
Prophet Inequalities and 
Stochastic Optimization 
Kamesh Munagala 
Duke University 
 
Joint work with Sudipto Guha, UPenn 



Bayesian Decision System 

Decision Policy 
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Approximating MDPs 
•  Computing decision policies typically requires 

exponential time and space 

•  Simpler decision policies? 
�  Approximately optimal in a provable sense 
�  Efficient to compute and execute 

•  This talk 
�  Focus on a very simple decision problem 
�  Known since the 1970’s in statistics 
�  Arises as a primitive in a wide range of decision problems 



An Optimal Stopping Problem 

•  There is a gambler and a prophet (adversary) 

•  There are n boxes 

▫  Box j has reward drawn from distribution Xj 

▫  Gambler knows Xj but box is closed 

▫  All distributions are independent 
 



An Optimal Stopping Problem 

X5 X2 X8 X6 X9 

Curtain 

Order unknown to gambler 

•  Gambler knows all the distributions 

•  Distributions are independent 



An Optimal Stopping Problem 

X5 X2 X8 X6 20 

Curtain 

Open box 



An Optimal Stopping Problem 

X5 X2 X8 X6 20 

Keep it  
or discard? 

Keep it: 
•  Game stops and gambler’s payoff = 20 
Discard: 
•  Can’t revisit this box 
•  Prophet shows next box 



Stopping Rule for Gambler? 

• Maximize expected payoff of gambler 
�  Call this value ALG 

• Compare against OPT = E[maxj Xj] 
�  This is prophet’s payoff assuming he knows the 

values inside all the boxes 

• Can the gambler compete against OPT? 



The Prophet Inequality 
[Krengel, Sucheston, and Garling ‘77] 

There exists a value w such that, if the gambler 
stops when he observes a value at least w, then: 
 

ALG ≥ ½ OPT = ½ E[maxj Xj] 
 

 
Gambler computes threshold w from the distributions 



Talk Outline 

•  Three algorithms for the gambler 
�  Closed form for threshold 
�  Linear programming relaxation 
�  Dual balancing  (if time permits) 

• Connection to policies for stochastic scheduling 
�  “Weakly coupled” decision systems 
�  Multi-armed Bandits with martingale rewards 



First Proof 
[Samuel-Cahn ‘84] 



Threshold Policies 

Let X* = maxj Xj  
 
Choose threshold w as follows: 

�  [Samuel-Cahn ‘84]                    Pr[X* > w] = ½  
�  [Kleinberg, Weinberg ‘12]       w = ½ E[X*] 

In general, many different threshold rules work 
 
Let (unknown) order of arrival be X1 X2 X3 … 



The Excess Random Variable 

Xj 

Pr
ob

 

b (Xj – b)+ 

Pr
ob

 

Let (Xj � b)+ = max (Xj � b, 0)
and X⇤

= maxj Xj



Accounting for Reward 

•  Suppose threshold = w 

•  If X* ≥ w   then some box is chosen 
�  Policy yields fixed payoff w 



Accounting for Reward 

•  Suppose threshold = w 

•  If X* ≥ w   then some box is chosen 
�  Policy yields fixed payoff w 

•  If policy encounters box j 
�  It yields excess payoff (Xj – w)+ 

�  If this payoff is positive, the policy stops. 
�  If this payoff is zero, the policy continues. 

• Add these two terms to compute actual payoff 



In math terms… 

Payo↵ = w ⇥ Pr[X⇤ � w]

+

Pn
j=1 Pr[j encountered]⇥E [(Xj � w)+]

Fixed payoff of w 

Excess payoff conditioned 
on reaching j 

Event of reaching j is 
independent of the value 
observed in box j 



A Simple Inequality 

Pr[j encountered] = Pr

h
max

j�1
i=1 Xi < w

i

� Pr [max

n
i=1 Xi < w]

= Pr[X⇤ < w]



Putting it all together… 
Payo↵ � w ⇥ Pr[X⇤ � w]

+

Pn
j=1 Pr[X

⇤ < w]⇥E [(Xj � w)+]

Lower bound on Pr[ j encountered] 



Simplifying… 

Suppose we set  w =
Pn

j=1 E [(Xj � w)+]

Then payoff ≥ w 

Payo↵ � w ⇥ Pr[X⇤ � w]

+

Pn
j=1 Pr[X

⇤ < w]⇥E [(Xj � w)+]



Why is this any good? 

w =
Pn

j=1 E [(Xj � w)+]

2w = w +E
hPn

j=1(Xj � w)+
i

� w +E
⇥
(max

n
j=1 Xj � w)+

⇤

= E
⇥
max

n
j=1 Xj

⇤
= E[X⇤

]



Summary                           [Samuel-Cahn ‘84] 

w =
Pn

j=1 E [(Xj � w)+]Choose threshold  

Yields payoff  w � E[X⇤]/2 = OPT/2

Exercise: The factor of 2 is optimal even for 2 boxes! 



