Prophet Inequalities and Stochastic Optimization

Kamesh Munagala
Duke University

Joint work with Sudipto Guha, UPenn

Bayesian Decision System

State Update

Approximating MDPs

- Computing decision policies typically requires exponential time and space
- Simpler decision policies?
- Approximately optimal in a provable sense
- Efficient to compute and execute
- This talk
- Focus on a very simple decision problem
- Known since the 1970's in statistics
- Arises as a primitive in a wide range of decision problems

An Optimal Stopping Problem

- There is a gambler and a prophet (adversary)
- There are n boxes
- Box j has reward drawn from distribution X_{j}
- Gambler knows X_{j} but box is closed
- All distributions are independent

An Optimal Stopping Problem

Order unknown to gambler

Curtain

- Gambler knows all the distributions
- Distributions are independent

An Optimal Stopping Problem

An Optimal Stopping Problem

Keep it:

- Game stops and gambler's payoff $=20$

Discard:

- Can't revisit this box
- Prophet shows next box

Stopping Rule for Gambler?

- Maximize expected payoff of gambler
- Call this value ALG
- Compare against OPT $=\mathbf{E}\left[\max _{j} X_{j}\right]$
- This is prophet's payoff assuming he knows the values inside all the boxes
- Can the gambler compete against OPT?

The Prophet Inequality

[Krengel, Sucheston, and Garling ‘77]
There exists a value w such that, if the gambler stops when he observes a value at least w, then:

$$
\mathbf{A L G} \geq 1 / 2 \mathbf{O P T}=1 / 2 \mathbf{E}\left[\max _{j} X_{j}\right]
$$

Gambler computes threshold w from the distributions

Talk Outline

- Three algorithms for the gambler
- Closed form for threshold
- Linear programming relaxation
- Dual balancing (if time permits)
- Connection to policies for stochastic scheduling
- "Weakly coupled" decision systems
- Multi-armed Bandits with martingale rewards

First Proof

[Samuel-Cahn '84]

Threshold Policies

Let $X^{*}=\max _{j} X_{j}$
Choose threshold w as follows:

- [Samuel-Cahn '84]
$\operatorname{Pr}\left[X^{*}>w\right]=1 / 2$
- [Kleinberg, Weinberg '12] $w=1 / 2 \mathbf{E}\left[X^{*}\right]$

In general, many different threshold rules work
Let (unknown) order of arrival be $\mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \ldots$

The Excess Random Variable

 Let $\left(X_{j}-b\right)^{+}=\max \left(X_{j}-b, 0\right)$

Accounting for Reward

- Suppose threshold $=w$
- If $X^{*} \geq w$ then some box is chosen
- Policy yields fixed payoff w

Accounting for Reward

- Suppose threshold $=w$
- If $X^{*} \geq w$ then some box is chosen
- Policy yields fixed payoff w
- If policy encounters box j
- It yields excess payoff $\left(X_{j}-w\right)^{+}$
- If this payoff is positive, the policy stops.
- If this payoff is zero, the policy continues.
- Add these two terms to compute actual payoff

In math terms...

A Simple Inequality

$$
\begin{aligned}
\operatorname{Pr}[j \text { encountered }] & =\operatorname{Pr}\left[\max _{i=1}^{j-1} X_{i}<w\right] \\
& \geq \operatorname{Pr}\left[\max _{i=1}^{n} X_{i}<w\right] \\
& =\operatorname{Pr}\left[X^{*}<w\right]
\end{aligned}
$$

Putting it all together...

Payoff $\geq w \times \operatorname{Pr}\left[X^{*} \geq w\right]$

$$
+\quad \sum_{j=1}^{n} \operatorname{Pr}\left[X^{*}<w\right] \times \mathbf{E}\left[\left(X_{j}-w\right)^{+}\right]
$$

Lower bound on $\operatorname{Pr}[j$ encountered]

Simplifying...

