
Prophet Inequalities and
Stochastic Optimization
Kamesh Munagala
Duke University

Joint work with Sudipto Guha, UPenn

Bayesian Decision System

Decision Policy

Stochastic Model State Update

Model Update

Approximating MDPs
•  Computing decision policies typically requires

exponential time and space

•  Simpler decision policies?
�  Approximately optimal in a provable sense
�  Efficient to compute and execute

•  This talk
�  Focus on a very simple decision problem
�  Known since the 1970’s in statistics
�  Arises as a primitive in a wide range of decision problems

An Optimal Stopping Problem

•  There is a gambler and a prophet (adversary)

•  There are n boxes

▫  Box j has reward drawn from distribution Xj

▫  Gambler knows Xj but box is closed

▫  All distributions are independent

An Optimal Stopping Problem

X5 X2 X8 X6 X9

Curtain

Order unknown to gambler

•  Gambler knows all the distributions

•  Distributions are independent

An Optimal Stopping Problem

X5 X2 X8 X6 20

Curtain

Open box

An Optimal Stopping Problem

X5 X2 X8 X6 20

Keep it
or discard?

Keep it:
•  Game stops and gambler’s payoff = 20
Discard:
•  Can’t revisit this box
•  Prophet shows next box

Stopping Rule for Gambler?

• Maximize expected payoff of gambler
�  Call this value ALG

• Compare against OPT = E[maxj Xj]
�  This is prophet’s payoff assuming he knows the

values inside all the boxes

• Can the gambler compete against OPT?

The Prophet Inequality
[Krengel, Sucheston, and Garling ‘77]

There exists a value w such that, if the gambler
stops when he observes a value at least w, then:

ALG ≥ ½ OPT = ½ E[maxj Xj]

Gambler computes threshold w from the distributions

Talk Outline

•  Three algorithms for the gambler
�  Closed form for threshold
�  Linear programming relaxation
�  Dual balancing (if time permits)

• Connection to policies for stochastic scheduling
�  “Weakly coupled” decision systems
�  Multi-armed Bandits with martingale rewards

First Proof
[Samuel-Cahn ‘84]

Threshold Policies

Let X* = maxj Xj

Choose threshold w as follows:

�  [Samuel-Cahn ‘84] Pr[X* > w] = ½
�  [Kleinberg, Weinberg ‘12] w = ½ E[X*]

In general, many different threshold rules work

Let (unknown) order of arrival be X1 X2 X3 …

The Excess Random Variable

Xj

Pr
ob

b (Xj – b)+

Pr
ob

Let (Xj � b)+ = max (Xj � b, 0)
and X⇤

= maxj Xj

Accounting for Reward

•  Suppose threshold = w

•  If X* ≥ w then some box is chosen
�  Policy yields fixed payoff w

Accounting for Reward

•  Suppose threshold = w

•  If X* ≥ w then some box is chosen
�  Policy yields fixed payoff w

•  If policy encounters box j
�  It yields excess payoff (Xj – w)+

�  If this payoff is positive, the policy stops.
�  If this payoff is zero, the policy continues.

• Add these two terms to compute actual payoff

In math terms…

Payo↵ = w ⇥ Pr[X⇤ � w]

+

Pn
j=1 Pr[j encountered]⇥E [(Xj � w)+]

Fixed payoff of w

Excess payoff conditioned
on reaching j

Event of reaching j is
independent of the value
observed in box j

A Simple Inequality

Pr[j encountered] = Pr

h
max

j�1
i=1 Xi < w

i

� Pr [max

n
i=1 Xi < w]

= Pr[X⇤ < w]

Putting it all together…
Payo↵ � w ⇥ Pr[X⇤ � w]

+

Pn
j=1 Pr[X

⇤ < w]⇥E [(Xj � w)+]

Lower bound on Pr[j encountered]

Simplifying…

Suppose we set w =
Pn

j=1 E [(Xj � w)+]

Then payoff ≥ w

Payo↵ � w ⇥ Pr[X⇤ � w]

+

Pn
j=1 Pr[X

⇤ < w]⇥E [(Xj � w)+]

Why is this any good?

w =
Pn

j=1 E [(Xj � w)+]

2w = w +E
hPn

j=1(Xj � w)+
i

� w +E
⇥
(max

n
j=1 Xj � w)+

⇤

= E
⇥
max

n
j=1 Xj

⇤
= E[X⇤

]

Summary [Samuel-Cahn ‘84]

w =
Pn

j=1 E [(Xj � w)+]Choose threshold

Yields payoff w � E[X⇤]/2 = OPT/2

Exercise: The factor of 2 is optimal even for 2 boxes!

