
Understanding Machine Learning

Solution Manual

Written by Alon Gonen∗

Edited by Dana Rubinstein

November 17, 2014

2 Gentle Start

1. Given S = ((xi, yi))
m
i=1, define the multivariate polynomial

pS(x) = −
∏

i∈[m]:yi=1

‖x− xi‖2 .

Then, for every i s.t. yi = 1 we have pS(xi) = 0, while for every other
x we have pS(x) < 0.

2. By the linearity of expectation,

E
S|x∼Dm

[LS(h)] = E
S|x∼Dm

[
1

m

m∑
i=1

1[h(xi)6=f(xi)]

]

=
1

m

m∑
i=1

E
xi∼D

[1[h(xi)6=f(xi)]]

=
1

m

m∑
i=1

P
xi∼D

[h(xi) 6= f(xi)]

=
1

m
·m · L(D,f)(h)

= L(D,f)(h) .

∗The solutions to Chapters 13,14 were written by Shai Shalev-Shwartz

1

3. (a) First, observe that by definition, A labels positively all the posi-
tive instances in the training set. Second, as we assume realizabil-
ity, and since the tightest rectangle enclosing all positive examples
is returned, all the negative instances are labeled correctly by A
as well. We conclude that A is an ERM.

(b) Fix some distribution D over X , and define R? as in the hint.
Let f be the hypothesis associated with R? a training set S,
denote by R(S) the rectangle returned by the proposed algorithm
and by A(S) the corresponding hypothesis. The definition of the
algorithm A implies that R(S) ⊆ R∗ for every S. Thus,

L(D,f)(R(S)) = D(R? \R(S)) .

Fix some ε ∈ (0, 1). Define R1, R2, R3 and R4 as in the hint. For
each i ∈ [4], define the event

Fi = {S|x : S|x ∩Ri = ∅} .

Applying the union bound, we obtain

Dm({S : L(D,f)(A(S)) > ε}) ≤ Dm
(

4⋃
i=1

Fi

)
≤

4∑
i=1

Dm(Fi) .

Thus, it suffices to ensure that Dm(Fi) ≤ δ/4 for every i. Fix
some i ∈ [4]. Then, the probability that a sample is in Fi is
the probability that all of the instances don’t fall in Ri, which is
exactly (1− ε/4)m. Therefore,

Dm(Fi) = (1− ε/4)m ≤ exp(−mε/4) ,

and hence,

Dm({S : L(D,f)(A(S)) > ε]}) ≤ 4 exp(−mε/4) .

Plugging in the assumption on m, we conclude our proof.

(c) The hypothesis class of axis aligned rectangles in Rd is defined as
follows. Given real numbers a1 ≤ b1, a2 ≤ b2, . . . , ad ≤ bd, define
the classifier h(a1,b1,...,ad,bd) by

h(a1,b1,...,ad,bd)(x1, . . . , xd) =

{
1 if ∀i ∈ [d], ai ≤ xi ≤ bi
0 otherwise

(1)

2

The class of all axis-aligned rectangles in Rd is defined as

Hdrec = {h(a1,b1,...,ad,bd) : ∀i ∈ [d], ai ≤ bi, }.

It can be seen that the same algorithm proposed above is an ERM
for this case as well. The sample complexity is analyzed similarly.
The only difference is that instead of 4 strips, we have 2d strips
(2 strips for each dimension). Thus, it suffices to draw a training

set of size
⌈
2d log(2d/δ)

ε

⌉
.

(d) For each dimension, the algorithm has to find the minimal and
the maximal values among the positive instances in the training
sequence. Therefore, its runtime is O(md). Since we have shown

that the required value of m is at most
⌈
2d log(2d/δ)

ε

⌉
, it follows

that the runtime of the algorithm is indeed polynomial in d, 1/ε,
and log(1/δ).

3 A Formal Learning Model

1. The proofs follow (almost) immediately from the definition. We will
show that the sample complexity is monotonically decreasing in the
accuracy parameter ε. The proof that the sample complexity is mono-
tonically decreasing in the confidence parameter δ is analogous.