Second Proof 
Linear Programming 
 
[Guha, Munagala ’07] 



Why Linear Programming?  

•  Previous proof appears “magical” 
�  Guess a policy and cleverly prove it works 

•  LPs give a “decision policy” view 
�  Recipe for deriving solution  
�  Naturally yields threshold policies 
�  Can be generalized to complex decision problems 

•  Some caveats later… 



Linear Programming 

Consider behavior of prophet 
�  Chooses max. payoff box 
�  Choice depends on all realized payoffs 

zjv = Pr[Chooses box j ^Xj = v]

= Pr[Xj = X⇤ ^Xj = v]



Basic Idea  
•  LP captures prophet behavior 

�  Use zjv as the variables 

•  These variables are insufficient to capture 
prophet choosing the maximum box 

�  What we end up with will be a relaxation of max 

•  Steps: 
�  Understand structure of relaxation 
�  Convert solution to a feasible policy for gambler 



Constraints 
zjv = Pr[Xj = X⇤ ^Xj = v]

) zjv  Pr[Xj = v] = fj(v) Relaxation 



Constraints 
zjv = Pr[Xj = X⇤ ^Xj = v]

) zjv  Pr[Xj = v] = fj(v)

P
j,v zjv  1

Prophet chooses exactly one box: 



Constraints 
zjv = Pr[Xj = X⇤ ^Xj = v]

) zjv  Pr[Xj = v] = fj(v)

P
j,v zjv  1

Prophet chooses exactly one box: 

P
j,v v ⇥ zjv

Payoff of prophet:  



LP Relaxation of Prophet’s Problem 

Maximize

P
j,v v · zjv

P
j,v zjv  1

zjv 2 [0, fj(v)] 8j, v



Example 

Xa 

Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  



LP Relaxation 

Xa Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 zb1  

Relaxation 



LP Optimum 

Xa Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 = 1/2 
zb1 = 1/2 

LP optimal payoff  
= 1.5   



Expected Value of Max? 

Xa Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 = 1/2 
zb1 = 1/4 

Prophet’s payoff  
= 1.25   



What do we do with LP solution? 

• Will convert it into a feasible policy for gambler 

• Bound the payoff of gambler in terms of LP 
optimum 
▫  LP Optimum upper bounds prophet’s payoff! 



Interpreting LP Variables for Box j 

•  Policy for choosing box if encountered 

Xb 

1 with probability ½  

0 with probability ½  

zb1 = ¼  If  Xb = 1  then 
 
   Choose b w.p. zb1/ ½  = ½    

Implies Pr[ j chosen and Xj  = 1] = zb1 = ¼  
  



LP Variables yield Single-box Policy Pj 

Xj 

v with probability  fj(v) 

If Xj = v then 
  
   Choose j with probability zjv / fj(v) 
 

zjv 



Simpler Notation 

C(Pj) = Pr[j chosen] =

P
v Pr [Xj = v ^ j chosen ]

=

P
v zjv

R(Pj) = E[Reward from j] =

P
v v ⇥ Pr [Xj = v ^ j chosen ]

=

P
v v ⇥ zjv



LP Relaxation 
Maximize

P
j,v v · zjv

P
j,v zjv  1

zjv 2 [0, fj(v)] 8j, v Each policy Pj is valid 

Maximize Payo↵ =

P
j R(Pj)

E [Boxes Chosen] =

P
j C(Pj)  1

LP yields collection of Single Box Policies! 