Second Proof
Linear Programming

[Guha, Munagala ’07]

Why Linear Programming?

•  Previous proof appears “magical”
�  Guess a policy and cleverly prove it works

•  LPs give a “decision policy” view
�  Recipe for deriving solution
�  Naturally yields threshold policies
�  Can be generalized to complex decision problems

•  Some caveats later…

Linear Programming

Consider behavior of prophet
�  Chooses max. payoff box
�  Choice depends on all realized payoffs

zjv = Pr[Chooses box j ^Xj = v]

= Pr[Xj = X⇤ ^Xj = v]

Basic Idea
•  LP captures prophet behavior

�  Use zjv as the variables

•  These variables are insufficient to capture
prophet choosing the maximum box

�  What we end up with will be a relaxation of max

•  Steps:
�  Understand structure of relaxation
�  Convert solution to a feasible policy for gambler

Constraints
zjv = Pr[Xj = X⇤ ^Xj = v]

) zjv  Pr[Xj = v] = fj(v) Relaxation

Constraints
zjv = Pr[Xj = X⇤ ^Xj = v]

) zjv  Pr[Xj = v] = fj(v)

P
j,v zjv  1

Prophet chooses exactly one box:

Constraints
zjv = Pr[Xj = X⇤ ^Xj = v]

) zjv  Pr[Xj = v] = fj(v)

P
j,v zjv  1

Prophet chooses exactly one box:

P
j,v v ⇥ zjv

Payoff of prophet:

LP Relaxation of Prophet’s Problem

Maximize

P
j,v v · zjv

P
j,v zjv  1

zjv 2 [0, fj(v)] 8j, v

Example

Xa

Xb

2 with probability ½

0 with probability ½

1 with probability ½

0 with probability ½

LP Relaxation

Xa Xb

2 with probability ½

0 with probability ½

1 with probability ½

0 with probability ½

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 zb1

Relaxation

LP Optimum

Xa Xb

2 with probability ½

0 with probability ½

1 with probability ½

0 with probability ½

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 = 1/2
zb1 = 1/2

LP optimal payoff
= 1.5

Expected Value of Max?

Xa Xb

2 with probability ½

0 with probability ½

1 with probability ½

0 with probability ½

Maximize 2⇥ za2 + 1⇥ zb1

za2 + zb1  1

za2 2 [0, 1/2]
zb1 2 [0, 1/2]

za2 = 1/2
zb1 = 1/4

Prophet’s payoff
= 1.25

What do we do with LP solution?

• Will convert it into a feasible policy for gambler

• Bound the payoff of gambler in terms of LP
optimum
▫  LP Optimum upper bounds prophet’s payoff!

Interpreting LP Variables for Box j

•  Policy for choosing box if encountered

Xb

1 with probability ½

0 with probability ½

zb1 = ¼ If Xb = 1 then

 Choose b w.p. zb1/ ½ = ½

Implies Pr[j chosen and Xj = 1] = zb1 = ¼

LP Variables yield Single-box Policy Pj

Xj

v with probability fj(v)

If Xj = v then

 Choose j with probability zjv / fj(v)

zjv

Simpler Notation

C(Pj) = Pr[j chosen] =

P
v Pr [Xj = v ^ j chosen]

=

P
v zjv

R(Pj) = E[Reward from j] =

P
v v ⇥ Pr [Xj = v ^ j chosen]

=

P
v v ⇥ zjv

LP Relaxation
Maximize

P
j,v v · zjv

P
j,v zjv  1

zjv 2 [0, fj(v)] 8j, v Each policy Pj is valid

Maximize Payo↵ =

P
j R(Pj)

E [Boxes Chosen] =

P
j C(Pj)  1

LP yields collection of Single Box Policies!

