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Setting: the k-SAT problem

a k-CNF formula:

F = (x1 ∨ x̄2 ∨ . . . ∨ x̄19)
︸ ︷︷ ︸

k

∧ (x̄3 ∨ x7 ∨ . . . ∨ x19)
︸ ︷︷ ︸

k

∧ . . .

A conjunction of disjunctions (clauses), each composed of k literals.
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Setting: the k-SAT problem

a k-CNF formula:

F = (x1 ∨ x̄2 ∨ . . . ∨ x̄19)
︸ ︷︷ ︸

k

∧ (x̄3 ∨ x7 ∨ . . . ∨ x19)
︸ ︷︷ ︸

k

∧ . . .

A conjunction of disjunctions (clauses), each composed of k literals.

Is there a satisfying assignment of truth values? Which one?

Notation:
n : number of variables
m : number of clauses
vbl(C ) : the set of variables occurring in clause C
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A simple subclass

Neighbourhood of a clause C ∈ F :
Γ(C ) := { D ∈ F | D 6= C , vbl(C ) ∩ vbl(D) 6= ∅ }

Inclusive neighbourhood :
Γ+(C ) := Γ(C ) ∪ {C}

Theorem (Erdös, Lovász ’75)

Let F be any k-CNF formula. If each C ∈ F has |Γ+(C )| ≤ 2k/e,

then F admits a satisfying assignment.

classical proof is non-constructive

Q: can we find a satisfying assignment?
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Further work
Problem overview

History

Previous approaches to the problem:

Beck, 1991: for neighbourhoods up to 2k/48

Alon, 1991: for neighbourhoods up to 2k/8

Srinivasan, 2008: for neighbourhoods up to 2k/4

M, 2008: for neighbourhoods up to 2k/2

Theorem

There exists a randomized algorithm which, given a k-CNF formula

F with ∀C ∈ F : |Γ+(C )| ≤ 2k−3, finds a satisfying assignment for

F in expected polynomial time.
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start with a random assignment

while(∃C ∈ F : C violated)

pick lexicographically first such C

locally_correct(C)
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Algorithm
The proof

Algorithm

solve(F):

start with a random assignment

while(∃C ∈ F : C violated) // repeats <= m times

pick lexicographically first such C

locally_correct(C)

locally_correct(C):

resample new values for vbl(C )
while(∃D ∈ Γ+(C ) : D violated)

pick lexicographically first such D

locally_correct(D)

// post-condition: strictly fewer violated clauses
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Logging the Program Execution

solve(F):

start with a random assignment

while(∃C ∈ F : C violated)

pick lexicographically first such C

log(“new recursion for“ + index(C))

locally_correct(C)

locally_correct(C):

resample new values for vbl(C )
while(∃D ∈ Γ+(C ) : D violated)

pick lexicographically first such D

log(–>“next clause“ + relative_index(D,C))

locally_correct(D)

log(<–)
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Logging the Program Execution

A sample log looks like this [with storage space requirements]:

new recursion for 6 [log m bits]

next clause 1 [(k − 3) + 1 + 1 bits]

next clause 2 [(k − 3) + 1 + 1 bits]

next clause 2 [(k − 3) + 1 + 1 bits]

...

Lemma

Each line of the log allows to reconstruct k bits of the random

input used by the algorihtm.
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Algorithm
The proof

Information Theoretic Balance

at most O(m log m) bits (in total) output by top-level calls

every further recursive call: k − 1 bits

every line allows to reconstruct k bits of random input

after O(m log m), process starts compressing fully random data

The process has to stop in O(m log m) time. 2

Robin Moser The Lovász Local Lemma and Satisfiability
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Further work

References:

Schweitzer ’09: independently found almost same proof

Final version in collaboration with Gábor Tardos:

2k/e neighbours (no gap anymore)
rules on choice of constraints not necessary
generalization to applications beyond SAT
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Derandomization and Output Distribution

References:

Chandrasekaran, Goyal, Haeupler ’09:

deterministic variant if neighborhood of each clause is at most
2k/(1+ε) in size
works by considering partial witness trees and adding the
ε-slack

Haeupler, Saha, Srinivasan ’10:

analyse the output distribution of the algorithm
settings with super-polynomially many events
interesting applications (e.g. Santa Claus problem and coloring
problems)
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The more sophisticated proof variant demonstrates the following
simplified algorithm to terminte in O(mk) expected time:

solve(F):

start with a random assignment

while(∃C ∈ F : C violated)

pick any such C

resample new values for vbl(C )
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Simplified algorithm

The more sophisticated proof variant demonstrates the following
simplified algorithm to terminte in O(mk) expected time:

solve(F):

start with a random assignment

while(∃C ∈ F : C violated)

pick any such C

Schöning: flip one u.a.r. from vbl(C )

=> That’s almost Schöning’s algorithm for general k-SAT with
success probability

(
1

2

k

k − 1

)n

Robin Moser The Lovász Local Lemma and Satisfiability
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Juxtaposition

For up to 2k/e − 1 neighbors per clause:

’throw away’ all previous information on the support of the
violated clause

complexity linear

For 2k/e or more neighbors:

be minimalistic: change as little as possible information on
the support of the violated clause

complexity exponential

Open questions:

does Schöning work for the LLL case?

is there such a jump in complexity or can it be smoothened?
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Structural results on the ’jump’

By Gebauer, Szabó and Tardos: there are unsatisfiable formulas
where each clause has 2k(e−1 + o(1)) neighbors, so the LLL is
asymptotically tight for SAT.

The formulas can be constructed in such a way that no variables is
featured in more than (2/e + ε) · 2k/k clauses.
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