Payoff $\geq w \times \operatorname{Pr}\left[X^{*} \geq w\right]$

$$
+\sum_{j=1}^{n} \operatorname{Pr}\left[X^{*}<w\right] \times \mathbf{E}\left[\left(X_{j}-w\right)^{+}\right]
$$

Suppose we set $w=\sum_{j=1}^{n} \mathbf{E}\left[\left(X_{j}-w\right)^{+}\right]$

Then payoff $\geq w$

Why is this any good?

$$
w=\sum_{j=1}^{n} \mathbf{E}\left[\left(X_{j}-w\right)^{+}\right]
$$

$$
\begin{aligned}
2 w & =w+\mathbf{E}\left[\sum_{j=1}^{n}\left(X_{j}-w\right)^{+}\right] \\
& \geq w+\mathbf{E}\left[\left(\max _{j=1}^{n} X_{j}-w\right)^{+}\right] \\
& =\mathbf{E}\left[\max _{j=1}^{n} X_{j}\right]=\mathbf{E}\left[X^{*}\right]
\end{aligned}
$$

Summary

Choose threshold $\quad w=\sum_{j=1}^{n} \mathbf{E}\left[\left(X_{j}-w\right)^{+}\right]$
Yields payoff $\quad w \geq \mathbf{E}\left[X^{*}\right] / 2=O P T / 2$

Exercise: The factor of 2 is optimal even for 2 boxes!

Second Proof

Linear Programming
[Guha, Munagala '07]

Why Linear Programming?

- Previous proof appears "magical"
- Guess a policy and cleverly prove it works
- LPs give a "decision policy" view
- Recipe for deriving solution
- Naturally yields threshold policies
- Can be generalized to complex decision problems
- Some caveats later...

Linear Programming

Consider behavior of prophet

- Chooses max. payoff box
- Choice depends on all realized payoffs

$$
\begin{aligned}
z_{j v} & =\operatorname{Pr}\left[\text { Chooses box } j \wedge X_{j}=v\right] \\
& =\operatorname{Pr}\left[X_{j}=X^{*} \wedge X_{j}=v\right]
\end{aligned}
$$

Basic Idea

- LP captures prophet behavior
- Use $z_{j v}$ as the variables
- These variables are insufficient to capture prophet choosing the maximum box
- What we end up with will be a relaxation of max
- Steps:
- Understand structure of relaxation
- Convert solution to a feasible policy for gambler

Constraints

$$
\begin{aligned}
z_{j v} & =\operatorname{Pr}\left[X_{j}=X^{*} \wedge X_{j}=v\right] \\
\Rightarrow z_{j v} & \leq \operatorname{Pr}\left[X_{j}=v\right]=f_{j}(v)
\end{aligned}
$$

Constraints

$$
\begin{aligned}
z_{j v} & =\operatorname{Pr}\left[X_{j}=X^{*} \wedge X_{j}=v\right] \\
\Rightarrow z_{j v} & \leq \operatorname{Pr}\left[X_{j}=v\right]=f_{j}(v)
\end{aligned}
$$

Prophet chooses exactly one box:

$$
\sum_{j, v} z_{j v} \leq 1
$$

Constraints

$$
\begin{aligned}
z_{j v} & =\operatorname{Pr}\left[X_{j}=X^{*} \wedge X_{j}=v\right] \\
\Rightarrow z_{j v} & \leq \operatorname{Pr}\left[X_{j}=v\right]=f_{j}(v)
\end{aligned}
$$

Prophet chooses exactly one box:

$$
\sum_{j, v} z_{j v} \leq 1
$$

Payoff of prophet:

$$
\sum_{j, v} v \times z_{j v}
$$

LP Relaxation of Prophet's Problem

Maximize

$$
\sum_{j, v} v \cdot z_{j v}
$$

$$
\sum_{j, v} z_{j v} \leq 1
$$

$$
z_{j v} \in\left[0, f_{j}(v)\right] \quad \forall j, v
$$

Example

LP Relaxation

$$
\begin{array}{rll|}
\text { Maximize } & & 2 \times z_{a 2}+1 \times z_{b 1} \\
& & \\
z_{a 2}+z_{b 1} & \leq 1 & \\
z_{a 2} & \in[0,1 / 2] & \text { Relaxation } \\
z_{b 1} \in[0,1 / 2] & \text { Re } & \\
& & \\
\text { R }
\end{array}
$$

