The Lovász Local Lemma and Satisfiability Algorithmic Aspects

Robin Moser

ETH Zurich

China Theory Week - September 2010

イロト イポト イヨト イヨト

Problem overview

- Algorithm
- The proof

< 注→ < 注→

Problem overview

Setting: the *k*-SAT problem

a k-CNF formula:

$$F = \underbrace{\left(x_1 \lor \bar{x}_2 \lor \ldots \lor \bar{x}_{19}\right)}_k \land \underbrace{\left(\bar{x}_3 \lor x_7 \lor \ldots \lor x_{19}\right)}_k \land \ldots$$

A conjunction of disjunctions (*clauses*), each composed of *k literals*.

イボト イラト イラト

æ

Setting: the k-SAT problem

a k-CNF formula:

$$F = \underbrace{\left(x_1 \lor \overline{x}_2 \lor \ldots \lor \overline{x}_{19}\right)}_k \land \underbrace{\left(\overline{x}_3 \lor x_7 \lor \ldots \lor x_{19}\right)}_k \land \ldots$$

A conjunction of disjunctions (*clauses*), each composed of *k literals*.

Is there a satisfying assignment of truth values? Which one?

A (2) A (3) A (3) A

Setting: the k-SAT problem

a k-CNF formula:

$$F = \underbrace{\left(x_1 \lor \overline{x}_2 \lor \ldots \lor \overline{x}_{19}\right)}_k \land \underbrace{\left(\overline{x}_3 \lor x_7 \lor \ldots \lor x_{19}\right)}_k \land \ldots$$

A conjunction of disjunctions (*clauses*), each composed of *k literals*.

Is there a satisfying assignment of truth values? Which one?

Notation:

n : number of variables

A (2) A (3) A (3) A

Setting: the k-SAT problem

a k-CNF formula:

$$F = \underbrace{\left(x_1 \lor \overline{x}_2 \lor \ldots \lor \overline{x}_{19}\right)}_k \land \underbrace{\left(\overline{x}_3 \lor x_7 \lor \ldots \lor x_{19}\right)}_k \land \ldots$$

A conjunction of disjunctions (*clauses*), each composed of *k literals*.

Is there a satisfying assignment of truth values? Which one?

Notation:

- n : number of variables
- m : number of clauses

・ 同 ト ・ 三 ト ・ 三 ト

Setting: the k-SAT problem

a k-CNF formula:

$$F = \underbrace{\left(x_1 \lor \overline{x}_2 \lor \ldots \lor \overline{x}_{19}\right)}_k \land \underbrace{\left(\overline{x}_3 \lor x_7 \lor \ldots \lor x_{19}\right)}_k \land \ldots$$

A conjunction of disjunctions (*clauses*), each composed of *k literals*.

Is there a satisfying assignment of truth values? Which one?

Notation:

- n : number of variables
- m: number of clauses
- vbl(C): the set of variables occurring in clause C

Problem overview

A simple subclass

Neighbourhood of a clause $C \in F$: $\Gamma(C) := \{ D \in F \mid D \neq C, vbl(C) \cap vbl(D) \neq \emptyset \}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Problem overview

A simple subclass

Neighbourhood of a clause $C \in F$: $\Gamma(C) := \{ D \in F \mid D \neq C, vbl(C) \cap vbl(D) \neq \emptyset \}$

Inclusive neighbourhood : $\Gamma^+(C) := \Gamma(C) \cup \{C\}$

(日) (周) (日) (日)

æ

Problem overview

A simple subclass

Neighbourhood of a clause $C \in F$: $\Gamma(C) := \{ D \in F \mid D \neq C, vbl(C) \cap vbl(D) \neq \emptyset \}$

Inclusive neighbourhood : $\Gamma^+(C) := \Gamma(C) \cup \{C\}$

Theorem (Erdös, Lovász '75)

Let F be any k-CNF formula. If each $C \in F$ has $|\Gamma^+(C)| \le 2^k/e$, then F admits a satisfying assignment.

