# Prophet Inequalities and Stochastic Optimization

Kamesh Munagala Duke University

Joint work with Sudipto Guha, UPenn

# **Bayesian Decision System**



# Approximating MDPs

- Computing decision policies typically requires exponential time and space
- Simpler decision policies?
  - Approximately optimal in a provable sense
  - Efficient to compute and execute
- This talk
  - Focus on a very simple decision problem
  - Known since the 1970's in statistics
  - Arises as a primitive in a wide range of decision problems

- There is a gambler and a prophet (adversary)
- There are *n* boxes
  - Box *j* has reward drawn from distribution  $X_j$
  - Gambler knows *X<sub>i</sub>* but box is closed
  - All distributions are independent









#### Keep it:

- Game stops and gambler's payoff = 20 Discard:
- Can't revisit this box
- Prophet shows next box



# Stopping Rule for Gambler?

- Maximize expected payoff of gambler
  - Call this value ALG
- Compare against OPT =  $\mathbf{E}[\max_{j} X_{j}]$ 
  - This is prophet's payoff assuming he knows the values inside all the boxes
- Can the gambler compete against OPT?

# The Prophet Inequality

[Krengel, Sucheston, and Garling '77]

There exists a value *w* such that, if the gambler stops when he observes a value at least *w*, then:

 $\mathbf{ALG} \ge \mathbf{1/2} \ \mathbf{OPT} = \mathbf{1/2} \ \mathbf{E}[\max_j X_j]$ 

Gambler computes threshold w from the distributions

# Talk Outline

- Three algorithms for the gambler
  - Closed form for threshold
  - Linear programming relaxation
  - Dual balancing (if time permits)
- Connection to policies for stochastic scheduling
  - "Weakly coupled" decision systems
  - Multi-armed Bandits with martingale rewards

# First Proof

[Samuel-Cahn '84]

# **Threshold Policies**

Let  $X^* = \max_j X_j$ 

### Choose threshold w as follows:

- [Samuel-Cahn '84]  $\Pr[X^* > w] = \frac{1}{2}$
- [Kleinberg, Weinberg '12]  $w = \frac{1}{2} \mathbf{E}[X^*]$

In general, many different threshold rules work

Let (unknown) order of arrival be  $X_1 X_2 X_3 ...$ 

### The Excess Random Variable

Let 
$$(X_j - b)^+ = \max(X_j - b, 0)$$



# Accounting for Reward

- Suppose threshold = w
- If  $X^* \ge w$  then some box is chosen
  - Policy yields fixed payoff w

# Accounting for Reward

- Suppose threshold = w
- If  $X^* \ge w$  then some box is chosen
  - Policy yields fixed payoff w
- If policy encounters box j
  - It yields excess payoff  $(X_j w)^+$
  - If this payoff is positive, the policy stops.
  - If this payoff is zero, the policy continues.
- Add these two terms to compute actual payoff

### In math terms...

Payoff =  $w \times \Pr[X^* \ge w]$ 

+  $\sum_{j=1}^{n} \Pr[j \text{ encountered}] \times \mathbf{E}[(X_j - w)^+]$ 

Event of reaching *j* is independent of the value observed in box *j* 

Excess payoff conditioned on reaching *j* 

# A Simple Inequality

$$\Pr[j \text{ encountered}] = \Pr\left[\max_{i=1}^{j-1} X_i < w\right]$$

$$\geq \Pr\left[\max_{i=1}^{n} X_i < w\right]$$

$$= \Pr[X^* < w]$$

# Putting it all together... Payoff $\geq w \times \Pr[X^* \geq w]$ $+ \sum_{j=1}^{n} \Pr[X^* < w] \times \mathbf{E}[(X_j - w)^+]$

Lower bound on Pr[*j* encountered]

# Simplifying... Payoff $\geq w \times \Pr[X^* \geq w]$

+ 
$$\sum_{j=1}^{n} \Pr[X^* < w] \times \mathbf{E}\left[(X_j - w)^+\right]$$

Suppose we set  $w = \sum_{j=1}^{n} \mathbf{E} [(X_j - w)^+]$ Then payoff  $\ge w$ 