LP Optimum 

Xa Xb 

2 with probability ½  

0 with probability ½  

1 with probability ½  

0 with probability ½  

Choose a Choose b 

R(Pa ) = ½ × 2 = 1 
 
C(Pa ) = ½ × 1 = ½  

R(Pb ) = ½ × 1 = ½  
 
C(Pb ) = ½ × 1 = ½  



Lagrangian 
Maximize

P
j R(Pj)

P
j C(Pj)  1

Pj feasible 8j

Dual variable = w 

Max. w +

P
j (R(Pj)� w ⇥ C(Pj))

Pj feasible 8j



Interpretation of Lagrangian 

• Net payoff from choosing j = Value minus w 

• Can choose many boxes 

• Decouples into a separate optimization per box! 

Max. w +

P
j (R(Pj)� w ⇥ C(Pj))

Pj feasible 8j



Optimal Solution to Lagrangian 

• Net payoff from choosing j = Value minus w 

• Can choose many boxes 

• Decouples into a separate optimization per box! 

If Xj ≥ w then choose box j ! 



Notation in terms of w… 

C(Pj) = Cj(w) = Pr[Xj � w]

R(Pj) = Rj(w) =
P

v�w v ⇥ Pr[Xj = v]

Expected payoff of policy 
 

 If  Xj  ≥ w then Payoff = Xj else 0 



Strong Duality 

P
j Cj(w) = 1

)
P

j Rj(w) = LP-OPT

Choose Lagrange multiplier w such that 

Lag(w) =
P

j Rj(w) + w ⇥
⇣
1�

P
j Cj(w)

⌘



Constructing a Feasible Policy 

• Solve LP: Compute w such that 

• Execute: If Box j encountered 
▫  Skip it with probability ½ 

▫  With probability ½ do: 
�  Open the box and observe Xj 
�  If Xj ≥ w then choose j and STOP 

P
j Pr[Xj � w] =

P
j Cj(w) = 1



Analysis 
If Box j encountered 

Expected reward = ½ × Rj(w) 

Using union bound (or Markov’s inequality)  
 
 
 
Pr[j encountered ] � 1�

Pj�1
i=1 Pr [Xi � w ^ i opened ]

� 1� 1
2

Pn
i=1 Pr[Xi � w]

= 1� 1
2

Pn
i=1 Ci(w) =

1
2



Analysis: ¼ Approximation 

Expected payo↵ � 1
4

P
j Rj(w)

= 1
4LP-OPT � OPT

4

If Box j encountered 
Expected reward = ½ × Rj(w) 
 

 Box j encountered with probability at least ½ 
 
 Therefore:  
 



Third Proof 
Dual Balancing 
 
[Guha, Munagala ‘09] 
 
 



Lagrangian Lag(w) 
Maximize

P
j R(Pj)

P
j C(Pj)  1

Pj feasible 8j

Dual variable = w 

Max. w +

P
j (R(Pj)� w ⇥ C(Pj))

Pj feasible 8j



Weak Duality 

Lag(w) = w +
P

j �j(w)

= w +
P

j E [(Xj � w)+]

Weak Duality: For all w,  Lag(w) ≥ LP-OPT 



Amortized Accounting for Single Box 

�j(w) = Rj(w)� w ⇥ Cj(w)

) Rj(w) = �j(w) + w ⇥ Cj(w)

Fixed payoff for opening box 

Payoff w if box is chosen 

Expected payoff of policy is preserved in new accounting 



Example: w = 1 

Xa 

2 with probability ½  

0 with probability ½  

�a(1) = E [(Xa � 1)+] = 1
2

Ra(1) = 2⇥ 1
2 = 1

Fixed payoff ½  

Payoff 1  

�a(w) +
1
2 ⇥ w = 1

2 + 1
2 = 1



Balancing Algorithm 
Lag(w) = w +

P
j �j(w)

= w +
P

j E [(Xj � w)+]

Weak Duality: For all w,  Lag(w) ≥ LP-OPT 

Suppose we set w =
P

j �j(w)

Then w � LP-OPT/2
and

P
j �j(w) � LP-OPT/2



Algorithm                        [Guha, Munagala ‘09] 

• Choose w to balance it with total “excess payoff” 

• Choose first box with payoff at least w 
▫  Same as Threshold algorithm of [Samuel-Cahn ‘84] 

• Analysis: 
▫  Account for payoff using amortized scheme 



Analysis: Case 1 

• Algorithm chooses some box 

•  In amortized accounting: 
▫  Payoff when box is chosen = w 

 
• Amortized payoff = w   ≥    LP-OPT / 2 



Analysis: Case 2 
•  All boxes opened 

•  In amortized accounting: 
▫  Each box j yields fixed payoff Φj(w) 

•  Since all boxes are opened: 
▫  Total amortized payoff = Σj Φj(w) ≥    LP-OPT / 2 

 
Either Case 1 or Case 2 happens! 
 