Denote by D an unknown distribution over X , and let f ∈ H be the
target hypothesis. Denote by A an algorithm which learns H with
sample complexity mH(·, ·). Fix some δ ∈ (0, 1). Suppose that 0 <

ε1 ≤ ε2 ≤ 1. We need to show that m1
def
= mH(ε1, δ) ≥ mH(ε2, δ)

def
=

m2. Given an i.i.d. training sequence of size m ≥ m1, we have that
with probability at least 1− δ, A returns a hypothesis h such that

LD,f (h) ≤ ε1 ≤ ε2 .

By the minimality of m2, we conclude that m2 ≤ m1.

2. (a) We propose the following algorithm. If a positive instance x+
appears in S, return the (true) hypothesis hx+ . If S doesn’t con-
tain any positive instance, the algorithm returns the all-negative
hypothesis. It is clear that this algorithm is an ERM.

(b) Let ε ∈ (0, 1), and fix the distribution D over X . If the true
hypothesis is h−, then our algorithm returns a perfect hypothesis.

3

Assume now that there exists a unique positive instance x+. It’s
clear that if x+ appears in the training sequence S, our algorithm
returns a perfect hypothesis. Furthermore, if D[{x+}] ≤ ε then
in any case, the returned hypothesis has a generalization error
of at most ε (with probability 1). Thus, it is only left to bound
the probability of the case in which D[{x+}] > ε, but x+ doesn’t
appear in S. Denote this event by F . Then

P
S|x∼Dm

[F] ≤ (1− ε)m ≤ e−mε .

Hence, HSingleton is PAC learnable, and its sample complexity is
bounded by

mH(ε, δ) ≤
⌈

log(1/δ)

ε

⌉
.

3. Consider the ERM algorithm A which given a training sequence S =
((xi, yi))

m
i=1, returns the hypothesis ĥ corresponding to the “tightest”

circle which contains all the positive instances. Denote the radius of
this hypothesis by r̂. Assume realizability and let h? be a circle with
zero generalization error. Denote its radius by r?.

Let ε, δ ∈ (0, 1). Let r̄ ≤ r∗ be a scalar s.t. DX ({x : r̄ ≤ ‖x‖ ≤ r?}) =
ε. Define E = {x ∈ R2 : r̄ ≤ ‖x‖ ≤ r?}. The probability (over
drawing S) that LD(hS) ≥ ε is bounded above by the probability that
no point in S belongs to E. This probability of this event is bounded
above by

(1− ε)m ≤ e−εm .

The desired bound on the sample complexity follows by requiring that
e−εm ≤ δ.

4. We first observe that H is finite. Let us calculate its size accurately.
Each hypothesis, besides the all-negative hypothesis, is determined by
deciding for each variable xi, whether xi, x̄i or none of which appear
in the corresponding conjunction. Thus, |H| = 3d + 1. We conclude
that H is PAC learnable and its sample complexity can be bounded
by

mH(ε, δ) ≤
⌈
d log 3 + log(1/δ)

ε

⌉
.

Let’s describe our learning algorithm. We define h0 = x1 ∩ x̄1 ∩
. . . ∩ xd ∩ x̄d. Observe that h0 is the always-minus hypothesis. Let
((a1, y1), . . . , (am, ym)) be an i.i.d. training sequence of size m. Since

4

we cannot produce any information from negative examples, our algo-
rithm neglects them. For each positive example a, we remove from hi
all the literals that are missing in a. That is, if ai = 1, we remove x̄i
from h and if ai = 0, we remove xi from hi. Finally, our algorithm
returns hm.

By construction and realizability, hi labels positively all the positive
examples among a1, . . . ,ai. From the same reasons, the set of literals
in hi contains the set of literals in the target hypothesis. Thus, hi clas-
sifies correctly the negative elements among a1, . . . ,ai. This implies
that hm is an ERM.

Since the algorithm takes linear time (in terms of the dimension d) to
process each example, the running time is bounded by O(m · d).

5. Fix some h ∈ H with L(Dm,f)(h) > ε. By definition,

PX∼D1 [h(X) = f(X)] + . . .+ PX∼Dm [h(X) = f(X))]

m
< 1− ε .

