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Approximating MDPs

- Computing decision policies typically requires
exponential time and space

- Simpler decision policies?
- Approximately optimal in a provable sense
- Efficient to compute and execute

» This talk

 Focus on a very simple decision problem
- Known since the 1970’s in statistics
- Arises as a primitive in a wide range of decision problems



An Optimal Stopping Problem

» There is a gambler and a prophet (adversary)

« There are n boxes

> Box j has reward drawn from distribution X,

= Gambler knows ijut box is closed

o All distributions are independent



An Optimal Stopping Problem

Order unknown to gambler

X X

9 5 2 X8 X6

Curtain

Gambler knows all the distributions

Distributions are independent




An Optimal Stopping Problem

Open box

20 X X, Xg Xq

Curtain




An Optimal Stopping Problem

Keep it
or discard?

20 X X, Xg Xq

Keep it:

» Game stops and gambler’s payoff = 20
Discard:

» Can’t revisit this box

« Prophet shows next box




Stopping Rule for Gambler?

- Maximize expected payoff of gambler
- Call this value ALG

- Compare against OPT = E[max; X]
- This is prophet’s payoff assuming he knows the
values inside all the boxes

- Can the gambler compete against OPT?



The Prophet Inequality

[ Krengel, Sucheston, and Garling ‘77]

There exists a value w such that, if the gambler
stops when he observes a value at least w, then:

ALG = Y2 OPT = 1 E[man Xj]

Gambler computes threshold w from the distributions



Talk Outline

» Three algorithms for the gambler
* Closed form for threshold
- Linear programming relaxation
» Dual balancing (if time permits)

- Connection to policies for stochastic scheduling
 “Weakly coupled” decision systems
» Multi-armed Bandits with martingale rewards



First Proof

[Samuel-Cahn ‘84]




Threshold Policies

Let X = max; X,

Choose threshold w as follows:
* [Samuel-Cahn ‘84] PI‘[X% > w] =1/
* [Kleinberg, Weinberg ‘12] W = 1/o E[y ]

In general, many different threshold rules work

Let (unknown) order of arrival be X, X, X, ...



The Excess Random Variable

Let (X;—b)" = max(X,;—5,0)

Prob
Prob

= >
X. ()(J_ b)+



Accounting for Reward

» Suppose threshold = w

« If X > w then some box is chosen
- Policy yields fixed payoff w



Accounting for Reward
» Suppose threshold = w

« If X > w then some box is chosen
- Policy yields fixed payoff w

- If policy encounters box j
- It yields excess payoft (X;— w)*
- If this payoff is positive, the policy stops.
- If this payoft is zero, the policy continues.

- Add these two terms to compute actual payoft



In math terms...

/ Fixed payoff of w

Payoff = w x Pr[X™* > w]

+ > i, Pr[j encountered] x E [(X; —w)7]

T

Excess payoff conditioned
on reaching j

Event of reaching j is
independent of the value
observed in box j




A Simple Inequality

Pr|j encountered] Pr [maxz L X < w}

[V

Pr max?_; X; < w|

= Pr[X* <w|



Putting it all together...
Payoff > w x Pr|X* > w]

+ D PriX" <w] x B[(X; —w)7]

Lower bound on Pr[ j encountered]



Simplifying...
Payoff > w x Pr[X* > w]

+ D PriX" <w] x B[(X; —w)7]

Suppose we set w = 2?21 E[(X; —w)"]

Then payoff > w




Why is this any good?
w = > E[(X; —w)7]

ow = w+E[ZJ 1(Xj—w)+}

[V

w+ E |(max”?_; X; —w)"|
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S U m m a ry [Samuel-Cahn ‘84]

n

Choose threshold W = Zj:l E [(Xj _ w)+]

Yields payoff w o> E[X*]/QZOPT/Q

Exercise: The factor of 2 is optimal even for 2 boxes!



Second Proof

Linear Programming

[Guha, Munagala ’07]



Why Linear Programming?

- Previous proof appears “magical”
» Guess a policy and cleverly prove it works

- LPs give a “decision policy” view
» Recipe for deriving solution
- Naturally yields threshold policies
- Can be generalized to complex decision problems

« Some caveats later...