Implies Expected Payoff   ≥    LP-OPT / 2 
  



Takeaways… 

•  LP-based proof is oblivious to closed forms 
�  Did not even use probabilities in dual-based proof! 

• Automatically yields policies with right “form” 

• Needs independence of random variables 
�  “Weak coupling” 



General Framework 



Weakly Coupled Decision Systems  
Independent decision spaces 

 
Few constraints coupling decisions across spaces 

[Singh & Cohn ’97; Meuleau et al. ‘98] 



Prophet Inequality Setting 

• Each box defines its own decision space 
�  Payoffs of boxes are independent 

• Coupling constraint: 
�  At most one box can be finally chosen 

 



Multi-armed Bandits 
• Each bandit arm defines its own decision space 

�  Arms are independent 

• Coupling constraint: 
�  Can play at most one arm per step 

• Weaker coupling constraint: 
�  Can play at most T arms in horizon of T steps 

•  Threshold policy ≈ Index policy 



Bayesian Auctions 
•  Decision space of each agent 

�  What value to bid for items 
�  Agent’s valuations are independent of other agents 

•  Coupling constraints 
�  Auctioneer matches items to agents 

•  Constraints per bidder: 
�  Incentive compatibility 
�  Budget constraints 

•  Threshold policy = Posted prices for items 



Prophet-style Ideas 
•  Stochastic Scheduling and Multi-armed Bandits 

�  Kleinberg, Rabani, Tardos ‘97 
�  Dean, Goemans, Vondrak ‘04 
�  Guha, Munagala ’07, ‘09, ’10, ‘13 
�  Goel, Khanna, Null ‘09 
�  Farias, Madan ’11 

•  Bayesian Auctions 
�  Bhattacharya, Conitzer, Munagala, Xia ‘10 
�  Bhattacharya, Goel, Gollapudi, Munagala ‘10 
�  Chawla, Hartline, Malec, Sivan ‘10 
�  Chakraborty, Even-Dar, Guha, Mansour, Muthukrishnan ’10 
�  Alaei ’11 

•  Stochastic matchings 
�  Chen, Immorlica, Karlin, Mahdian, Rudra ‘09 
�  Bansal, Gupta, Li, Mestre, Nagarajan, Rudra ‘10 



Generalized Prophet Inequalities 
•  k-choice prophets  

�  Hajiaghayi, Kleinberg, Sandholm ‘07 

•  Prophets with matroid constraints 
�  Kleinberg, Weinberg ’12 
�  Adaptive choice of thresholds 
�  Extension to polymatroids in Duetting, Kleinberg ‘14 

•  Prophets with samples from distributions 
�  Duetting, Kleinberg, Weinberg ’14 



Martingale Bandits 
[Guha, Munagala ‘07, ’13] 
[Farias, Madan ‘11] 
 



(Finite Horizon) Multi-armed Bandits 

•  n arms of unknown effectiveness 
▫  Model “effectiveness” as probability pi ∈ [0,1]  
▫  All pi are independent and unknown a priori 
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▫  Play an arm i and observe its reward 



(Finite Horizon) Multi-armed Bandits 

•  n arms of unknown effectiveness 
▫  Model “effectiveness” as probability pi ∈ [0,1]  
▫  All pi are independent and unknown a priori 
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▫  Play an arm i and observe its reward (0 or 1) 
▫  Repeat for at most T steps 



(Finite Horizon) Multi-armed Bandits 

•  n arms of unknown effectiveness 
▫  Model “effectiveness” as probability pi ∈ [0,1]  
▫  All pi are independent and unknown a priori 

• At any step: 
▫  Play an arm i and observe its reward (0 or 1) 
▫  Repeat for at most T steps 

• Maximize expected total reward 



What does it model? 