We now bound the probability that h is consistent with S (i.e., that
LS(h) = 0) as follows:

P
S∼

∏m
i=1Di

[LS(h) = 0] =
m∏
i=1

P
X∼Di

[h(X) = f(X)]

=

(m∏
i=1

P
X∼Di

[h(X) = f(X)]

) 1
m

m

≤
(∑m

i=1 PX∼Di [h(X) = f(X)]

m

)m
< (1− ε)m

≤ e−εm .

The first inequality is the geometric-arithmetic mean inequality. Ap-
plying the union bound, we conclude that the probability that there
exists some h ∈ H with L(Dm,f)(h) > ε, which is consistent with S is

at most |H| exp(−εm).

6. Suppose that H is agnostic PAC learnable, and let A be a learning
algorithm that learns H with sample complexity mH(·, ·). We show
that H is PAC learnable using A.

5

Let D, f be an (unknown) distribution over X , and the target function
respectively. We may assume w.l.o.g. that D is a joint distribution
over X ×{0, 1}, where the conditional probability of y given x is deter-
mined deterministically by f . Since we assume realizability, we have
infh∈H LD(h) = 0. Let ε, δ ∈ (0, 1). Then, for every positive integer
m ≥ mH(ε, δ), if we equip A with a training set S consisting of m i.i.d.
instances which are labeled by f , then with probability at least 1− δ
(over the choice of S|x), it returns a hypothesis h with

LD(h) ≤ inf
h′∈H

LD(h′) + ε

= 0 + ε

= ε .

7. Let x ∈ X . Let αx be the conditional probability of a positive label
given x. We have

P[fD(X) 6= y|X = x] = 1[αx≥1/2] · P[Y = 0|X = x] + 1[αx<1/2] · P[Y = 1|X = x]

= 1[αx≥1/2] · (1− αx) + 1[αx<1/2] · αx
= min{αx, 1− αx}.

Let g be a classifier1 from X to {0, 1}. We have

P[g(X) 6= Y |X = x] = P[g(X) = 0|X = x] · P[Y = 1|X = x]

+ P[g(X) = 1|X = x] · P[Y = 0|X = x]

= P[g(X) = 0|X = x] · αx + P[g(X) = 1|X = x] · (1− αx)

≥ P[g(X) = 0|X = x] ·min{αx, 1− αx}
+ P[g(X) = 1|x] ·min{αx, 1− αx}
= min{αx, 1− αx},

The statement follows now due to the fact that the above is true for
every x ∈ X . More formally, by the law of total expectation,

LD(fD) = E(x,y)∼D[1[fD(x)6=y]]

= Ex∼DX
[
Ey∼DY |x [1[fD(x)6=y]|X = x]

]
= Ex∼DX [αx]

≤ Ex∼DX
[
Ey∼DY |x [1[g(x)6=y]|X = x]

]
= LD(g) .

1As we shall see, g might be non-deterministic.

6

8. (a) This was proved in the previous exercise.

(b) We proved in the previous exercise that for every distribution D,
the bayes optimal predictor fD is optimal w.r.t. D.

(c) Choose any distribution D. Then A is not better than fD w.r.t.
D.

9. (a) Suppose that H is PAC learnable in the one-oracle model. Let A
be an algorithm which learns H and denote by mH the function
that determines its sample complexity. We prove that H is PAC
learnable also in the two-oracle model.

Let D be a distribution over X ×{0, 1}. Note that drawing points
from the negative and positive oracles with equal provability is
equivalent to obtaining i.i.d. examples from a distribution D′
which gives equal probability to positive and negative examples.
Formally, for every subset E ⊆ X we have

D′[E] =
1

2
D+[E] +

1

2
D−[E].

Thus, D′[{x : f(x) = 1}] = D′[{x : f(x) = 0}] = 1
2 . If we let

A an access to a training set which is drawn i.i.d. according to
D′ with size mH(ε/2, δ), then with probability at least 1 − δ, A
returns h with

ε/2 ≥ L(D′,f)(h) = P
x∼D′

[h(x) 6= f(x)]

= P
x∼D′

[f(x) = 1, h(x) = 0] + P
x∼D′

[f(x) = 0, h(x) = 1]

= P
x∼D′

[f(x) = 1] · P
x∼D′

[h(x) = 0|f(x) = 1]

+ P
x∼D′

[f(x) = 0] · P
x∼D′

[h(x) = 1|f(x) = 0]

= P
x∼D′

[f(x) = 1] · P
x∼D

[h(x) = 0|f(x) = 1]

+ P
x∼D′

[f(x) = 0] · P
x∼D

[h(x) = 1|f(x) = 0]

=
1

2
· L(D+,f)(h) +

1

2
· L(D−,f)(h).