Linear Programming

Consider behavior of prophet
* Chooses max. payoff box
» Choice depends on all realized payofts

ziy = Pr|Chooses box j A X; = v]

— PI'[X]' :X*/\Xj :U]



Basic Idea

 LP captures prophet behavior
- Use z;, as the variables

- These variables are insufficient to capture
prophet choosing the maximum box
- What we end up with will be a relaxation of max

» Steps:
» Understand structure of relaxation
- Convert solution to a feasible policy for gambler



Constraints

Rijv T Pl“:Xj:X*/\Xj:U]

= 2jp < Pr|X; =v] = f;(v) | «—— Relaxation




Constraints

Rijv T Pl“:Xj:X*/\Xj:U]

= Zjv < PI‘XJ :’U] :fj(’l})

Prophet chooses exactly one box:

Zj,fu Zj’U S 1



Constraints

Rijv T Pl“:Xj:X*/\Xj:U]

= Zjv < PI‘XJ :’U] :fj(’U)

Prophet chooses exactly one box:
Z 7,V <ju S 1

Payoff of prophet:

Zj,v v X Zjv



LP Relaxation of Prophet’s Problem

Maximize D iU Zju
Zj,v Zjv < 1

zjp € [0, f;(v)] Vi




2 with probability /2

0 with probability Y2

1 with probability V2

0 with probability Y2




LP Relaxation

2 with probability V2 1 with probability V2
/ Zqo / Zp;
X, Xy, \
\ 0 with probability Y2 0 with probability 2
Maximize 2 X 2g20 +1 X zp1
Zaz 251 < 1
Za2 € [O, 1 / 2]
z € [0,1/2] € Relaxation




LP Optimum

/v 2 with probability V2 /v 1 with probability V2

X, Xy, \
\ o0 with probability V2 0 with probability 2
Maximize 2 X Zgo +1 X 2p1 Z,,=1/2
Zy, =1/2
Za2 +2p1 <1
Za2 € 10,1/2] LP optimal payoff
Zp1 € [O, 1/2] = 1.5




Expected Value of Max?

/v 2 with probability 2 /v 1 with probability V2
X, Xy, \
\ 0 with probability ¥/2 o with probability V2

Maximize 2 X 2490+ 1 X zp1 Z,,=1/2
Zp = 1/4
Za2 +2p1 <1
Za2 € 10,1/2] Prophet’s payoff
Zp1 € [O, 1/2] = 1.25




What do we do with LP solution?

- Will convert it into a feasible policy for gambler

- Bound the payoff of gambler in terms of LP
optimum
= LP Optimum upper bounds prophet’s payoft!



Interpreting LP Variables for Box j

» Policy for choosing box if encountered

1 with probability 12
/ Zbl = 1/4 If Xb =1 thel‘l

Xb
\ Choose bw.p.z,,/ /2 =15

0 with probability V2

Implies Pr[ j chosen and X; =1] =z, = V4



LP Variables yield Single-box Policy P,

/v v with probability f,(v) Z;,
4] \ g

IfXj = v then

Choose j with probability z;, / f{(v)




Simpler Notation

C(Pj) = Pr|j chosen] = >  Pr[X; =vAjchosen |
— Zv Zjv
R(P;) = E|[Reward from j| = ) v xPr|[X; =vAj chosen |



LP Relaxation

Maximize D vV Zju Maximize Payoff = Zj R(P;)
DivZiv <1 E [Boxes Chosen] =} . C(P;) <1

Ziy € ONfEE Vj,v | Each policy P;is valid

LP yields collection of Single Box Policies!



LP Optimum

2 with probability 2 1 with probability 12
/ Choose a / Choose b

AN N\

0 with probability V2

0 with probability V2

R(P,)=Vax2=1 R(Py)=Y2x1=1>

C(P,))=Yox1=1> C(Py) =Y2x1=1>



Lagrangian
Maximize }; R(F;)
Zj C(P;) <1 < Dualvariable =w

P; feasible Vj

Max. w -+ Zj (R(Pj) —w X C(Pj))

P; feasible Vj




Interpretation of Lagrangian

Max. w + Zj (R(Pj) —w x C(Fj))

P; feasible Vj

- Net payoff from choosing j = Value minus w
- Can choose many boxes

- Decouples into a separate optimization per box!



Optimal Solution to Lagrangian

If X; > w then choose box j !

- Net payoff from choosing j = Value minus w
- Can choose many boxes

- Decouples into a separate optimization per box!



Notation in terms of w...