• Exploration-exploitation trade-off 
�  Value to playing arm with high expected reward 

�  Value to refining knowledge of pi 

�  These two trade off with each other 

• Very classical model; dates back many decades 
[Thompson ‘33, Wald ‘47, Arrow et al. ‘49, Robbins ‘50, …, Gittins & Jones ‘72, ... ]  



Reward Distribution for arm i 

•  Pr[Reward = 1] = pi  
 

• Assume pi drawn from a “prior distribution” Qi 
▫  Prior refined using Bayes’ rule into posterior 



Conjugate Prior: Beta Density 
§  Qi = Beta(a,b) 

§  Pr[pi = x]∝ xa-1 (1-x)b-1 
 



Conjugate Prior: Beta Density 
§  Qi = Beta(a,b) 

§  Pr[pi = x]∝ xa-1 (1-x)b-1 

§  Intuition:  
§  Suppose have previously observed (a-1) 1’s and (b-1) 0’s 
§  Beta(a,b) is posterior distribution given observations 
§  Updated according to Bayes’ rule starting with:  

§  Beta(1,1) = Uniform[0,1] 

§  Expected Reward = E[pi] = a/(a+b) 



Prior Update for Arm i 
Beta(1,1) 

2,1 1,2 

2,2 3,1 1,3 

3,2 2,3 1,4 4,1 

1/2 1/2 

2/3 1/3 1/3 2/3 

3/4 
 1/4 1/2 1/2 1/4 3/4 

Pr[Reward = 0 | Prior] Pr[Reward =1 | Prior] 

E[Reward | Prior]  
= 3/4 



Convenient Abstraction 

•  Posterior distribution of arm captured by: 
�  Observed rewards from arm so far 
�  Called the “state” of the arm 



Convenient Abstraction 

•  Posterior distribution of arm captured by: 
�  Observed rewards from arm so far 
�  Called the “state” of the arm 
�  Expected reward evolves as a martingale 

•  State space of single arm typically small: 
�  O(T2) if rewards are 0/1 



Decision Policy for Playing Arms 

•  Specifies which arm to play next 

•  Function of current states of all the arms 

• Can have exponential size description 



Example: T = 3 

Play Arm 1 

Y  1/2 

Q1 = Beta(1,1)     Q2 = Beta(5,2)   Q3 = Beta(21,11) 

N  1/2 

Q1 ~ B(2,1)   
Play Arm 1 

Q1 ~ B(1,2)  
Play Arm 2 

Y   2/3 

N   1/3 

Q1 ~ B(3,1)  Play Arm 1 

Q1 ~ B(2,2)  Play Arm 3 

Y   5/7 

N   2/7 

Q2 ~ B(6,2)  Play Arm 2 

 Q2 ~ B(5,3)  Play Arm 3 



Goal 

•  Find decision policy with maximum value: 

�  Value = E [ Sum of rewards every step]  

•  Find the policy maximizing expected reward 
when pi drawn from prior distribution Qi 

▫  OPT = Expected value of optimal decision policy 



Solution Recipe using Prophets 



Step 1: Projection 

• Consider any decision policy P 

• Consider its behavior restricted to arm i 

• What state space does this define? 

• What are the actions of this policy? 



Example: Project onto Arm 2 

Play Arm 1 

Y  1/2 

Q1 ~ Beta(1,1)     Q2 ~ Beta(5,2)   Q3 ~ Beta(21,11) 

N  1/2 

Q1 ~ B(2,1)   
Play Arm 1 

Q1 ~ B(1,2)  
Play Arm 2 

Y   2/3 

N   1/3 

Q1 ~ B(3,1)  Play Arm 1 

Q1 ~ B(2,2)  Play Arm 3 

Y   5/7 

N   2/7 

Q2 ~ B(6,2)  Play Arm 2 

 Q2 ~ B(5,3)  Play Arm 3 



Behavior Restricted to Arm 2 
Q2 ~ Beta(5,2) 

w.p. 1/2 

With remaining probability, do nothing 

Play Arm 2 

Y   5/7 

N   2/7 

Q2 ~ B(6,2)  Play Arm 2 

 Q2 ~ B(5,3)  STOP 

Plays are contiguous and ignore global clock! 