This implies that with probability at least 1− δ, both

L(D+,f)(h) ≤ ε and L(D−,f)(h) ≤ ε.

7

Our definition for PAC learnability in the two-oracle model is sat-
isfied. We can bound both m+

H(ε, δ) and m−H(ε, δ) by mH(ε/2, δ).

(b) Suppose that H is PAC learnable in the two-oracle model and
let A be an algorithm which learns H. We show that H is PAC
learnable also in the standard model.

Let D be a distribution over X , and denote the target hypothesis
by f . Let α = D[{x : f(x) = 1}]. Let ε, δ ∈ (0, 1). Accord-

ing to our assumptions, there exist m+ def
= m+

H(ε, δ/2),m−
def
=

m−H(ε, δ/2) s.t. if we equip A with m+ examples drawn i.i.d.
from D+ and m− examples drawn i.i.d. from D−, then, with
probability at least 1− δ/2, A will return h with

L(D+,f)(h) ≤ ε ∧ L(D−,f)(h) ≤ ε .

Our algorithm B draws m = max{2m+/ε, 2m−/ε, 8 log(4/δ)ε } sam-
ples according to D. If there are less then m+ positive examples,
B returns h−. Otherwise, if there are less then m− negative ex-
amples, B returns h+. Otherwise, B runs A on the sample and
returns the hypothesis returned by A.

First we observe that if the sample contains m+ positive instances
and m− negative instances, then the reduction to the two-oracle
model works well. More precisely, with probability at least 1 −
δ/2, A returns h with

L(D+,f)(h) ≤ ε ∧ L(D−,f)(h) ≤ ε .

Hence, with probability at least 1− δ/2, the algorithm B returns
(the same) h with

L(D,f)(h) = α · L(D+,f)(h) + (1− α) · L(D−,f)(h) ≤ ε

We consider now the following cases:

• Assume that both α ≥ ε. We show that with probability
at least 1 − δ/4, the sample contain m+ positive instances.
For each i =∈ [m], define the indicator random variable Zi,
which gets the value 1 iff the i-th element in the sample is
positive. Define Z =

∑m
i=1 Zi to be the number of positive

examples that were drawn. Clearly, E[Z] = αm. Using Cher-
noff bound, we obtain

P[Z < (1− 1

2
)αm] < e

−mα
8 .

8

By the way we chose m, we conclude that

P[Z < m+] < δ/4 .

Similarly, if 1−α ≥ ε, the probability that less than m− neg-
ative examples were drawn is at most δ/4. If both α ≥ ε and
1−α ≥ ε, then, by the union bound, with probability at least
1 − δ/2, the training set contains at least m+ and m− pos-
itive and negative instances respectively. As we mentioned
above, if this is the case, the reduction to the two-oracle
model works with probability at least 1 − δ/2. The desired
conclusion follows by applying the union bound.

• Assume that α < ε, and less than m+ positive examples are
drawn. In this case, B will return the hypothesis h−. We
obtain

LD(h) = α < ε .

Similarly, if (1−α) < ε, and less than m− negative examples
are drawn, B will return h+. In this case,

LD(h) = 1− α < ε .

All in all, we have shown that with probability at least 1 − δ,
B returns a hypothesis h with L(D,f)(h) < ε. This satisfies our
definition for PAC learnability in the one-oracle model.

4 Learning via Uniform Convergence

1. (a) Assume that for every ε, δ ∈ (0, 1), and every distribution D
over X × {0, 1}, there exists m(ε, δ) ∈ N such that for every
m ≥ m(ε, δ),

P
S∼Dm

[LD(A(S)) > ε] < δ .