## Why is this any good?

$$w = \sum_{j=1}^{n} \mathbf{E} \left[ (X_j - w)^+ \right]$$

$$2w = w + \mathbf{E}\left[\sum_{j=1}^{n} (X_j - w)^+\right]$$

$$\geq w + \mathbf{E}\left[(\max_{j=1}^{n} X_j - w)^+\right]$$

$$= \mathbf{E}\left[\max_{j=1}^{n} X_{j}\right] = \mathbf{E}[X^{*}]$$

## Summary

[Samuel-Cahn '84]

Choose threshold 
$$w = \sum_{j=1}^{n} \mathbf{E} \left[ (X_j - w)^+ \right]$$

Yields payoff 
$$w \geq \mathbf{E}[X^*]/2 = OPT/2$$

**Exercise:** The factor of 2 is optimal even for 2 boxes!

# Second Proof

Linear Programming

[Guha, Munagala '07]

# Why Linear Programming?

- Previous proof appears "magical"
  - Guess a policy and cleverly prove it works
- LPs give a "decision policy" view
  - Recipe for deriving solution
  - Naturally yields threshold policies
  - Can be generalized to complex decision problems
- Some caveats later...

# Linear Programming

### Consider behavior of prophet

- Chooses max. payoff box
- Choice depends on all realized payoffs

$$z_{jv} = \Pr[\text{Chooses box } j \land X_j = v]$$

$$= \Pr[X_j = X^* \land X_j = v]$$

# Basic Idea

- LP captures prophet behavior
  - Use  $z_{jv}$  as the variables
- These variables are insufficient to capture prophet choosing the maximum box
  - What we end up with will be a *relaxation* of max
- Steps:
  - Understand structure of relaxation
  - Convert solution to a feasible policy for gambler

### Constraints

### Constraints

$$z_{jv} = \Pr[X_j = X^* \land X_j = v]$$
  
 $\Rightarrow z_{jv} \leq \Pr[X_j = v] = f_j(v)$ 

Prophet chooses exactly one box:

$$\sum_{j,v} z_{jv} \leq 1$$

### Constraints

$$z_{jv} = \Pr[X_j = X^* \land X_j = v]$$
  
 $\Rightarrow z_{jv} \leq \Pr[X_j = v] = f_j(v)$ 

Prophet chooses exactly one box:

$$\sum_{j,v} z_{jv} \leq 1$$

Payoff of prophet:

$$\sum_{j,v} v \times z_{jv}$$

### LP Relaxation of Prophet's Problem

Maximize 
$$\sum_{j,v} v \cdot z_{jv}$$
  
 $\sum_{j,v} z_{jv} \leq 1$   
 $z_{jv} \in [0, f_j(v)] \quad \forall j, v$ 

# Example













# What do we do with LP solution?

- Will convert it into a feasible policy for gambler
- Bound the payoff of gambler in terms of LP optimum
  - LP Optimum upper bounds prophet's payoff!

# Interpreting LP Variables for Box j

Policy for choosing box if encountered



If  $X_b = 1$  then

Choose *b* w.p. 
$$z_{b1} / \frac{1}{2} = \frac{1}{2}$$

Implies  $\Pr[j \text{ chosen and } X_j = 1] = Z_{b1} = \frac{1}{4}$ 

### LP Variables yield Single-box Policy P<sub>i</sub>

 $X_j$  v with probability  $f_j(v)$   $Z_{jv}$ 

If  $X_j = v$  then Choose *j* with probability  $z_{jv} / f_j(v)$
## **Simpler Notation**

 $C(P_j) = \Pr[j \text{ chosen}] = \sum_v \Pr[X_j = v \land j \text{ chosen}]$  $= \sum_v z_{jv}$  $R(P_j) = \mathbf{E}[\text{Reward from } j] = \sum_v v \times \Pr[X_j = v \land j \text{ chosen}]$  $= \sum_v v \times z_{jv}$ 

#### LP Relaxation

Maximize  $\sum_{j,v} v \cdot z_{jv}$   $\sum_{j,v} z_{jv} \leq 1$  $z_{jv} \in [0, f_j(v)] \quad \forall j, v$ 

Maximize Payoff =  $\sum_{j} R(P_j)$  **E** [Boxes Chosen] =  $\sum_{j} C(P_j) \le 1$ Each policy  $P_j$  is valid

#### LP yields collection of Single Box Policies!



# Lagrangian

Maximize  $\sum_{j} R(P_j)$ 

 $\sum_{j} C(P_j) \leq 1$  Dual variable = w

 $P_j$  feasible  $\forall j$ 

Max. 
$$w + \sum_{j} (R(P_j) - w \times C(P_j))$$
  
 $P_j$  feasible  $\forall j$ 

#### Interpretation of Lagrangian

Max. 
$$w + \sum_{j} (R(P_j) - w \times C(P_j))$$
  
 $P_j$  feasible  $\forall j$ 

- Net payoff from choosing j = Value minus w
- Can choose many boxes
- Decouples into a separate optimization per box!