Projection onto Arm i 
•  Yields a randomized policy for arm i 

• At each state of the arm, policy probabilistically: 
�  PLAYS the arm 
�  STOPS and quits playing the arm 



Notation 

•  Ti = E[Number of plays made for arm i] 
 
• Ri = E[Reward from events when i chosen] 



Step 2: Weak Coupling 

•  In any decision policy: 
�  Number of plays is at most T 
�  True on all decision paths 



Step 2: Weak Coupling 

•  In any decision policy: 
�  Number of plays is at most T 
�  True on all decision paths 

•  Taking expectations over decision paths 
�  Σi  Ti  ≤ T 
�  Reward of decision policy = Σi  Ri  



Relaxed Decision Problem 

•  Find a decision policy Pi  for each arm i such that 

�  Σi  Ti (Pi) / T ≤ 1 

�  Maximize: Σi  Ri (Pi) 

•  Let optimal value be OPT 
�  OPT ≥ Value of optimal decision policy 



Lagrangean with Penalty λ 

•  Find a decision policy Pi  for each arm i such that 

�  Maximize: λ +  Σi  Ri (Pi) – λ Σi  Ti (Pi) / T   

• No constraints connecting arms 
�  Find optimal policy separately for each arm i 

 



Lagrangean for Arm i 
Maximize:  Ri (Pi) – λ  Ti (Pi) / T 

• Actions for arm i: 
�  PLAY:  Pay penalty = λ/T  & obtain reward  
�  STOP and exit 

• Optimum computed by dynamic programming: 
�  Time per arm = Size of state space = O(T2) 
�  Similar to Gittins index computation 

•  Finally, binary search over λ  



Step 3: Prophet-style Execution 

• Execute single-arm policies sequentially 
�  Do not revisit arms 

•  Stop when some constraint is violated 
�  T steps elapse, or 
�  Run out of arms 



Analysis for Martingale Bandits 



Idea: Truncation   [Farias, Madan ‘11; Guha, Munagala ’13] 
•  Single arm policy defines a stopping time 

•  If policy is stopped after time α T 
▫  E[Reward] ≥ α R(Pi) 

• Requires “martingale property” of state space 

• Holds only for the projection onto one arm! 
�  Does not hold for optimal multi-arm policy 



Proof of Truncation Theorem 

R Pi( ) = Pr Qi = p[ ]× p×E Stopping Time |Qi = p[ ]dp
p
∫

Probability Prior = p Reward given Prior = p 

Truncation reduces this term by at most factor α  



Analysis of Martingale MAB 

• Recall: Collection of single arm policies s.t.	


�  Σi R(Pi) ≥ OPT 
�  Σi T(Pi) = T 

• Execute arms in decreasing R(Pi)/T(Pi) 
�  Denote arms 1,2,3,… in this order 

•  If Pi quits, move to next arm 
 



Arm-by-arm Accounting 

•  Let Tj = Time for which policy Pj  executes 
�  Random variable 

•  Time left for Pi to execute = T − Tj
j<i
∑



Arm-by-arm Accounting 

•  Let Tj = Time for which policy Pj  executes 
�  Random variable 

•  Time left for Pi to execute 

• Expected contribution of Pi conditioned on j < i 

 
Uses the Truncation Theorem! 

= T − Tj
j<i
∑

= 1− 1
T

Tj
j<i
∑

#

$
%%

&

'
((R Pi( )



Taking Expectations… 

• Expected contribution to reward from Pi   

 
Tj  independent of Pi 

≥ 1− 1
T

T Pj( )
j<i
∑

$

%
&&

'

(
))R Pi( )

= E 1− 1
T

Tj
j<i
∑

#
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2-approximation 

1 

OPT 

R(P1)  

ALG ≥ 1− 1
T
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∑
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    OPT = R Pi( )
i
∑    &    T = T Pi( )

i
∑

    
R P1( )
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≥
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≥
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T P3( )

≥ ...

Implies:

    ALG ≥
OPT

2

0 
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Final Result 
•  2-approximate irrevocable policy! 

•  Same idea works for several other problems 
�  Concave rewards on arms 
�  Delayed feedback about rewards 
�  Metric switching costs between arms 

•  Dual balancing works for variants of bandits 
�  Restless bandits 
�  Budgeted learning 



Open Questions 

• How far can we push LP based techniques? 
�  Can we encode adaptive policies more generally? 
�  For instance, MAB with matroid constraints? 
�  Some success for non-martingale bandits 

• What if we don’t have full independence? 
�  Some success in auction design 
�  Techniques based on convex optimization 
�  Seems unrelated to prophets 



Thanks! 