Let λ > 0. We need to show that there existsm0 ∈ N such that for
every m ≥ m0, ES∼Dm [LD(A(S))] ≤ λ. Let ε = min(1/2, λ/2).
Set m0 = mH(ε, ε). For every m ≥ m0, since the loss is bounded

9

above by 1, we have

E
S∼Dm

[LD(A(S))] ≤ P
S∼Dm

[LD(A(S)) > λ/2] · 1 + P
S∼Dm

[LD(A(S)) ≤ λ/2] · λ/2

≤ P
S∼Dm

[LD(A(S)) > ε] + λ/2

≤ ε+ λ/2

≤ λ/2 + λ/2

= λ .

(b) Assume now that

lim
m→∞

E
S∼Dm

[LD(A(S))] = 0 .

Let ε, δ ∈ (0, 1). There exists some m0 ∈ N such that for every
m ≥ m0, ES∼Dm [LD(A(S))] ≤ ε · δ. By Markov’s inequality,

P
S∼Dm

[LD(A(S)) > ε] ≤ ES∼Dm [LD(A(S))]

ε

≤ εδ

ε
= δ .

2. The left inequality follows from Corollary 4.4. We prove the right
inequality. Fix some h ∈ H. Applying Hoeffding’s inequality, we
obtain

P
S∼Dm

[|LD(h)− LS(h)| ≥ ε/2] ≤ 2 exp

(
− 2mε2

(b− a)2

)
. (2)

The desired inequality is obtained by requiring that the right-hand
side of Equation (2) is at most δ/|H|, and then applying the union
bound.

5 The Bias-Complexity Tradeoff

1. We simply follow the hint. By Lemma B.1,

P
S∼Dm

[LD(A(S)) ≥ 1/8] = P
S∼Dm

[LD(A(S)) ≥ 1− 7/8]

≥ E[LD(A(S))]− (1− 7/8)

7/8

≥ 1/8

7/8

= 1/7 .

10

9 Linear Predictors

1. Define a vector of auxiliary variables s = (s1, . . . , sm). Following the
hint, minimizing the empirical risk is equivalent to minimizing the
linear objective

∑m
i=1 si under the following constraints:

(∀i ∈ [m]) wTxi − si ≤ yi , −wTxi − si ≤ −yi (3)

It is left to translate the above into matrix form. Let A ∈ R2m×(m+d)

be the matrix A = [X − Im;−X − Im], where Xi→ = xi for every i ∈
[m]. Let v ∈ Rd+m be the vector of variables (w1, . . . , wd, s1, . . . , sm).
Define b ∈ R2m to be the vector b = (y1, . . . , ym,−y1, . . . ,−ym)T .
Finally, let c ∈ Rd+m be the vector c = (0d; 1m). It follows that the
optimization problem of minimizing the empirical risk can be expressed
as the following LP:

min cTv

s.t. Av ≤ b .

2. Consider the matrix X ∈ Rd×m whose columns are x1, . . . , xm. The
rank ofX is equal to the dimension of the subspace span({x1, . . . , xm}).
The SVD theorem (more precisely, Lemma C.4) implies that the rank
of X is equal to the rank of A = XX>. Hence, the set {x1, . . . , xm}
spans Rd if and only if the rank of A = XX> is d, i.e., iff A = XX>

is invertible.

3. Following the hint, let d = m, and for every i ∈ [m], let xi = ei. Let
us agree that sign(0) = −1. For i = 1, . . . , d, let yi = 1 be the label
of xi. Denote by w(t) the weight vector which is maintained by the
Perceptron. A simple inductive argument shows that for every i ∈ [d],
wi =

∑
j<i ej . It follows that for every i ∈ [d], 〈w(i),xi〉 = 0. Hence,

all the instances x1, . . . ,xd are misclassified (and then we obtain the
vector w = (1, . . . , 1) which is consistent with x1, . . . , xm). We also
note that the vector w? = (1, . . . , 1) satisfies the requirements listed
in the question.

4. Consider all positive examples of the form (α, β, 1), where α2+β2+1 ≤
R2. Observe that w? = (0, 0, 1) satisfies y〈w?,x〉 ≥ 1 for all such
(x, y). We show a sequence of R2 examples on which the Perceptron
makes R2 mistakes.