Problem overview

A simple subclass

Neighbourhood of a clause $C \in F$: $\Gamma(C) := \{ D \in F \mid D \neq C, vbl(C) \cap vbl(D) \neq \emptyset \}$

Inclusive neighbourhood : $\Gamma^+(C) := \Gamma(C) \cup \{C\}$

Theorem (Erdös, Lovász '75)

Let F be any k-CNF formula. If each $C \in F$ has $|\Gamma^+(C)| \le 2^k/e$, then F admits a satisfying assignment.

classical proof is non-constructive

Problem overview

A simple subclass

Neighbourhood of a clause $C \in F$: $\Gamma(C) := \{ D \in F \mid D \neq C, vbl(C) \cap vbl(D) \neq \emptyset \}$

Inclusive neighbourhood : $\Gamma^+(C) := \Gamma(C) \cup \{C\}$

Theorem (Erdös, Lovász '75)

Let F be any k-CNF formula. If each $C \in F$ has $|\Gamma^+(C)| \le 2^k/e$, then F admits a satisfying assignment.

- classical proof is non-constructive
- Q: can we *find* a satisfying assignment?

Beck, 1991: for neighbourhoods up to $2^{k/48}$

(D) (A) (A) (A)

ъ

Beck, 1991: for neighbourhoods up to $2^{k/48}$ Alon, 1991: for neighbourhoods up to $2^{k/8}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Beck, 1991: for neighbourhoods up to $2^{k/48}$ Alon, 1991: for neighbourhoods up to $2^{k/8}$ Srinivasan, 2008: for neighbourhoods up to $2^{k/4}$

A (2) A (3) A (3) A

Beck, 1991: for neighbourhoods up to $2^{k/48}$ Alon, 1991: for neighbourhoods up to $2^{k/8}$ Srinivasan, 2008: for neighbourhoods up to $2^{k/4}$ M, 2008: for neighbourhoods up to $2^{k/2}$

A (1) > A (1) > A

Beck, 1991: for neighbourhoods up to $2^{k/48}$ Alon, 1991: for neighbourhoods up to $2^{k/8}$ Srinivasan, 2008: for neighbourhoods up to $2^{k/4}$ M, 2008: for neighbourhoods up to $2^{k/2}$

Theorem

There exists a randomized algorithm which, given a k-CNF formula F with $\forall C \in F : |\Gamma^+(C)| \le 2^{k-3}$, finds a satisfying assignment for F in expected polynomial time.

(D) (A) (A) (A)

Algorithm

```
solve(F):
    start with a random assignment
    while(\exists C \in F : C violated)
        pick lexicographically first such C
        locally_correct(C)
```

< ロ > < 同 > < 回 > < 回 > < 回 > <

```
solve(F):

start with a random assignment

while(\exists C \in F : C violated)

pick lexicographically first such C

locally_correct(C)
```

```
locally_correct(C):
    resample new values for vbl(C)
```

(日) (周) (日) (日)

```
solve(F):
    start with a random assignment
    while(∃C ∈ F : C violated)
        pick lexicographically first such C
        locally_correct(C)
locally_correct(C):
    resample new values for vbl(C)
// post-condition: strictly fewer violated clauses
```

イロト イヨト イヨト

Algorithm

```
solve(F):
       start with a random assignment
       while (\exists C \in F : C \text{ violated})
             pick lexicographically first such C
             locally_correct(C)
locally_correct(C):
       resample new values for vbl(C)
       while (\exists D \in \Gamma^+(C) : D \text{ violated})
             pick lexicographically first such D
             locally_correct(D)
```

// post-condition: strictly fewer violated clauses

Algorithm

```
solve(F):
    start with a random assignment
    while(∃C ∈ F : C violated) // repeats <= m times
        pick lexicographically first such C
        locally_correct(C):
</pre>
```

```
resample new values for vbl(C)
while(\exists D \in \Gamma^+(C) : D violated)
pick lexicographically first such D
locally_correct(D)
```

// post-condition: strictly fewer violated clauses

イロト イポト イヨト イヨト

Logging the Program Execution

```
solve(F):
   start with a random assignment
   while(\exists C \in F : C violated)
    pick lexicographically first such C
   locally_correct(C)
locally_correct(C):
```

```
resample new values for vbl(C)
while(\exists D \in \Gamma^+(C) : D violated)
pick lexicographically first such D
```

```
locally_correct(D)
```

(日) (周) (日) (日)

Logging the Program Execution

```
solve(F):
   start with a random assignment
   while(\exists C \in F : C violated)
   pick lexicographically first such C
   log("new recursion for" + index(C))
   locally_correct(C)
```

```
locally_correct(C):
resample new values for vbl(C)
while(\exists D \in \Gamma^+(C) : D violated)
pick lexicographically first such D
```

```
locally_correct(D)
```