C(p;) = Cj(w) = Pr[X; > ]
R(Pj) = Rj(w) = ) 5,vXPr[X; =0y

|

Expected payoff of policy

If X; > w then Payoff = X; else 0



Strong Duality

Lag(w) = X, Rj(w)+wx (1-35;C5(w))

Choose Lagrange multiplier w such that
D ] Cj(w) = 1

= Zj Rj(w)

LP-OPT




Constructing a Feasible Policy

- Solve LP: Compute w such that
SPX > w] = Y, Cw) = 1

« Execute: If Boxj encountered
= Skip it with probability /2

= With probability Y2 do:
* Open the box and observe X;
- It X; > w then choose j and STOP



Analysis

If Box j encountered
Expected reward = 12 x Rj(w )

Using union bound (or Markov’s inequality)

Pr|j encountered | > 1— Zj "Pr[X; > wAi opened ]

> 1—5>00 PrX > w]

1= 325 Ci(w) =



Analysis: ¥4 Approximation

If Box j encountered
Expected reward = 12 x Ri(w)

Box j encountered with probability at least V2
Therefore:

Expected payoft

Zj Rj(w)
LP-OPT > 224

1V
N L L



Third Proof

Dual Balancing

[Guha, Munagala ‘09]



Lagrangian Lag(w)
Maximize ) ; R(P;)

Zj C ( Pj) < 1 < Dualvariable = w

P; feasible Vj

Max. w + Zj (R(Pj) —w x C(Fj))

P; feasible Vj




Weak Duality

Lag(w) = w+) , ®;j(w)

Weak Duality: For all w, Lag(w) = LP-OPT




Amortized Accounting for Single Box
Pj(w) = Rj(w)—wxCjw)

= R;j(w) = <I>j(w)+?f><0j(w)

P

Fixed payoff for opening box

Payoff w if box is chosen

Expected payoff of policy is preserved in new accounting



Example: w = 1

2 with probability V2 )

/ Payoff 1 ®.(1) = E[Xe—-1)T]=3
Xa

\ R,(1) = 2x1=1
T 0 with probability Y2

Fixed payoff /2
1 B 1 1 _
(I)a(w)_|_§><w — §—|-§—1




Balancing Algorithm
Lag(w) = w+ ) ; ®;(w)
= wt Y B[ - w)]

Weak Duality: For all w, Lag(w) = LP-OPT

Suppose we set w = 2., Pj(w)
Then w > LP-OPT/2
and ) ®;j(w) > LP-OPT/2




AlgO ri th m [Guha, Munagala ‘09]

- Choose w to balance it with total “excess payoft”

- Choose first box with payoff at least w
= Same as Threshold algorithm of [samuel-cahn ‘84]

- Analysis:
= Account for payoff using amortized scheme



Analysis: Case 1

- Algorithm chooses some box

- In amortized accounting:
= Payoff when box is chosen = w

- Amortized payoff =w = LP-OPT /2



Analysis: Case 2
- All boxes opened

 In amortized accounting:
> Each box j yields fixed payoft ®;(w)

- Since all boxes are opened:
> Total amortized payott = 2, ®,(w) > LP-OPT /2

Either Case 1 or Case 2 happens!

Implies Expected Payoff > LP-OPT /2



Takeaways...

- LP-based proof is oblivious to closed forms
- Did not even use probabilities in dual-based proof!

- Automatically yields policies with right “form”

- Needs independence of random variables
- “Weak coupling”



General Framework




Weakly Coupled Decision Systems

Independent decision spaces

Few constraints coupling decisions across spaces
)
{ \

[Singh & Cohn ’97; Meuleau et al. ‘98]




Prophet Inequality Setting

- Each box defines its own decision space
- Payoffs of boxes are independent

- Coupling constraint:
- At most one box can be finally chosen



Multi-armed Bandits

- Each bandit arm defines its own decision space
- Arms are independent

» Coupling constraint:
- Can play at most one arm per step

- Weaker coupling constraint:
- Can play at most T arms in horizon of T steps

 Threshold policy = Index policy



Bayesian Auctions

- Decision space of each agent
- What value to bid for items
- Agent’s valuations are independent of other agents

» Coupling constraints
- Auctioneer matches items to agents

- Constraints per bidder:
- Incentive compatibility
-+ Budget constraints

 Threshold policy = Posted prices for items



Prophet-style ldeas

° Stochastlc Scheduling and Multi-armed Bandits
- Kleinberg, Rabani, Tardos ‘97
- Dean, Goemans, Vondrak ‘o4
* Guha, Munagala ’07, ‘09, ’10, ‘13
* Goel, Khanna, Null ‘o9
- Farias, Madan ’11

. Baye51an Auctions
- Bhattacharya, Conitzer, Munagala, Xia ‘10
- Bhattacharya, Goel, Gollapudi, Munagala ‘10
- Chawla, Hartline, Malec, Sivan ‘10
« Chakraborty, Even-Dar, Guha, Mansour, Muthukrishnan ’10
- Alaei’11