# **Optimal Solution to Lagrangian**

If  $X_j \ge w$  then choose box j !

- Net payoff from choosing *j* = Value minus *w*
- Can choose many boxes
- Decouples into a separate optimization per box!

#### Notation in terms of w...

$$C(P_j) = C_j(w) = \Pr[X_j \ge w]$$

$$R(P_j) = R_j(w) = \sum_{v \ge w} v \times \Pr[X_j = v]$$

$$\downarrow$$
Expected payoff of policy

Expected payoff of policy

If 
$$X_j \ge w$$
 then Payoff =  $X_j$  else o

#### Strong Duality

$$\operatorname{Lag}(w) = \sum_{j} R_{j}(w) + w \times \left(1 - \sum_{j} C_{j}(w)\right)$$

Choose Lagrange multiplier w such that

$$\sum_{j} C_{j}(w) = 1$$

$$\Rightarrow \sum_{j} R_{j}(w) = \text{LP-OPT}$$

# Constructing a Feasible Policy

• **Solve LP:** Compute *w* such that

$$\sum_{j} \Pr[X_j \ge w] = \sum_{j} C_j(w) = 1$$

- *Execute:* If Box *j* encountered
  - Skip it with probability 1/2
  - With probability 1/2 do:
    - Open the box and observe  $X_i$
    - If  $X_j \ge w$  then choose *j* and STOP

#### Analysis

#### If Box *j* encountered Expected reward = $\frac{1}{2} \times R_j(w)$

Using union bound (or Markov's inequality)

$$\Pr[j \text{ encountered }] \geq 1 - \sum_{i=1}^{j-1} \Pr[X_i \geq w \land i \text{ opened }]$$
$$\geq 1 - \frac{1}{2} \sum_{i=1}^{n} \Pr[X_i \geq w]$$
$$= 1 - \frac{1}{2} \sum_{i=1}^{n} C_i(w) = \frac{1}{2}$$

#### Analysis: 1/4 Approximation

If Box *j* encountered Expected reward =  $\frac{1}{2} \times R_j(w)$ 

Box j encountered with probability at least  $\frac{1}{2}$ 

Therefore:

Expected payoff 
$$\geq \frac{1}{4} \sum_{j} R_{j}(w)$$
  
=  $\frac{1}{4} \text{LP-OPT} \geq \frac{OPT}{4}$ 

# Third Proof

**Dual Balancing** 

[Guha, Munagala '09]

# Lagrangian Lag(w)

Maximize  $\sum_{j} R(P_j)$ 

$$\sum_{j} C(P_j) \leq 1$$
 Dual variable = w

 $P_j$  feasible  $\forall j$ 

Max. 
$$w + \sum_{j} (R(P_j) - w \times C(P_j))$$
  
 $P_j$  feasible  $\forall j$ 

# Weak Duality

Lag(w) = 
$$w + \sum_{j} \Phi_{j}(w)$$
  
=  $w + \sum_{j} \mathbf{E} [(X_{j} - w)^{+}]$ 

Weak Duality: For all w, Lag $(w) \ge$  LP-OPT

#### Amortized Accounting for Single Box

$$\Phi_j(w) = R_j(w) - w \times C_j(w)$$

$$\Rightarrow R_{j}(w) = \Phi_{j}(w) + w \times C_{j}(w)$$
  
Fixed payoff for opening box

Payoff *w* if box is chosen

**Expected payoff of policy is preserved in new accounting** 

#### Example: w = 1



$$\Phi_a(w) + \frac{1}{2} \times w = \frac{1}{2} + \frac{1}{2} = 1$$

#### **Balancing Algorithm**

$$Lag(w) = w + \sum_{j} \Phi_{j}(w)$$
$$= w + \sum_{j} \mathbf{E} \left[ (X_{j} - w)^{+} \right]$$