Logging the Program Execution

```
solve(F):
   start with a random assignment
   while (\exists C \in F : C \text{ violated})
    pick lexicographically first such C
    log("new recursion for" + index(C))
    locally_correct(C)
locally_correct(C):
  resample new values for vbl(C)
   while (\exists D \in \Gamma^+(C) : D \text{ violated})
    pick lexicographically first such D
    log(->"next clause" + relative_index(D,C))
```

```
locally_correct(D)
```

Logging the Program Execution

```
solve(F):
   start with a random assignment
   while (\exists C \in F : C \text{ violated})
    pick lexicographically first such C
    log("new recursion for" + index(C))
    locally_correct(C)
locally_correct(C):
  resample new values for vbl(C)
   while (\exists D \in \Gamma^+(C) : D \text{ violated})
    pick lexicographically first such D
    log(->"next clause" + relative_index(D,C))
    locally_correct(D)
   log(<-)
```

Logging the Program Execution

. . .

A sample log looks like this [with storage space requirements]:

new recursion for 6 next clause 1 next clause 2 next clause 2 $[\log m \text{ bits}] \\ [(k-3)+1+1 \text{ bits}] \\ [(k-3)+1+1 \text{ bits}] \\ [(k-3)+1+1 \text{ bits}] \end{cases}$

3

Lemma

Each line of the log allows to reconstruct k bits of the random input used by the algorihtm.

Algorithm The proof

Information Theoretic Balance

• at most $O(m \log m)$ bits (in total) output by top-level calls

< ロ > < 同 > < 回 > < 回 > < 回 > <

ъ

Information Theoretic Balance

- at most $O(m \log m)$ bits (in total) output by top-level calls
- every further recursive call: k-1 bits

イロト イポト イヨト イヨト

æ

Information Theoretic Balance

- at most $O(m \log m)$ bits (in total) output by top-level calls
- every further recursive call: k 1 bits
- every line allows to reconstruct k bits of random input

(日) (周) (日) (日)

Information Theoretic Balance

- at most $O(m \log m)$ bits (in total) output by top-level calls
- every further recursive call: k 1 bits
- every line allows to reconstruct k bits of random input
- after O(m log m), process starts compressing fully random data

(日) (周) (日) (日)

Information Theoretic Balance

- at most $O(m \log m)$ bits (in total) output by top-level calls
- every further recursive call: k 1 bits
- every line allows to reconstruct k bits of random input

• after $O(m \log m)$, process starts compressing fully random data The process has to stop in $O(m \log m)$ time.

(D) (A) (A) (A)

Further work

References:

• Schweitzer '09: independently found almost same proof

(1日) (日) (日)

Further work

References:

• Schweitzer '09: independently found almost same proof

- Final version in collaboration with Gábor Tardos:
 - $2^k/e$ neighbours (no gap anymore)

A (2) A (3) A (3) A

Further work

References:

• Schweitzer '09: independently found almost same proof

- Final version in collaboration with Gábor Tardos:
 - $2^k/e$ neighbours (no gap anymore)
 - rules on choice of constraints not necessary

• • = • • = •

Further work

References:

• Schweitzer '09: independently found almost same proof

- Final version in collaboration with Gábor Tardos:
 - $2^k/e$ neighbours (no gap anymore)
 - rules on choice of constraints not necessary
 - generalization to applications beyond SAT

・ 同 ト ・ 三 ト ・ 三 ト

References:

• Chandrasekaran, Goyal, Haeupler '09:

• • • • • • • • •

References:

- Chandrasekaran, Goyal, Haeupler '09:
 - deterministic variant if neighborhood of each clause is at most $2^{k/(1+\epsilon)}$ in size

- 同下 - 三下 - 三下

References:

- Chandrasekaran, Goyal, Haeupler '09:
 - deterministic variant if neighborhood of each clause is at most $2^{k/(1+\epsilon)}$ in size
 - works by considering partial witness trees and adding the $\epsilon\text{-slack}$

References:

- Chandrasekaran, Goyal, Haeupler '09:
 - deterministic variant if neighborhood of each clause is at most $2^{k/(1+\epsilon)}$ in size
 - works by considering partial witness trees and adding the $\epsilon\text{-slack}$
- Haeupler, Saha, Srinivasan '10:

References:

- Chandrasekaran, Goyal, Haeupler '09:
 - deterministic variant if neighborhood of each clause is at most $2^{k/(1+\epsilon)}$ in size
 - works by considering partial witness trees and adding the $\epsilon\text{-slack}$
- Haeupler, Saha, Srinivasan '10:
 - analyse the output distribution of the algorithm