- Stochastic matchings

* Chen, Immorlica, Karlin, Mahdian, Rudra ‘09
- Bansal, Gupta, Li, Mestre, Nagarajan, Rudra ‘10



Generalized Prophet Inequalities

» k-choice prophets
- Hajiaghayi, Kleinberg, Sandholm ‘o7

» Prophets with matroid constraints
- Kleinberg, Weinberg 12

- Adaptive choice of thresholds
- Extension to polymatroids in Duetting, Kleinberg ‘14

- Prophets with samples from distributions
* Duetting, Kleinberg, Weinberg 14



Martingale Bandits

[Guha, Munagala ‘07, ’13]
[Farias, Madan ‘11]



(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
= Model “effectiveness” as probability p, € [0,1]
= All p, are independent and unknown a priori



(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
= Model “effectiveness” as probability p. € [0,1]
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« At any step:
= Play an arm 7 and observe its reward



(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
= Model “effectiveness” as probability p. € [0,1]
= All p, are independent and unknown a priori

« At any step:
= Play an arm i and observe its reward (0 or 1)
= Repeat for at most 7 steps



(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
= Model “effectiveness” as probability p. € [0,1]
= All p, are independent and unknown a priori

« At any step:

= Play an arm i and observe its reward (0 or 1)
= Repeat for at most 7 steps

- Maximize expected total reward



What does it model?

- Exploration-exploitation trade-oft
- Value to playing arm with high expected reward

- Value to refining knowledge of p;

- These two trade off with each other

- Very classical model; dates back many decades
[Thompson ‘33, Wald ‘47, Arrow et al. ‘49, Robbins ‘50, ..., Gittins & Jones ‘72, ... ]



Reward Distribution for arm i

« Pr[Reward = 1] = p;

 Assume p; drawn from a “prior distribution” Q;
= Prior refined using Bayes’ rule into posterior



Conjugate Prior: Beta Density
* (.= Beta(a,b)

= Pr[p, = x]oc x41 (1-x)>!



Conjugate Prior: Beta Density
* (.= Beta(a,b)
* Pr[p, = x]oc x¢! (1-x)>!

= Intuition:
= Suppose have previously observed (a-1) 1’s and (b-1) 0’s
= Beta(a,b) is posterior distribution given observations

= Updated according to Bayes’ rule starting with:
" Beta(l,1) = Uniform[0,1]

= Expected Reward = E[p ]| = a/(a+b)



Prior Update for Arm i

Beta(1,1)

Pr[Reward =1 | Prior] %/ N/‘g Pr[Reward = 0 | Prior]

1,2

2/3 / \LA / \3
E[Reward | Prior]
= 3/4 3,1 2,2

34/%/\4/\3@

4,1 3,2 2,3 1,4




Convenient Abstraction

» Posterior distribution of arm captured by:
- Observed rewards from arm so far
- Called the “state” of the arm



Convenient Abstraction

» Posterior distribution of arm captured by:
* Observed rewards from arm so far
- Called the “state” of the arm
- Expected reward evolves as a martingale

- State space of single arm typically small:
* O(T?) if rewards are 0/1



Decision Policy for Playing Arms

- Specifies which arm to play next
« Function of current states of all the arms

- Can have exponential size description



Example: T =3

Q, = Beta(1,1) Q, = Beta(5,2) Q, = Beta(21,11)
Y 2/3 Q1 ~ B(3,1) Play Arm 1

e <
Y 1/2 Play Arm 1 N 1/3 Q, ~ B(2,2) Play Arm 3

Q, ~ B(6,2) Play Arm 2

Play Arm 1

N 1/2 Y 5/

Q,~B@1,2)
Play Arm 2
N 2/7 Q. ~ B(5,3) Play Arm 3



Goal

» Find decision policy with maximum value:

 Value = E [ Sum of rewards every step]

- Find the policy maximizing expected reward
when p. drawn from prior distribution Q,

o OPT = Expected value of optimal decision policy



Solution Recipe using Prophets



Step 1: Projection

- Consider any decision policy P
- Consider its behavior restricted to arm 1
- What state space does this define?

- What are the actions of this policy?



