authority announces to the players a distribution over
strategy profiles
Then it draws a strategy profile according to that distribution
and announces to every player her assigned strategy
Given her strategy si the player has no incentive to deviate to an
s′i considering only the strategy profiles of the distribution where
her strategy is si.
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Correlated Equilibria

Correlated equilibrium (CorEq). Distribution σ on strategy profiles
where no player has incentive to deviate from her (any)
assingned strategy to any of her strategies if the others
are playing according to the distribution:

∀i ∈ N, si, s′i ∈ Si : Es∼σ[ci(s)|si] ≤ Es∼σ[ci(s′i, s−i)|si]

Example: Traffic lights (costs inside the array)

stop go
stop 1, 1 1, 0

go 0, 1 5, 5

Four profiles: {top,left} {top,right} {bottom,left} {bottom, right}.
Correlated equilibrium: 1/2 to {top,right} 1/2 to {bottom,left}

(Pure Nash equilibria? Mixed Nash Equilibria?)
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Coarse Correlated Equilibria

Coarse Correlated equilibrium (CCE). Distribution σ on strategy
profiles where no player has incentive not to follow the
central authority:

∀i ∈ N, s′i ∈ Si : Es∼σ[ci(s)] ≤ Es∼σ[ci(s′i, s−i)]

Connection to Correlated equilibria:
Differing: Any player has no incentive not to follow the
authority before seeing her assigned strategy.
A Correlated equilibrium is Coarse Correlated since for all si:

Es∼σ[ci(s)|si] ≤ Es∼σ[ci(s′i, s−i)|si]

and multiplying each with the "correct" probability will imply

sumsi∈SipiEs∼σ[ci(s)|si] ≤
∑

si∈Si
piEs∼σ[ci(s′i, s−i)|si]

⇔ Es∼σ[ci(s)] ≤ Es∼σ[ci(s′i, s−i)]
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Example

PNE: Four players in any four
edges
MNE: Each player plays the
uniform distribution
CorEq: Uniform distribution over
strategy profiles where two players
share an edge and each of the
other two has her own.
CCE: As above but only for profiles
that use either edges 1, 3 and 5 or
2, 4 and 6
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Equilibria (Strict) Hierarchy

A MNE is a CorEq. Why?

E[ci(s)] ≤ E[ci(s′i, s−i)]

Strategies on the support of si
cost (on expectation) equal to
E[ci(s)]
Authority's distribution implied
by the MNE
Any (pure) strategy si assigned
to the player satisfies

Es∼σ[ci(s)|si] ≤ Es∼σ[ci(s′i, s−i)|si]
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Examples

Congestion Games
Potential function exists: Φ(f) =

∑
e∈E

∑fe
i=1 ce(i)

Best response dynamics may have poor convergence rates
PLS complete to compute a pure Nash equilibrium in general
Easy for Network CGs with a single source or sink
What about weighted Congestion Games?

Max-Cut Game
Potential function exists: Φ(S) =

∣∣∣{{u,w} ∈ E : u ∈ S,w ∈ V \ S}
∣∣∣

Best response dynamics converge quickly ⇒ efficient pure Nash
equilibrium computation
What about weighted Max-Cut?
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Best Response Dynamics in Potential Games

Consider any finite potential game.

Best response dynamics converge to a minimizer of the potential.

Consider the best response graph, a directed graph with all
possible configurations as vertices
An edge from one configuration points to another iff they differ
in a single player's strategy who is in her best response in the
destination-configuration
Finite game implies finite number of vertices
Existence of a potential implies no cycles
Thus, bounded longest path ⇒ from every initial configuration,
best response dynamics converge.
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The Framework

A single player, the Learner, having an action set A = {a1, a2, . . . , an}
plays a game for T rounds.
At time t:

1 The Learner picks a distribution pt on A as her mixed strategy.
2 An Adversary assigns a cost ct : A → [0, 1] to the actions of A
3 The Learner draws an action at accordig to her distribution and
incurs cost ct(at), yet she learns all the costs.