LP Optimum

$$
\begin{aligned}
\text { Maximize } & 2 \times z_{a 2}+1 \times z_{b 1} \\
& \\
z_{a 2}+z_{b 1} & \leq 1 \\
z_{a 2} & \in[0,1 / 2] \\
z_{b 1} & \in[0,1 / 2]
\end{aligned}
$$

$$
\begin{aligned}
& z_{a 2}=1 / 2 \\
& z_{b 1}=1 / 2
\end{aligned}
$$

LP optimal payoff

$$
=1.5
$$

Expected Value of Max?

$$
\begin{aligned}
\text { Maximize } & 2 \times z_{a 2}+1 \times z_{b 1} \\
& \\
z_{a 2}+z_{b 1} & \leq 1 \\
z_{a 2} & \in[0,1 / 2] \\
z_{b 1} & \in[0,1 / 2]
\end{aligned}
$$

$$
\begin{aligned}
& z_{a 2}=1 / 2 \\
& z_{b 1}=1 / 4
\end{aligned}
$$

$$
\begin{gathered}
\text { Prophet's payoff } \\
=1.25
\end{gathered}
$$

What do we do with LP solution?

- Will convert it into a feasible policy for gambler
- Bound the payoff of gambler in terms of LP optimum
- LP Optimum upper bounds prophet's payoff!

Interpreting LP Variables for Box j

- Policy for choosing box if encountered

If $\boldsymbol{X}_{\boldsymbol{b}}=1$ then
Choose b w.p. $z_{b ı} / 1 / 2=1 / 2$

Implies $\operatorname{Pr}\left[j\right.$ chosen and $\left.X_{j}=1\right]=z_{b 1}=1 / 4$

LP Variables yield Single-box Policy P_{j}

If $X_{j}=v$ then
Choose j with probability $z_{j v} / f_{j}(v)$

Simpler Notation

$$
\begin{aligned}
C\left(P_{j}\right)=\operatorname{Pr}[j \text { chosen }] & =\sum_{v} \operatorname{Pr}\left[X_{j}=v \wedge j \text { chosen }\right] \\
& =\sum_{v} z_{j v} \\
R\left(P_{j}\right)=\mathbf{E}[\text { Reward from } j] & =\sum_{v} v \times \operatorname{Pr}\left[X_{j}=v \wedge j \text { chosen }\right] \\
& =\sum_{v} v \times z_{j v}
\end{aligned}
$$

LP Relaxation

$$
\begin{array}{rl|l}
\text { Maximize } & \sum_{j, v} v \cdot z_{j v} & \text { Maximize Payoff }=\sum_{j} R\left(P_{j}\right) \\
\sum_{j, v} z_{j v} \leq 1 & \mathbf{E}[\text { Boxes Chosen }]=\sum_{j} C\left(P_{j}\right) \\
z_{j v} \in\left[0, f_{j}(v)\right] \quad \forall j, v & \text { Each policy } P_{j} \text { is valid }
\end{array}
$$

LP yields collection of Single Box Policies!

LP Optimum

$$
\begin{array}{ll}
R\left(P_{a}\right)=1 / 2 \times 2=1 & R\left(P_{b}\right)=1 / 2 \times 1=1 / 2 \\
C\left(P_{a}\right)=1 / 2 \times 1=1 / 2 & C\left(P_{b}\right)=1 / 2 \times 1=1 / 2
\end{array}
$$

Lagrangian

Maximize $\sum_{j} R\left(P_{j}\right)$
$\sum_{j} C\left(P_{j}\right) \leq 1 \longleftarrow$ Dual variable $=w$
P_{j} feasible $\forall j$

Max. $w+\sum_{j}\left(R\left(P_{j}\right)-w \times C\left(P_{j}\right)\right)$
P_{j} feasible $\forall j$

Interpretation of Lagrangian

$$
\begin{gathered}
\operatorname{Max.} w+\sum_{j}\left(R\left(P_{j}\right)-w \times C\left(P_{j}\right)\right) \\
P_{j} \text { feasible } \forall j
\end{gathered}
$$

- Net payoff from choosing $j=$ Value minus w
- Can choose many boxes
- Decouples into a separate optimization per box!

Optimal Solution to Lagrangian

$$
\text { If } X_{j} \geq w \text { then choose box } j!
$$

- Net payoff from choosing $j=$ Value minus w
- Can choose many boxes
- Decouples into a separate optimization per box!