26

The idea of the construction is to start with the examples (α1, 0, 1)
where α1 =

√
R2 − 1. Now, on round t let the new example be such

that the following conditions hold:

(a) α2 + β2 + 1 = R2

(b) 〈wt, (α, β, 1)〉 = 0

As long as we can satisfy both conditions, the Perceptron will con-
tinue to err. We’ll show that as long as t ≤ R2 we can satisfy these
conditions.

Observe that, by induction, w(t−1) = (a, b, t − 1) for some scalars
a, b. Observe also that ‖wt−1‖2 = (t − 1)R2 (this follows from the
proof of the Perceptron’s mistake bound, where inequalities hold with
equality). That is, a2 + b2 + (t− 1)2 = (t− 1)R2.

W.l.o.g., let us rotate w(t−1) w.r.t. the z axis so that it is of the form
(a, 0, t− 1) and we have a =

√
(t− 1)R2 − (t− 1)2. Choose

α = − t− 1

a
.

Then, for every β,

〈(a, 0, t− 1), (α, β, 1)〉 = 0 .

We just need to verify that α2 + 1 ≤ R2, because if this is true then
we can choose β =

√
R2 − α2 − 1. Indeed,

α2 + 1 =
(t− 1)2

a2
+ 1 =

(t− 1)2

(t− 1)R2 − (t− 1)2
+ 1 =

(t− 1)R2

(t− 1)R2 − (t− 1)2

= R2 1

R2 − (t− 1)

≤ R2

where the last inequality assumes R2 ≥ t.

5. Since for every w ∈ Rd, and every x ∈ Rd, we have

sign(〈w, x〉) = sign(〈ηw, x〉) ,

we obtain that the modified Perceptron and the Perceptron produce
the same predictions. Consequently, both algorithms perform the same
number of iterations.

27

6. In this question we will denote the class of halfspaces in Rd+1 by Ld+1.

(a) Assume that A = {x1, . . . ,xm} ⊆ Rd is shattered by Bd. Then,
∀y = (y1, . . . , yd) ∈ {−1, 1}d there exists Bµ,r ∈ B s.t. for every i

Bµ,r(xi) = yi .

Hence, for the above µ and r, the following identity holds for
every i ∈ [m]:

sign
(
(2µ;−1)T (xi; ‖xi‖2)− ‖µ‖2 + r2

)
= yi , (4)

where ; denotes vector concatenation. For each i ∈ [m], let
φ(xi) = (xi; ‖x‖2i). Define the halfspace h ∈ Ld+1 which cor-
responds to w = (2µ;−1), and b = ‖µ‖2 − r2. Equation (4)
implies that for every i ∈ [m],

h(xi) = yi

All in all, if A = {x1, . . . , xm} is shattered by B, then φ(A) :=
{φ(x1), . . . , φ(xm)}, is shattered by L. We conclude that d+ 2 =
VCdim(Ld+1) ≥ V C(Bd).

(b) Consider the set C consisting of the unit vectors e1, . . . , ed, and
the origin 0. Let A ⊆ C. We show that there exists a ball
such that all the vectors in A are labeled positively, while the
vectors in C \ A are labeled negatively. We define the center
µ =

∑
e∈A e. Note that for every unit vector in A, its distance

to the center is
√
|A| − 1. Also, for every unit vector outside

A, its distance to the center is
√
|A|+ 1. Finally, the distance

of the origin to the center is
√
A. Hence, if 0 ∈ A, we will set

r =
√
|A| − 1, and if 0 /∈ A, we will set r =

√
|A|. We conclude

that the set C is shattered by Bd. All in all, we just showed that
VCdim(Bd) ≥ d+ 1.

10 Boosting

1. Let ε, δ ∈ (0, 1). Pick k “chunks” of size mH(ε/2). Apply A on each
of these chunks, to obtain ĥ1, . . . , ĥk. Note that the probability that
mini∈[k] LD(ĥi) ≤ minLD(h) + ε/2 is at least 1 − δk0 ≥ 1− δ/2. Now,

apply an ERM over the class Ĥ := {ĥ1, . . . , ĥk} with the training data

being the last chunk of size
⌈
2 log(4k/δ)

ε2

⌉
. Denote the output hypothesis

28

11 Model Selection and Validation

1. Let S be an i.i.d. sample. Let h be the output of the described
learning algorithm. Note that (independently of the identity of S),
LD(h) = 1/2 (since h is a constant function).