Example: Project onto Arm 2

Q, ~ Beta(1,1) Q, ~ Beta(5,2) Q, ~ Beta(21,11)
Y 2/3 Ql ~ B(3,1) Play Arm 1

e =
Y 1/2 Play Arm 1 N 1/3 Q, ~ B(2,2) Play Arm 3

Q, ~ B(6,2) Play Arm 2

Play Arm 1

N 1/2

\ Y 5/
Q1 o B(1)2)

Play Arm 2
W7 Q. ~ B(5,3) Play Arm 3




Behavior Restricted to Arm 2

Q2 2 Beta(5)2)
Y 5/7 Q, ~ B(6,2) Play Arm 2
w.p.1/2 Play Arm 2 <
N 2/7 Q. ~ B(5,3) STOP

With remaining probability, do nothing

Plays are contiguous and ignore global clock!




Projection onto Arm

» Yields a randomized policy for arm 1

- At each state of the arm, policy probabilistically:
» PLAYS the arm

- STOPS and quits playing the arm



Notation

« T; = E[Number of plays made for arm 1]

« R. = E[Reward from events when i chosen]



Step 2: Weak Coupling

- In any decision policy:
- Number of plays is at most T’
» True on all decision paths



Step 2: Weak Coupling

- In any decision policy:
- Number of plays is at most T
» True on all decision paths

- Taking expectations over decision paths
3T, <T
- Reward of decision policy = X; R,



Relaxed Decision Problem

- Find a decision policy P; for each arm 1 such that
X T (PY/T=1
- Maximize: X; R; (P;)

- Let optimal value be OPT
» OPT = Value of optimal decision policy



Lagrangean with Penalty A

- Find a decision policy P; for each arm 1 such that

- Maximize: A + X, R, (P) =A%, T;(P) /T

 No constraints connecting arms
- Find optimal policy separately for each arm 1



Lagrangean for Arm i

Maximize: R;(P)—A T;(P)/ T

« Actions for arm 1:
- PLAY: Pay penalty = A/T & obtain reward
- STOP and exit

« Optimum computed by dynamic programming;:

- Time per arm = Size of state space = O(7?)
- Similar to Gittins index computation

- Finally, binary search over A



Step 3: Prophet-style Execution

- Execute single-arm policies sequentially
* Do not revisit arms

» Stop when some constraint is violated

- T steps elapse, or
* Run out of arms



Analysis for Martingale Bandits




Idea: TrU nCatiOn [Farias, Madan ‘11; Guha, Munagala ’13]

- Single arm policy defines a stopping time

- If policy is stopped after time a T
s E[Reward] = a R(P))

- Requires “martingale property” of state space

- Holds only for the projection onto one arm!
» Does not hold for optimal multi-arm policy



Proof of Truncation Theorem

R(P)= fPr[Ql. = p|x pxE[Stopping Time | Q, = p|dp
| Y ] L/ Y }

Probability Prior = p Reward given Prior = p

Truncation reduces this term by at most factor a




Analysis of Martingale MAB

» Recall: Collection of single arm policies s.t.
. 3. R(P,) = OPT
- 2 T(P)=T

- Execute arms in decreasing R(P,)/T(P,)

- Denote arms 1,2,3,... in this order

- If P; quits, move to next arm



Arm-by-arm Accounting

- Let T; = Time for which policy P; executes
- Random variable

- Time left for P;to execute =7 — »' 7,

j<i



Arm-by-arm Accounting

- Let T; = Time for which policy P; executes
- Random variable

- Time left for P;to execute =7 — »' 7,
j<i

- Expected contribution of P, conditioned onj < 1

=(1-%ETJ-

Jj<i

R(F)

Uses the Truncation Theorem!



Taking Expectations...

- Expected contribution to reward from P;

=E-(1—%ETJ)R(P:')- ~

j<i

— T, independent of P;

R(F)

2(1—%ET(Pj)

j<i




2-approximation
1 N
ALG = 1-— MT(P.)|R(P OPT
=3[1-7 37(e) [r(2)
Constraints:
0PT=ER(Pl.) & T=2T(13) R(P)
R(R) R(B)_R(P)_
T(R) T(R) T(R) 0 :
Implies: Stochastic knapsack analysis
Dean, Goemans, Vondrak ‘o4
ALG > OPT



Final Result

- 2-approximate irrevocable policy!

- Same idea works for several other problems

Concave rewards on arms
Delayed feedback about rewards
Metric switching costs between arms

- Dual balancing works for variants of bandits

Restless bandits
Budgeted learning



Open Questions

- How far can we push LP based techniques?
- Can we encode adaptive policies more generally?
- For instance, MAB with matroid constraints?
+ Some success for non-martingale bandits

- What if we don’t have full independence?
- Some success in auction design

- Techniques based on convex optimization
- Seems unrelated to prophets