Notation in terms of w...

$$
\begin{aligned}
& C\left(P_{j}\right)=C_{j}(w)=\operatorname{Pr}\left[X_{j} \geq w\right] \\
& R\left(P_{j}\right)=R_{j}(w)=\sum_{v \geq w} v \times \operatorname{Pr}\left[X_{j}=v\right]
\end{aligned}
$$

Expected payoff of policy
If $X_{j} \geq w$ then Payoff $=X_{j}$ else o

Strong Duality

$$
\operatorname{Lag}(w)=\sum_{j} R_{j}(w)+w \times\left(1-\sum_{j} C_{j}(w)\right)
$$

Choose Lagrange multiplier w such that

$$
\begin{aligned}
\sum_{j} C_{j}(w) & =1 \\
\Rightarrow \quad \sum_{j} R_{j}(w) & =\text { LP-OPT }
\end{aligned}
$$

Constructing a Feasible Policy

- Solve LP: Compute w such that

$$
\sum_{j} \operatorname{Pr}\left[X_{j} \geq w\right]=\sum_{j} C_{j}(w)=1
$$

- Excecute: If Box j encountered
- Skip it with probability $1 / 2$
- With probability $1 / 2$ do:
- Open the box and observe X_{j}
- If $X_{j} \geq w$ then choose j and STOP

Analysis

If Box j encountered
Expected reward $=1 / 2 \times R_{j}(w)$
Using union bound (or Markov's inequality)

$$
\begin{aligned}
\operatorname{Pr}[j \text { encountered }] & \geq 1-\sum_{i=1}^{j-1} \operatorname{Pr}\left[X_{i} \geq w \wedge i \text { opened }\right] \\
& \geq 1-\frac{1}{2} \sum_{i=1}^{n} \operatorname{Pr}\left[X_{i} \geq w\right] \\
& =1-\frac{1}{2} \sum_{i=1}^{n} C_{i}(w)=\frac{1}{2}
\end{aligned}
$$

Analysis: ¼ Approximation

If Box j encountered
Expected reward $=1 / 2 \times R_{j}(w)$
Box j encountered with probability at least $1 / 2$
Therefore:
Expected payoff $\geq \frac{1}{4} \sum_{j} R_{j}(w)$

$$
=\frac{1}{4} \mathrm{LP}-\mathrm{OPT} \geq \frac{O P T}{4}
$$

Third Proof

Dual Balancing

[Guha, Munagala ‘o9]

Lagrangian Lag(w)

Maximize $\sum_{j} R\left(P_{j}\right)$

$$
\begin{aligned}
& \sum_{j} C\left(P_{j}\right) \leq 1 \longleftarrow \text { Dual variable }=w \\
& P_{j} \text { feasible } \forall j
\end{aligned}
$$

Max. $w+\sum_{j}\left(R\left(P_{j}\right)-w \times C\left(P_{j}\right)\right)$
P_{j} feasible $\forall j$

Weak Duality

$$
\begin{aligned}
\operatorname{Lag}(w) & =w+\sum_{j} \Phi_{j}(w) \\
& =w+\sum_{j} \mathbf{E}\left[\left(X_{j}-w\right)^{+}\right]
\end{aligned}
$$

Weak Duality: For all $w, \operatorname{Lag}(w) \geq$ LP-OPT

Amortized Accounting for Single Box

$$
\begin{aligned}
\Phi_{j}(w) & =R_{j}(w)-w \times C_{j}(w) \\
\Rightarrow R_{j}(w) & =\Phi_{j}(w)+w \times C_{j}(w)
\end{aligned}
$$

Fixed payoff for opening box

$$
\overbrace{\text { if box is chosen }}^{\uparrow}
$$

Payoff w if box is chosen

Expected payoff of policy is preserved in new accounting

Example: w = 1

Fixed payoff $1 / 2$

$$
\Phi_{a}(w)+\frac{1}{2} \times w=\frac{1}{2}+\frac{1}{2}=1
$$

Balancing Algorithm

$$
\begin{aligned}
\operatorname{Lag}(w) & =w+\sum_{j} \Phi_{j}(w) \\
& =w+\sum_{j} \mathbf{E}\left[\left(X_{j}-w\right)^{+}\right]
\end{aligned}
$$