Let us calculate the estimate LV (h). Assume that the parity of S is
1. Fix some fold {(x, y)} ⊆ S. We distinguish between two cases:

• The parity of S \ {x} is 1. It follows that y = 0. When being
trained using S \{x}, the algorithm outputs the constant predic-
tor h(x) = 1. Hence, the leave-one-out estimate using this fold is
1.

• The parity of S \ {x} is 0. It follows that y = 1. When being
trained using S \{x}, the algorithm outputs the constant predic-
tor h(x) = 0. Hence, the leave-one-out estimate using this fold is
1.

Averaging over the folds, the estimate of the error of h is 1. Conse-
quently, the difference between the estimate and the true error is 1/2.
The case in which the parity of S is 0 is analyzed analogously.

2. Consider for example the case in which H1 ⊆ H2 ⊆ . . . ⊆ Hk, and
|Hi| = 2i for every i ∈ k. Learning Hk in the Agnostic-Pac model
provides the following bound for an ERM hypothesis h:

LD(h) ≤ min
h∈Hk

LD(h) +

√
2(k + 1 + log(1/δ))

m
.

Alternatively, we can use model selection as we describe next. As-
sume that j is the minimal index which contains a hypothesis h? ∈
argminh∈H LD(h). Fix some r ∈ [k]. By Hoeffding’s inequality, with
probability at least 1− δ/(2k), we have

|LD(ĥr)− LV (ĥr)| ≤
√

1

2αm
log

4

δ
.

Applying the union bound, we obtain that with probability at least
1 − δ/2, the following inequality holds (simultaneously) for every r ∈

31

[k]:

LD(ĥ) ≤ LV (ĥ) +

√
1

2αm
log

4k

δ

≤ LV (ĥr) +

√
1

2αm
log

4k

δ

≤ LD(ĥr) + 2

√
1

2αm
log

4k

δ

= LD(ĥr) +

√
2

αm
log

4k

δ
.

In particular, with probability at least 1− δ/2, we have

LD(ĥ) ≤ LD(ĥj) +

√
2

αm
log

4k

δ
.

Using similar arguments8, we obtain that with probability at least
1− δ/2,

LD(ĥj) ≤ LD(h?) +

√
2

(1− α)m
log

4|Hj |
δ

= LD(h?) +

√
2

(1− α)m
log

4|Hj |
δ

Combining the two last inequalities with the union bound, we obtain
that with probability at least 1− δ,

LD(ĥ) ≤ LD(h?) +

√
2

αm
log

4k

δ
+

√
2

(1− α)m
log

4|Hj |
δ

.

We conclude that

LD(ĥ) ≤ LD(h∗) +

√
2

αm
log

4k

δ
+

√
2

(1− α)m
(j + log

4

δ
) .

Comparing the two bounds, we see that when the “optimal index” j is
significantly smaller than k, the bound achieved using model selection
is much better. Being even more concrete, if j is logarithmic in k, we
achieve a logarithmic improvement.

8This time we consider each of the hypotheses in Hj , and apply the union bound
accordingly.

32

3. Fix some (x, y) ∈ {x ∈ Rd : ‖x′‖2 ≤ R} × {−1, 1}. Let w1,w2 ∈ Rd.
For i ∈ [2], let `i = max{0, 1 − y〈wi,x〉}. We wish to show that
|`1 − `2| ≤ R‖w1 −w2‖2. If both y〈w1,x〉 ≥ 1 and y〈w2,x〉 ≥ 1, then
|`1−`2| = 0 ≤ R‖w1−w2‖2. Assume now that |{i : y〈wi, x〉 < 1}| ≥ 1.
Assume w.l.o.g. that 1− y〈w1,x〉 ≥ 1− y〈w2,x〉. Hence,

|`1 − `2| = `1 − `2
= 1− y〈w1,x〉 −max{0, 1− y〈w2,x〉}
≤ 1− y〈w1,x〉 − (1− y〈w2,x〉)
= y〈w2 −w1,x〉
≤ ‖w1 −w2‖‖x‖
≤ R‖w1 −w2‖ .