References:

- Chandrasekaran, Goyal, Haeupler '09:
 - deterministic variant if neighborhood of each clause is at most $2^{k/(1+\epsilon)}$ in size
 - works by considering partial witness trees and adding the $\epsilon\text{-slack}$
- Haeupler, Saha, Srinivasan '10:
 - analyse the output distribution of the algorithm
 - settings with super-polynomially many events

References:

- Chandrasekaran, Goyal, Haeupler '09:
 - deterministic variant if neighborhood of each clause is at most $2^{k/(1+\epsilon)}$ in size
 - works by considering partial witness trees and adding the $\epsilon\text{-slack}$
- Haeupler, Saha, Srinivasan '10:
 - analyse the output distribution of the algorithm
 - settings with super-polynomially many events
 - interesting applications (e.g. Santa Claus problem and coloring problems)

(D) (A) (A) (A)

Simplified algorithm

The more sophisticated proof variant demonstrates the following simplified algorithm to terminte in O(mk) expected time:

```
solve(F):

start with a random assignment

while(\exists C \in F : C violated)

pick any such C

resample new values for vbl(C)
```

- 4 回 ト 4 ヨ ト 4 ヨ ト

Simplified algorithm

The more sophisticated proof variant demonstrates the following simplified algorithm to terminte in O(mk) expected time:

```
solve(F):

start with a random assignment

while(\exists C \in F : C violated)

pick any such C

resample new values for vbl(C)
```

=> That's almost Schöning's algorithm for general *k*-SAT with success probability

$$\left(\frac{1}{2}\frac{k}{k-1}\right)^n$$

Simplified algorithm

The more sophisticated proof variant demonstrates the following simplified algorithm to terminte in O(mk) expected time:

```
solve(F):
    start with a random assignment
    while(\exists C \in F : C violated)
    pick any such C
    Schöning: flip one u.a.r. from vbl(C)
```

=> That's almost Schöning's algorithm for general *k*-SAT with success probability

$$\left(\frac{1}{2}\frac{k}{k-1}\right)^n$$

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

• 'throw away' **all** previous information on the support of the violated clause

イロト イポト イヨト イヨト

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

- 'throw away' **all** previous information on the support of the violated clause
- complexity linear

・ 回 ト ・ ヨ ト ・ ヨ ト

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

- 'throw away' **all** previous information on the support of the violated clause
- complexity linear

For $2^k/e$ or more neighbors:

イボト イラト イラト

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

- 'throw away' **all** previous information on the support of the violated clause
- complexity linear
- For $2^k/e$ or more neighbors:
 - be minimalistic: change **as little as possible** information on the support of the violated clause

A (2) A (2) A (2) A

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

- 'throw away' **all** previous information on the support of the violated clause
- complexity linear
- For $2^k/e$ or more neighbors:
 - be minimalistic: change **as little as possible** information on the support of the violated clause
 - complexity exponential

A (2) A (2) A (2) A

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

- 'throw away' **all** previous information on the support of the violated clause
- complexity linear
- For $2^k/e$ or more neighbors:
 - be minimalistic: change **as little as possible** information on the support of the violated clause
 - complexity exponential

Open questions:

• does Schöning work for the LLL case?

A (10) > A (10) > A

Juxtaposition

For up to $2^k/e - 1$ neighbors per clause:

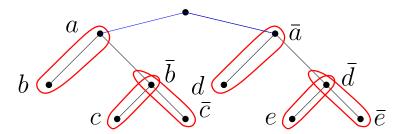
- 'throw away' **all** previous information on the support of the violated clause
- complexity linear
- For $2^k/e$ or more neighbors:
 - be minimalistic: change **as little as possible** information on the support of the violated clause
 - complexity exponential

Open questions:

- does Schöning work for the LLL case?
- is there such a jump in complexity or can it be smoothened?

Structural results on the 'jump'

By Gebauer, Szabó and Tardos: there are unsatisfiable formulas where each clause has $2^{k}(e^{-1} + o(1))$ neighbors, so the LLL is asymptotically tight for SAT.



The formulas can be constructed in such a way that no variables is featured in more than $(2/e + \epsilon) \cdot 2^k/k$ clauses.

Thanks

THANK YOU

Robin Moser The Lovász Local Lemma and Satisfiability

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