Weak Duality: For all $w, \operatorname{Lag}(w) \geq$ LP-OPT

$$
\begin{array}{rll}
\text { Suppose we set } & w & =\sum_{j} \Phi_{j}(w) \\
\text { Then } & w & \geq \mathrm{LP}-\mathrm{OPT} / 2 \\
\text { and } & \sum_{j} \Phi_{j}(w) & \geq \mathrm{LP}-\mathrm{OPT} / 2
\end{array}
$$

Algorithm

- Choose w to balance it with total "excess payoff"
- Choose first box with payoff at least w
- Same as Threshold algorithm of [Samuel-Cahn '84]
- Analysis:
- Account for payoff using amortized scheme

Analysis: Case 1

- Algorithm chooses some box
- In amortized accounting:
- Payoff when box is chosen $=w$
- Amortized payoff $=w \geq$ LP-OPT / 2

Analysis: Case 2

- All boxes opened
- In amortized accounting:
- Each box j yields fixed payoff $\Phi_{j}(w)$
- Since all boxes are opened:
- Total amortized payoff $=\Sigma_{j} \Phi_{j}(w) \geq$ LP-OPT / 2

Either Case 1 or Case 2 happens!
Implies Expected Payoff \geq LP-OPT / 2

Takeaways...

- LP-based proof is oblivious to closed forms
- Did not even use probabilities in dual-based proof!
- Automatically yields policies with right "form"
- Needs independence of random variables
- "Weak coupling"

General Framework

Weakly Coupled Decision Systems

Independent decision spaces

Few constraints coupling decisions across spaces

[Singh \& Cohn '97; Meuleau et al. '98]

Prophet Inequality Setting

- Each box defines its own decision space
- Payoffs of boxes are independent
- Coupling constraint:
- At most one box can be finally chosen

Multi-armed Bandits

- Each bandit arm defines its own decision space
- Arms are independent
- Coupling constraint:
- Can play at most one arm per step
- Weaker coupling constraint:
- Can play at most T arms in horizon of T steps
- Threshold policy \approx Index policy

Bayesian Auctions

- Decision space of each agent
- What value to bid for items
- Agent's valuations are independent of other agents
- Coupling constraints
- Auctioneer matches items to agents
- Constraints per bidder:
- Incentive compatibility
- Budget constraints
- Threshold policy = Posted prices for items

Prophet-style Ideas

- Stochastic Scheduling and Multi-armed Bandits
- Kleinberg, Rabani, Tardos '97
- Dean, Goemans, Vondrak '04
- Guha, Munagala '07, '09, '10, '13
- Goel, Khanna, Null 'o9
- Farias, Madan '11
- Bayesian Auctions
- Bhattacharya, Conitzer, Munagala, Xia '10
- Bhattacharya, Goel, Gollapudi, Munagala '10
- Chawla, Hartline, Malec, Sivan '10
- Chakraborty, Even-Dar, Guha, Mansour, Muthukrishnan '10
- Alaei '11
- Stochastic matchings
- Chen, Immorlica, Karlin, Mahdian, Rudra '09
- Bansal, Gupta, Li, Mestre, Nagarajan, Rudra '10

Generalized Prophet Inequalities

- k-choice prophets
- Hajiaghayi, Kleinberg, Sandholm 'o7
- Prophets with matroid constraints
- Kleinberg, Weinberg '12
- Adaptive choice of thresholds
- Extension to polymatroids in Duetting, Kleinberg '14
- Prophets with samples from distributions
- Duetting, Kleinberg, Weinberg '14

Martingale Bandits

[Guha, Munagala '07, '13]
[Farias, Madan '11]

(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
- Model "effectiveness" as probability $p_{i} \in[0,1]$
- All p_{i} are independent and unknown a priori

(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
- Model "effectiveness" as probability $p_{i} \in[0,1]$
- All p_{i} are independent and unknown a priori
- At any step:
- Play an arm i and observe its reward

(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
- Model "effectiveness" as probability $p_{i} \in[0,1]$
- All p_{i} are independent and unknown a priori
- At any step:
- Play an arm i and observe its reward (o or 1)
- Repeat for at most T steps

(Finite Horizon) Multi-armed Bandits

- n arms of unknown effectiveness
- Model "effectiveness" as probability $p_{i} \in[0,1]$
- All p_{i} are independent and unknown a priori
- At any step:
- Play an arm i and observe its reward (o or 1)
- Repeat for at most T steps
- Maximize expected total reward

What does it model?