LP Optimum

Xa Xb

2 with probability ½

0 with probability ½

1 with probability ½

0 with probability ½

Choose a Choose b

R(Pa) = ½ × 2 = 1

C(Pa) = ½ × 1 = ½

R(Pb) = ½ × 1 = ½

C(Pb) = ½ × 1 = ½

Lagrangian
Maximize

P
j R(Pj)

P
j C(Pj)  1

Pj feasible 8j

Dual variable = w

Max. w +

P
j (R(Pj)� w ⇥ C(Pj))

Pj feasible 8j

Interpretation of Lagrangian

• Net payoff from choosing j = Value minus w

• Can choose many boxes

• Decouples into a separate optimization per box!

Max. w +

P
j (R(Pj)� w ⇥ C(Pj))

Pj feasible 8j

Optimal Solution to Lagrangian

• Net payoff from choosing j = Value minus w

• Can choose many boxes

• Decouples into a separate optimization per box!

If Xj ≥ w then choose box j !

Notation in terms of w…

C(Pj) = Cj(w) = Pr[Xj � w]

R(Pj) = Rj(w) =
P

v�w v ⇥ Pr[Xj = v]

Expected payoff of policy

 If Xj ≥ w then Payoff = Xj else 0

Strong Duality

P
j Cj(w) = 1

)
P

j Rj(w) = LP-OPT

Choose Lagrange multiplier w such that

Lag(w) =
P

j Rj(w) + w ⇥
⇣
1�

P
j Cj(w)

⌘

Constructing a Feasible Policy

• Solve LP: Compute w such that

• Execute: If Box j encountered
▫  Skip it with probability ½

▫  With probability ½ do:
�  Open the box and observe Xj
�  If Xj ≥ w then choose j and STOP

P
j Pr[Xj � w] =

P
j Cj(w) = 1

Analysis
If Box j encountered

Expected reward = ½ × Rj(w)

Using union bound (or Markov’s inequality)

Pr[j encountered] � 1�

Pj�1
i=1 Pr [Xi � w ^ i opened]

� 1� 1
2

Pn
i=1 Pr[Xi � w]

= 1� 1
2

Pn
i=1 Ci(w) =

1
2

Analysis: ¼ Approximation

Expected payo↵ � 1
4

P
j Rj(w)

= 1
4LP-OPT � OPT

4

If Box j encountered
Expected reward = ½ × Rj(w)

 Box j encountered with probability at least ½

 Therefore:

Third Proof
Dual Balancing

[Guha, Munagala ‘09]

Lagrangian Lag(w)
Maximize

P
j R(Pj)

P
j C(Pj)  1

Pj feasible 8j

Dual variable = w

Max. w +

P
j (R(Pj)� w ⇥ C(Pj))

Pj feasible 8j

Weak Duality

Lag(w) = w +
P

j �j(w)

= w +
P

j E [(Xj � w)+]

Weak Duality: For all w, Lag(w) ≥ LP-OPT

Amortized Accounting for Single Box

�j(w) = Rj(w)� w ⇥ Cj(w)

) Rj(w) = �j(w) + w ⇥ Cj(w)

Fixed payoff for opening box

Payoff w if box is chosen

Expected payoff of policy is preserved in new accounting

Example: w = 1

Xa

2 with probability ½

0 with probability ½

�a(1) = E [(Xa � 1)+] = 1
2

Ra(1) = 2⇥ 1
2 = 1

Fixed payoff ½

Payoff 1

�a(w) +
1
2 ⇥ w = 1

2 + 1
2 = 1

Balancing Algorithm
Lag(w) = w +

P
j �j(w)

= w +
P

j E [(Xj � w)+]

Weak Duality: For all w, Lag(w) ≥ LP-OPT

Suppose we set w =
P

j �j(w)

Then w � LP-OPT/2
and

P
j �j(w) � LP-OPT/2

Algorithm [Guha, Munagala ‘09]

• Choose w to balance it with total “excess payoff”

• Choose first box with payoff at least w
▫  Same as Threshold algorithm of [Samuel-Cahn ‘84]

• Analysis:
▫  Account for payoff using amortized scheme

Analysis: Case 1

• Algorithm chooses some box

•  In amortized accounting:
▫  Payoff when box is chosen = w

• Amortized payoff = w ≥ LP-OPT / 2

Analysis: Case 2
•  All boxes opened

•  In amortized accounting:
▫  Each box j yields fixed payoff Φj(w)

•  Since all boxes are opened:
▫  Total amortized payoff = Σj Φj(w) ≥ LP-OPT / 2

Either Case 1 or Case 2 happens!