(informal) Goal:

Keep the Learner's cost as close to the optimal (in some sense)

But what can we hope for?
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Gap between Learner's Cost and Optimal

Learner needs randomized strategies

Learner: deterministic action at

Adversary: c(at) = 1 and c(a) = 0 for all a ̸= at

In T timesteps there is a a ∈ A with ct(a) = 1 at most T
n times

Learner pays T, Adversary pays at most T/n

Cannot vanish gap if optimal switches strategies

Learner: A = {a1, a2} and always for some aj : pt(aj) ≥ 1
2

Adversary: ct(aj) = 1 while ct(aj+1∗) = 0

Optimal with switching strategies=0
Learner's cost at least T/2
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Regret Minimization

We focus on cases where the Learner
uses randomized strategies and
compares to fixed actions.

Regret with respect to action a:

1

T
[ T∑

i=1

ct(at)−
T∑

i=1

ct(a)
]

Goal: Vanishing Regret as T → ∞, for all a

Good news: Simple algorithm with Regret=O
(√

ln n
T

)
, w.r.t. any a.

Bad news: Regret is Ω
(√

ln n
T

)
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Lower Bound

Cosider a setting with action set A = {a1, a2}
Adversary choses uniformly either (1, 0) or (0, 1) as
(ct(a1), ct(a2)), at any t.
Any action ai at any t has expected cost 1

2 , independent of the
Learner's choice
⇒ Learner's expected cost always equals T

2

Assigning costs to a1 and a2 is like putting balls in 2 bins.
After T balls: min bin is expected to have T

2 −Θ(
√

T)
⇒ Optimal strategy's expected cost is T

2 −Θ(
√

T)

Thus, Learner's cost-OPT= Θ(
√

T) ⇒ Regret = Θ(1/
√

T)
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Multiplicative Weights Update
The Multiplicative Weights Update (MWU) algorithm maintains and
updates weights for the actions

Initially w1(a) = 1 for al a ∈ A
At time t play action a with probability

wt(a)∑
a∈A wt(a)

For some ϵ, update the weights using

wt+1(a) = wt(a) · (1− ϵ)ct(a)

MWU has expected regret O
(√

ln n
T

)
w.r.t. any a ∈ A.

Seen differently: MWU has expected regret w.r.t. any a ∈ A at most
ϵ > 0 after O

(
ln n
ϵ2

)
iterations.
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No-Regret Dynamics

Consider a minimization game played repeatedly.
Players act simultaneously and at time t = 1, 2, . . . ,T:

1 Each player i uses a no-regret algorthm to decide on a mixed
strategy pt

i
2 Each player i receives a vector ct

i of expected costs for her pure
strategies

Player i at time t has distribution pt
i .

Let σt be the probability distribution on strategy profiles implied
by the pt

i 's
Let σ = 1

T
∑T

i=1 σ
t be their time averaged distribution

Distribution σ will serve as an approxiamte CCE
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Convergence to Approximate CCE

Distribution σ = 1
T
∑T

i=1 σ
t will serve as an approxiamte CCE

For any ϵ > 0 there exist a large enough T so that the expected
regret for all players is at most ϵ
For the cost of σ:

Es∼σ[ci(s)] =
1

T

T∑
t=1

Es∼σt [ci(s)]

For the cost of any deviation s′i:

Es∼σ[ci(s′i, s−i)] =
1

T

T∑
t=1

Es∼σt [ci(s′i, s−i)]

Right Hand Sides differ by at most ϵ, thus:

Es∼σ[ci(s)] ≤ Es∼σ[ci(s′i, s−i)] + ϵ
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Swap-Regret Dynamics

Swap regret with respect to a function δ : A → A:

1

T
[ T∑

i=1

ct(at)−
T∑

i=1

ct(δ(at))
]

Goal: Vanishing swap Regret as T → ∞, for all a

Existence of no-regret algorithm implies existence of no swap
regret algorithms
No swap regret implies no regret: general vs constant functions δ

No swap-regret dynamics converge to approximate CorEq.

Es∼σ[ci(s)] ≤ Es∼σ[ci(δ(s′i), s−i)] + ϵ

(using notation from the no regret dynamics case)
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