- Exploration-exploitation trade-off
- Value to playing arm with high expected reward
- Value to refining knowledge of p_{i}
- These two trade off with each other
- Very classical model; dates back many decades

Reward Distribution for arm i

- $\operatorname{Pr}[$ Reward $=1]=p_{i}$
- Assume p_{i} drawn from a "prior distribution" Q_{i}
- Prior refined using Bayes' rule into posterior

Conjugate Prior: Beta Density

- $Q_{i}=\operatorname{Beta}(a, b)$
- $\operatorname{Pr}\left[p_{i}=x\right] \propto x^{a-1}(1-x)^{b-1}$

Conjugate Prior: Beta Density

- $Q_{i}=\operatorname{Beta}(a, b)$
- $\operatorname{Pr}\left[p_{i}=x\right] \propto x^{a-1}(1-x)^{b-1}$
- Intuition:
- Suppose have previously observed (a-l) 1's and (b-l) o's
- $\operatorname{Beta}(a, b)$ is posterior distribution given observations
- Updated according to Bayes' rule starting with:
- Beta(1,1) = Uniform[0,1]
- Expected Reward $=\mathbf{E}\left[p_{i}\right]=a /(a+b)$

Prior Update for Arm i

Convenient Abstraction

- Posterior distribution of arm captured by:
- Observed rewards from arm so far
- Called the "state" of the arm

Convenient Abstraction

- Posterior distribution of arm captured by:
- Observed rewards from arm so far
- Called the "state" of the arm
- Expected reward evolves as a martingale
- State space of single arm typically small:
- $O\left(T^{2}\right)$ if rewards are $0 / 1$

Decision Policy for Playing Arms

- Specifies which arm to play next
- Function of current states of all the arms
- Can have exponential size description

Example: $T=3$

$$
Q_{1}=\operatorname{Beta}(1,1) \quad Q_{2}=\operatorname{Beta}(5,2) \quad Q_{3}=\operatorname{Beta}(21,11)
$$

Goal

- Find decision policy with maximum value:
- Value $=\mathbf{E}[$ Sum of rewards every step]
- Find the policy maximizing expected reward when p_{i} drawn from prior distribution Q_{i}
- OPT = Expected value of optimal decision policy

Solution Recipe using Prophets

Step 1: Projection

- Consider any decision policy \mathbf{P}
- Consider its behavior restricted to arm i
- What state space does this define?
- What are the actions of this policy?

Example: Project onto Arm 2

$$
Q_{1} \sim \operatorname{Beta}(1,1) \quad Q_{2} \sim \operatorname{Beta}(5,2) \quad Q_{3} \sim \operatorname{Beta}(21,11)
$$

Behavior Restricted to Arm 2

$$
Q_{2} \sim \operatorname{Beta}(5,2)
$$

$$
\text { w.p. 1/2 Play Arm } 2 \xrightarrow[\mathrm{~N}_{2} / 7]{\text { Y } 5 / 7} Q_{2} \sim B(6,2) \text { Play Arm } 2
$$

With remaining probability, do nothing

Plays are contiguous and ignore global clock!

Projection onto Arm i

- Yields a randomized policy for arm i
- At each state of the arm, policy probabilistically:
- PLAYS the arm
- STOPS and quits playing the arm

Notation

- $T_{i}=\mathbf{E}[$ Number of plays made for arm $i]$
- $R_{i}=\mathbf{E}[$ Reward from events when i chosen $]$

Step 2: Weak Coupling

- In any decision policy:
- Number of plays is at most T
- True on all decision paths

Step 2: Weak Coupling

- In any decision policy:
- Number of plays is at most T
- True on all decision paths
- Taking expectations over decision paths
- $\Sigma_{i} T_{i} \leq T$
- Reward of decision policy $=\Sigma_{i} R_{i}$

Relaxed Decision Problem

- Find a decision policy P_{i} for each arm i such that
- $\Sigma_{i} T_{i}\left(P_{i}\right) / T \leq 1$
- Maximize: $\Sigma_{i} R_{i}\left(P_{i}\right)$
- Let optimal value be $O P T$
- OPT \geq Value of optimal decision policy