Implies Expected Payoff ≥ LP-OPT / 2

Takeaways…

•  LP-based proof is oblivious to closed forms
�  Did not even use probabilities in dual-based proof!

• Automatically yields policies with right “form”

• Needs independence of random variables
�  “Weak coupling”

General Framework

Weakly Coupled Decision Systems
Independent decision spaces

Few constraints coupling decisions across spaces

[Singh & Cohn ’97; Meuleau et al. ‘98]

Prophet Inequality Setting

• Each box defines its own decision space
�  Payoffs of boxes are independent

• Coupling constraint:
�  At most one box can be finally chosen

Multi-armed Bandits
• Each bandit arm defines its own decision space

�  Arms are independent

• Coupling constraint:
�  Can play at most one arm per step

• Weaker coupling constraint:
�  Can play at most T arms in horizon of T steps

•  Threshold policy ≈ Index policy

Bayesian Auctions
•  Decision space of each agent

�  What value to bid for items
�  Agent’s valuations are independent of other agents

•  Coupling constraints
�  Auctioneer matches items to agents

•  Constraints per bidder:
�  Incentive compatibility
�  Budget constraints

•  Threshold policy = Posted prices for items

Prophet-style Ideas
•  Stochastic Scheduling and Multi-armed Bandits

�  Kleinberg, Rabani, Tardos ‘97
�  Dean, Goemans, Vondrak ‘04
�  Guha, Munagala ’07, ‘09, ’10, ‘13
�  Goel, Khanna, Null ‘09
�  Farias, Madan ’11

•  Bayesian Auctions
�  Bhattacharya, Conitzer, Munagala, Xia ‘10
�  Bhattacharya, Goel, Gollapudi, Munagala ‘10
�  Chawla, Hartline, Malec, Sivan ‘10
�  Chakraborty, Even-Dar, Guha, Mansour, Muthukrishnan ’10
�  Alaei ’11

•  Stochastic matchings
�  Chen, Immorlica, Karlin, Mahdian, Rudra ‘09
�  Bansal, Gupta, Li, Mestre, Nagarajan, Rudra ‘10

Generalized Prophet Inequalities
•  k-choice prophets

�  Hajiaghayi, Kleinberg, Sandholm ‘07

•  Prophets with matroid constraints
�  Kleinberg, Weinberg ’12
�  Adaptive choice of thresholds
�  Extension to polymatroids in Duetting, Kleinberg ‘14

•  Prophets with samples from distributions
�  Duetting, Kleinberg, Weinberg ’14

Martingale Bandits
[Guha, Munagala ‘07, ’13]
[Farias, Madan ‘11]

(Finite Horizon) Multi-armed Bandits

•  n arms of unknown effectiveness
▫  Model “effectiveness” as probability pi ∈ [0,1]
▫  All pi are independent and unknown a priori

(Finite Horizon) Multi-armed Bandits

•  n arms of unknown effectiveness
▫  Model “effectiveness” as probability pi ∈ [0,1]
▫  All pi are independent and unknown a priori

• At any step:
▫  Play an arm i and observe its reward

(Finite Horizon) Multi-armed Bandits

•  n arms of unknown effectiveness
▫  Model “effectiveness” as probability pi ∈ [0,1]
▫  All pi are independent and unknown a priori

• At any step:
▫  Play an arm i and observe its reward (0 or 1)
▫  Repeat for at most T steps

(Finite Horizon) Multi-armed Bandits

•  n arms of unknown effectiveness
▫  Model “effectiveness” as probability pi ∈ [0,1]
▫  All pi are independent and unknown a priori

• At any step:
▫  Play an arm i and observe its reward (0 or 1)
▫  Repeat for at most T steps

• Maximize expected total reward

What does it model?