**Weak Duality:** For all w, Lag(w)  $\ge$  LP-OPT

Suppose we set 
$$w = \sum_{j} \Phi_{j}(w)$$
  
Then  $w_{j} \geq \frac{\text{LP-OPT}/2}{\text{LP-OPT}/2}$   
and  $\sum_{j} \Phi_{j}(w) \geq \frac{\text{LP-OPT}/2}{\text{LP-OPT}/2}$ 

# Algorithm

[Guha, Munagala '09]

- Choose *w* to balance it with total "excess payoff"
- Choose first box with payoff at least *w*Same as Threshold algorithm of [Samuel-Cahn '84]
- Analysis:
  - Account for payoff using amortized scheme

#### Analysis: Case 1

- Algorithm chooses some box
- In amortized accounting:
  Payoff when box is chosen = w
- Amortized payoff =  $w \ge LP-OPT / 2$

# Analysis: Case 2

- All boxes opened
- In amortized accounting:
  Each box *j* yields fixed payoff Φ<sub>i</sub>(w)
- Since all boxes are opened:
  - Total amortized payoff =  $\Sigma_j \Phi_j(w) \ge LP-OPT / 2$

Either Case 1 or Case 2 happens!

Implies Expected Payoff ≥ LP-OPT / 2

#### Takeaways...

- LP-based proof is oblivious to closed forms
  - Did not even use probabilities in dual-based proof!
- Automatically yields policies with right "form"
- Needs independence of random variables
  - "Weak coupling"

# General Framework

# Weakly Coupled Decision Systems

Independent decision spaces

Few constraints coupling decisions across spaces

[Singh & Cohn '97; Meuleau et al. '98]

# Prophet Inequality Setting

- Each box defines its own decision space
  - Payoffs of boxes are independent
- Coupling constraint:
  - At most one box can be finally chosen

# **Multi-armed Bandits**

- Each bandit arm defines its own decision space
  - Arms are independent
- Coupling constraint:
  - Can play at most one arm per step
- Weaker coupling constraint:
  - Can play at most T arms in horizon of T steps
- Threshold policy ≈ Index policy

# **Bayesian Auctions**

- Decision space of each agent
  - What value to bid for items
  - Agent's valuations are independent of other agents
- Coupling constraints
  - Auctioneer matches items to agents
- Constraints per bidder:
  - Incentive compatibility
  - Budget constraints
- Threshold policy = Posted prices for items

## Prophet-style Ideas

- Stochastic Scheduling and Multi-armed Bandits
  - Kleinberg, Rabani, Tardos '97
  - · Dean, Goemans, Vondrak '04
  - Guha, Munagala '07, '09, '10, '13
  - · Goel, Khanna, Null '09
  - Farias, Madan '11
- Bayesian Auctions
  - Bhattacharya, Conitzer, Munagala, Xia '10
  - Bhattacharya, Goel, Gollapudi, Munagala '10
  - · Chawla, Hartline, Malec, Sivan '10
  - · Chakraborty, Even-Dar, Guha, Mansour, Muthukrishnan'10
  - Alaei '11
- Stochastic matchings
  - · Chen, Immorlica, Karlin, Mahdian, Rudra '09
  - Bansal, Gupta, Li, Mestre, Nagarajan, Rudra '10

# **Generalized Prophet Inequalities**

- *k*-choice prophets
  - Hajiaghayi, Kleinberg, Sandholm '07
- Prophets with matroid constraints
  - Kleinberg, Weinberg '12
  - Adaptive choice of thresholds
  - Extension to polymatroids in **Duetting**, **Kleinberg** '14
- Prophets with samples from distributions
  - Duetting, Kleinberg, Weinberg '14

# Martingale Bandits

[Guha, Munagala '07, '13] [Farias, Madan '11]

- *n* arms of unknown effectiveness
  - Model "effectiveness" as probability  $p_i \in [0,1]$
  - All  $p_i$  are independent and unknown *a priori*

- *n* arms of unknown effectiveness
  - Model "effectiveness" as probability  $p_i \in [0,1]$
  - All  $p_i$  are independent and unknown *a priori*
- At any step:
  - Play an arm *i* and observe its reward