Lagrangean with Penalty λ

- Find a decision policy P_{i} for each arm i such that
- Maximize: $\lambda+\Sigma_{i} R_{i}\left(P_{i}\right)-\lambda \Sigma_{i} T_{i}\left(P_{i}\right) / T$
- No constraints connecting arms
- Find optimal policy separately for each arm i

Lagrangean for Arm \mathbf{i}

Maximize: $R_{i}\left(P_{i}\right)-\lambda T_{i}\left(P_{i}\right) / T$

- Actions for arm i :
- PLAY: Pay penalty $=\lambda / T$ \& obtain reward
- STOP and exit
- Optimum computed by dynamic programming:
- Time per arm = Size of state space $=O\left(T^{2}\right)$
- Similar to Gittins index computation
- Finally, binary search over λ

Step 3: Prophet-style Execution

- Execute single-arm policies sequentially
- Do not revisit arms
- Stop when some constraint is violated
- T steps elapse, or
- Run out of arms

Analysis for Martingale Bandits

Idea: Truncation

 [Farias, Madan '11; Guha, Munagala '13]- Single arm policy defines a stopping time
- If policy is stopped after time αT
- $\mathbf{E}[$ Reward $] \geq \alpha R\left(P_{i}\right)$
- Requires "martingale property" of state space
- Holds only for the projection onto one arm!
- Does not hold for optimal multi-arm policy

Proof of Truncation Theorem

Analysis of Martingale MAB

- Recall: Collection of single arm policies s.t.
- $\Sigma_{i} R\left(P_{i}\right) \geq O P T$
- $\Sigma_{i} T\left(P_{i}\right)=T$
- Execute arms in decreasing $R\left(P_{i}\right) / T\left(P_{i}\right)$
- Denote arms $1,2,3, \ldots$ in this order
- If P_{i} quits, move to next arm

Arm-by-arm Accounting

- Let $T_{j}=$ Time for which policy P_{j} executes
- Random variable
- Time left for P_{i} to execute $=T-\sum_{j<i} T_{j}$

Arm-by-arm Accounting

- Let $T_{j}=$ Time for which policy P_{j} executes
- Random variable
- Time left for P_{i} to execute $=T-\sum_{j<i} T_{j}$
- Expected contribution of P_{i} conditioned on $j<i$

$$
=\left(1-\frac{1}{T} \sum_{j<i} T_{j}\right) R\left(P_{i}\right)
$$

Uses the Truncation Theorem!

Taking Expectations...

- Expected contribution to reward from P_{i}

$$
\begin{aligned}
& =E\left[\left(1-\frac{1}{T} \sum_{j<i} T_{j}\right) R\left(P_{i}\right)\right] \\
& \left.\geq\left(1-\frac{1}{T} \sum_{j<i} T\left(P_{j}\right)\right) R\left(P_{i}\right)\right] \quad T_{j} \text { independent of } P_{i}
\end{aligned}
$$

2-approximation

$$
A L G \geq \sum_{i}\left(1-\frac{1}{T} \sum_{j i i} T\left(P_{j}\right)\right) R\left(P_{i}\right)
$$

Constraints:

$$
\begin{aligned}
& O P T=\sum_{i} R\left(P_{i}\right) \& \quad T=\sum_{i} T\left(P_{i}\right) \\
& \frac{R\left(P_{1}\right)}{T\left(P_{1}\right)} \geq \frac{R\left(P_{2}\right)}{T\left(P_{2}\right)} \geq \frac{R\left(P_{3}\right)}{T\left(P_{3}\right)} \geq \ldots
\end{aligned}
$$

Implies:

$$
A L G \geq \frac{O P T}{2}
$$

Stochastic knapsack analysis Dean, Goemans, Vondrak '04

Final Result

- 2-approximate irrevocable policy!
- Same idea works for several other problems
- Concave rewards on arms
- Delayed feedback about rewards
- Metric switching costs between arms
- Dual balancing works for variants of bandits
- Restless bandits
- Budgeted learning

Open Questions

- How far can we push LP based techniques?
- Can we encode adaptive policies more generally?
- For instance, MAB with matroid constraints?
- Some success for non-martingale bandits
- What if we don't have full independence?
- Some success in auction design
- Techniques based on convex optimization
- Seems unrelated to prophets

Thanks!