• Exploration-exploitation trade-off
�  Value to playing arm with high expected reward

�  Value to refining knowledge of pi

�  These two trade off with each other

• Very classical model; dates back many decades
[Thompson ‘33, Wald ‘47, Arrow et al. ‘49, Robbins ‘50, …, Gittins & Jones ‘72, ...]

Reward Distribution for arm i

•  Pr[Reward = 1] = pi

• Assume pi drawn from a “prior distribution” Qi
▫  Prior refined using Bayes’ rule into posterior

Conjugate Prior: Beta Density
§  Qi = Beta(a,b)

§  Pr[pi = x]∝ xa-1 (1-x)b-1

Conjugate Prior: Beta Density
§  Qi = Beta(a,b)

§  Pr[pi = x]∝ xa-1 (1-x)b-1

§  Intuition:
§  Suppose have previously observed (a-1) 1’s and (b-1) 0’s
§  Beta(a,b) is posterior distribution given observations
§  Updated according to Bayes’ rule starting with:

§  Beta(1,1) = Uniform[0,1]

§  Expected Reward = E[pi] = a/(a+b)

Prior Update for Arm i
Beta(1,1)

2,1 1,2

2,2 3,1 1,3

3,2 2,3 1,4 4,1

1/2 1/2

2/3 1/3 1/3 2/3

3/4
 1/4 1/2 1/2 1/4 3/4

Pr[Reward = 0 | Prior] Pr[Reward =1 | Prior]

E[Reward | Prior]
= 3/4

Convenient Abstraction

•  Posterior distribution of arm captured by:
�  Observed rewards from arm so far
�  Called the “state” of the arm

Convenient Abstraction

•  Posterior distribution of arm captured by:
�  Observed rewards from arm so far
�  Called the “state” of the arm
�  Expected reward evolves as a martingale

•  State space of single arm typically small:
�  O(T2) if rewards are 0/1

Decision Policy for Playing Arms

•  Specifies which arm to play next

•  Function of current states of all the arms

• Can have exponential size description

Example: T = 3

Play Arm 1

Y 1/2

Q1 = Beta(1,1) Q2 = Beta(5,2) Q3 = Beta(21,11)

N 1/2

Q1 ~ B(2,1)
Play Arm 1

Q1 ~ B(1,2)
Play Arm 2

Y 2/3

N 1/3

Q1 ~ B(3,1) Play Arm 1

Q1 ~ B(2,2) Play Arm 3

Y 5/7

N 2/7

Q2 ~ B(6,2) Play Arm 2

 Q2 ~ B(5,3) Play Arm 3

Goal

•  Find decision policy with maximum value:

�  Value = E [Sum of rewards every step]

•  Find the policy maximizing expected reward
when pi drawn from prior distribution Qi

▫  OPT = Expected value of optimal decision policy

Solution Recipe using Prophets

Step 1: Projection

• Consider any decision policy P

• Consider its behavior restricted to arm i

• What state space does this define?

• What are the actions of this policy?

Example: Project onto Arm 2

Play Arm 1

Y 1/2

Q1 ~ Beta(1,1) Q2 ~ Beta(5,2) Q3 ~ Beta(21,11)

N 1/2

Q1 ~ B(2,1)
Play Arm 1

Q1 ~ B(1,2)
Play Arm 2

Y 2/3

N 1/3

Q1 ~ B(3,1) Play Arm 1

Q1 ~ B(2,2) Play Arm 3

Y 5/7

N 2/7

Q2 ~ B(6,2) Play Arm 2

 Q2 ~ B(5,3) Play Arm 3

Behavior Restricted to Arm 2
Q2 ~ Beta(5,2)

w.p. 1/2

With remaining probability, do nothing

Play Arm 2

Y 5/7

N 2/7

Q2 ~ B(6,2) Play Arm 2

 Q2 ~ B(5,3) STOP

Plays are contiguous and ignore global clock!