- *n* arms of unknown effectiveness
  - Model "effectiveness" as probability  $p_i \in [0,1]$
  - All  $p_i$  are independent and unknown *a priori*
- At any step:
  - Play an arm *i* and observe its reward (0 or 1)
  - Repeat for at most *T* steps

- *n* arms of unknown effectiveness
  - Model "effectiveness" as probability  $p_i \in [0,1]$
  - All  $p_i$  are independent and unknown *a priori*
- At any step:
  - Play an arm *i* and observe its reward (0 or 1)
  - Repeat for at most *T* steps
- Maximize expected total reward

# What does it model?

- Exploration-exploitation trade-off
  - Value to playing arm with high expected reward
  - Value to refining knowledge of  $p_i$
  - These two trade off with each other
- Very classical model; dates back many decades [Thompson '33, Wald '47, Arrow et al. '49, Robbins '50, ..., Gittins & Jones '72, ...]

#### Reward Distribution for arm *i*

- $Pr[Reward = 1] = p_i$
- Assume p<sub>i</sub> drawn from a "prior distribution" Q<sub>i</sub>
  Prior refined using Bayes' rule into posterior

# **Conjugate Prior: Beta Density**

- $Q_i = Beta(a, b)$
- $\Pr[p_i = x] \propto x^{a-1} (1-x)^{b-1}$
# Conjugate Prior: Beta Density

- $Q_i = Beta(a,b)$
- $\Pr[p_i = x] \propto x^{a-1} (1-x)^{b-1}$
- Intuition:
  - Suppose have previously observed (a-1) 1's and (b-1) 0's
  - *Beta(a,b)* is posterior distribution given observations
  - Updated according to Bayes' rule starting with:
    - Beta(1,1) = Uniform[0,1]
- Expected Reward =  $\mathbf{E}[p_i] = a/(a+b)$

#### Prior Update for Arm *i*



#### **Convenient Abstraction**

- Posterior distribution of arm captured by:
  - Observed rewards from arm so far
  - Called the "state" of the arm

#### **Convenient Abstraction**

- Posterior distribution of arm captured by:
  - Observed rewards from arm so far
  - Called the "state" of the arm
  - Expected reward evolves as a *martingale*
- State space of single arm typically small:
  - $O(T^2)$  if rewards are 0/1

#### **Decision Policy for Playing Arms**

- Specifies which arm to play next
- Function of current states of all the arms
- Can have exponential size description

#### Example: T = 3

$$Q_1 = Beta(1,1)$$
  $Q_2 = Beta(5,2)$   $Q_3 = Beta(21,11)$ 



#### Goal

- Find decision policy with maximum value:
  - Value = **E [** Sum of rewards every step**]**

- Find the policy maximizing expected reward when  $p_i$  drawn from prior distribution  $Q_i$ 
  - OPT = Expected value of optimal *decision policy*

# Solution Recipe using Prophets

#### **Step 1:** Projection

- Consider any decision policy  ${\bf P}$
- Consider its behavior restricted to arm *i*
- What state space does this define?
- What are the actions of this policy?

#### **Example:** Project onto Arm 2

$$Q_1 \sim Beta(1,1)$$
  $Q_2 \sim Beta(5,2)$   $Q_3 \sim Beta(21,11)$ 



#### Behavior Restricted to Arm 2

 $Q_2 \sim Beta(5,2)$ 



With remaining probability, do nothing

Plays are contiguous and ignore global clock!

## Projection onto Arm *i*

- Yields a randomized policy for arm *i*
- At each state of the arm, policy probabilistically:
  - PLAYS the arm
  - STOPS and quits playing the arm

#### Notation

- $T_i = \mathbf{E}[$ Number of plays made for arm i]
- $R_i = \mathbf{E}[\text{Reward from events when } i \text{ chosen}]$

## Step 2: Weak Coupling

- In any decision policy:
  - Number of plays is at most T
  - True on all decision paths

# Step 2: Weak Coupling

- In any decision policy:
  - Number of plays is at most T
  - True on all decision paths
- Taking expectations over decision paths
  - $\Sigma_i T_i \leq T$
  - Reward of decision policy =  $\Sigma_i R_i$