Projection onto Arm i
•  Yields a randomized policy for arm i

• At each state of the arm, policy probabilistically:
�  PLAYS the arm
�  STOPS and quits playing the arm

Notation

•  Ti = E[Number of plays made for arm i]

• Ri = E[Reward from events when i chosen]

Step 2: Weak Coupling

•  In any decision policy:
�  Number of plays is at most T
�  True on all decision paths

Step 2: Weak Coupling

•  In any decision policy:
�  Number of plays is at most T
�  True on all decision paths

•  Taking expectations over decision paths
�  Σi Ti ≤ T
�  Reward of decision policy = Σi Ri

Relaxed Decision Problem

•  Find a decision policy Pi for each arm i such that

�  Σi Ti (Pi) / T ≤ 1

�  Maximize: Σi Ri (Pi)

•  Let optimal value be OPT
�  OPT ≥ Value of optimal decision policy

Lagrangean with Penalty λ

•  Find a decision policy Pi for each arm i such that

�  Maximize: λ + Σi Ri (Pi) – λ Σi Ti (Pi) / T

• No constraints connecting arms
�  Find optimal policy separately for each arm i

Lagrangean for Arm i
Maximize: Ri (Pi) – λ Ti (Pi) / T

• Actions for arm i:
�  PLAY: Pay penalty = λ/T & obtain reward
�  STOP and exit

• Optimum computed by dynamic programming:
�  Time per arm = Size of state space = O(T2)
�  Similar to Gittins index computation

•  Finally, binary search over λ

Step 3: Prophet-style Execution

• Execute single-arm policies sequentially
�  Do not revisit arms

•  Stop when some constraint is violated
�  T steps elapse, or
�  Run out of arms

Analysis for Martingale Bandits

Idea: Truncation [Farias, Madan ‘11; Guha, Munagala ’13]
•  Single arm policy defines a stopping time

•  If policy is stopped after time α T
▫  E[Reward] ≥ α R(Pi)

• Requires “martingale property” of state space

• Holds only for the projection onto one arm!
�  Does not hold for optimal multi-arm policy

Proof of Truncation Theorem

R Pi() = Pr Qi = p[]× p×E Stopping Time |Qi = p[]dp
p
∫

Probability Prior = p Reward given Prior = p

Truncation reduces this term by at most factor α

Analysis of Martingale MAB

• Recall: Collection of single arm policies s.t.	

�  Σi R(Pi) ≥ OPT
�  Σi T(Pi) = T

• Execute arms in decreasing R(Pi)/T(Pi)
�  Denote arms 1,2,3,… in this order

•  If Pi quits, move to next arm

Arm-by-arm Accounting

•  Let Tj = Time for which policy Pj executes
�  Random variable

•  Time left for Pi to execute = T − Tj
j<i
∑

Arm-by-arm Accounting

•  Let Tj = Time for which policy Pj executes
�  Random variable

•  Time left for Pi to execute

• Expected contribution of Pi conditioned on j < i

Uses the Truncation Theorem!

= T − Tj
j<i
∑

= 1− 1
T

Tj
j<i
∑

#

$
%%

&

'
((R Pi()

Taking Expectations…

• Expected contribution to reward from Pi

Tj independent of Pi

≥ 1− 1
T

T Pj()
j<i
∑

$

%
&&

'

(
))R Pi()

= E 1− 1
T

Tj
j<i
∑

#

$
%%

&

'
((R Pi()

)

*
+
+

,

-
.
.

2-approximation

1

OPT

R(P1)

ALG ≥ 1− 1
T

T Pj()
j<i
∑

$

%
&&

'

(
))R Pi()

i
∑

Constraints:

 OPT = R Pi()
i
∑ & T = T Pi()

i
∑

R P1()
T P1()

≥
R P2()
T P2()

≥
R P3()
T P3()

≥ ...

Implies:

 ALG ≥
OPT

2

0
Stochastic knapsack analysis

Dean, Goemans, Vondrak ‘04

Final Result
•  2-approximate irrevocable policy!

•  Same idea works for several other problems
�  Concave rewards on arms
�  Delayed feedback about rewards
�  Metric switching costs between arms

•  Dual balancing works for variants of bandits
�  Restless bandits
�  Budgeted learning

Open Questions

• How far can we push LP based techniques?
�  Can we encode adaptive policies more generally?
�  For instance, MAB with matroid constraints?
�  Some success for non-martingale bandits

• What if we don’t have full independence?
�  Some success in auction design
�  Techniques based on convex optimization
�  Seems unrelated to prophets

Thanks!