#### **Relaxed Decision Problem**

- Find a decision policy  $P_i$  for each arm *i* such that
  - $\Sigma_i T_i (P_i) / T \le 1$
  - Maximize:  $\Sigma_i R_i (P_i)$
- Let optimal value be *OPT* 
  - *OPT*  $\geq$  Value of optimal decision policy

#### Lagrangean with Penalty $\lambda$

- Find a decision policy  $P_i$  for each arm *i* such that
  - Maximize:  $\lambda + \Sigma_i R_i (P_i) \lambda \Sigma_i T_i (P_i) / T$
- No constraints connecting arms
  - Find optimal policy separately for each arm *i*

#### Lagrangean for Arm *i*

Maximize:  $R_i(P_i) - \lambda T_i(P_i) / T$ 

#### • Actions for arm *i*:

- PLAY: Pay penalty =  $\lambda/T$  & obtain reward
- STOP and exit
- Optimum computed by dynamic programming:
  - Time per arm = Size of state space =  $O(T^2)$
  - Similar to Gittins index computation
- Finally, binary search over  $\lambda$

# Step 3: Prophet-style Execution

- Execute single-arm policies sequentially
  - Do not revisit arms
- Stop when some constraint is violated
  - *T* steps elapse, or
  - Run out of arms

#### Analysis for Martingale Bandits

#### Idea: Truncation [Farias, Madan '11; Guha, Munagala '13]

- Single arm policy defines a stopping time
- If policy is stopped after time *α T* □ E[Reward] ≥ *α R*(*P<sub>i</sub>*)
- Requires "martingale property" of state space
- Holds only for the projection onto one arm!
  - Does not hold for optimal multi-arm policy

#### **Proof of Truncation Theorem**



#### Analysis of Martingale MAB

- **Recall:** Collection of single arm policies s.t.
  - $\Sigma_i R(P_i) \ge OPT$
  - $\Sigma_i T(P_i) = T$
- Execute arms in decreasing  $R(P_i)/T(P_i)$ 
  - Denote arms 1,2,3,... in this order
- If  $P_i$  quits, move to next arm

#### Arm-by-arm Accounting

- Let  $T_j$  = Time for which policy  $P_j$  executes
  - Random variable
- Time left for  $P_i$  to execute =  $T \sum_{i \le i} T_j$

#### Arm-by-arm Accounting

- Let  $T_j$  = Time for which policy  $P_j$  executes
  - Random variable
- Time left for  $P_i$  to execute =  $T \sum T_j$
- Expected contribution of  $P_i$  conditioned on j < i

$$= \left(1 - \frac{1}{T} \sum_{j < i} T_j\right) R(P_i)$$

**Uses the Truncation Theorem!** 

#### Taking Expectations...

• Expected contribution to reward from  $P_i$ 

$$= E\left[\left(1 - \frac{1}{T}\sum_{j < i} T_{j}\right)R(P_{i})\right]$$

$$= \left(1 - \frac{1}{T}\sum_{j < i} T(P_{j})\right)R(P_{i})$$

$$T_{j} \text{ independent of } P_{i}$$

# 2-approximation $ALG \ge \sum_{i} \left( 1 - \frac{1}{T} \sum_{j < i} T(P_j) \right) R(P_i)$

Constraints:

$$OPT = \sum_{i} R(P_i) \& T = \sum_{i} T(P_i)$$
$$\frac{R(P_1)}{T(P_1)} \ge \frac{R(P_2)}{T(P_2)} \ge \frac{R(P_3)}{T(P_3)} \ge \dots$$

Implies:

$$ALG \ge \frac{OPT}{2}$$



Stochastic knapsack analysis Dean, Goemans, Vondrak '04

# Final Result

- 2-approximate irrevocable policy!
- Same idea works for several other problems
  - Concave rewards on arms
  - Delayed feedback about rewards
  - Metric switching costs between arms
- Dual balancing works for variants of bandits
  - Restless bandits
  - Budgeted learning

# **Open Questions**

- How far can we push LP based techniques?
  - Can we encode adaptive policies more generally?
  - For instance, MAB with matroid constraints?
  - Some success for non-martingale bandits
- What if we don't have full independence?
  - Some success in auction design
  - Techniques based on convex optimization
    - Seems unrelated to prophets

# Thanks!