4. (a) Fix a Turing machine T . If T halts on the input 0, then for every
h ∈ [0, 1],

`(h, T) = 〈(h, 1− h), (1, 0)〉 .
If T halts on the input 1, then for every h ∈ [0, 1],

`(h, T) = 〈(h, 1− h), (0, 1)〉 .

In both cases, ` is linear, and hence convex over H.

(b) The idea is to reduce the halting problem to the learning prob-
lem9. More accurately, the following decision problem can be
easily reduced to the learning problem described in the question:
Given a Turing machine M , does M halt given the input M?
The proof that the halting problem is not decidable implies that
this decision problem is not decidable as well. Hence, there is mo
computable algorithm that learns the problem described in the
question.

13 Regularization and Stability

1. From bounded expected risk to agnostic PAC learning: We
assume A is a (proper) algorithm that guarantees the following: If
m ≥ mH(ε) then for every distribution D it holds that

E
S∼Dm

[LD(A(S))] ≤ min
h∈H

LD(h) + ε .

9Errata: “T halts on the input 0” should be replaced (everywhere) by “T halts on the
input T”

34

• SinceA(S) ∈ H, the random variable θ = LD(A(S))−minh∈H LD(h)
is non-negative. 10 Therefore, Markov’s inequality implies that

P[θ ≥ E[θ]/δ] ≤ E[θ]

E[θ]/δ
= δ .

In other words, with probability of at least 1− δ we have

θ ≤ E[θ]/δ .

But, if m ≥ mH(ε δ) then we know that E[θ] ≤ ε δ. This yields
θ ≤ ε, which concludes our proof.

• Let k = dlog2(2/δ)e. 11 Divide the data into k + 1 chunks,
where each of the first k chunks is of size mH(ε/4) examples.12

Train the first k chunks using A. Let hi be the output of A for
the i’th chunk. Using the previous question, we know that with
probability of at most 1/2 over the examples in the i’th chunk it
holds that LD(hi)−minh∈H LD(h) > ε/2. Since the examples in
the different chunks are independent, the probability that for all
the chunks we’ll have LD(hi) − minh∈H LD(h) > ε/2 is at most
2−k, which by the definition of k is at most δ/2. In other words,
with probability of at least 1− δ/2 we have that

min
i∈[k]

LD(hi) ≤ min
h∈H

LD(h) + ε/2 . (7)

Next, apply ERM over the finite class {h1, . . . , hk} on the last
chunk. By Corollary 4.6, if the size of the last chunk is at least
8 log(4k/δ)

ε2
then, with probability of at least 1− δ/2, we have

LD(ĥ) ≤ min
i∈[k]

LD(hi) + ε/2 .

Applying the union bound and combining with Equation (7) we
conclude our proof. The overall sample complexity is

mH(ε/4)dlog2(2/δ)e+ 8

⌈
log(4/δ) + log(dlog2(2/δ)e)

ε2

⌉
10One should assume here that A is a “proper” learner.
11Note that in the original question the size was mistakenly k = dlog2(1/δ)e.
12Note that in the original question the size was mistakenly mH(ε/2).

35

2. Learnability without uniform convergence: Let B be the unit
ball of Rd, let H = B, let Z = B × {0, 1}d, and let ` : Z ×H → R be
defined as follows:

`(w, (x,α)) =

d∑
i=1

αi(xi − wi)2 .

• This problem is learnable using the RLM rule with a sample
complexity that does not depend on d. Indeed, the hypothesis
class is convex and bounded, the loss function is convex, non-
negative, and smooth, since

‖∇`(v, (x,α))−∇`(w, (x,α))‖2 = 4
d∑
i=1

α2
i (vi−wi)2 ≤ 4‖v−w‖2 ,

where in the last inequality we used αi ∈ {0, 1}.
• Fix some j ∈ [d]. The probability to sample a training set of size
m such that αj = 0 13 for all the examples is 2−m. Since the
coordinates of α are chosen independently, the probability that
for all j ∈ [d] the above event will not happen is (1 − 2−m)d ≥
exp(−2−m+1d). Therefore, if d� 2m, the above quantity goes to
zero, meaning that there is a high chance that for some j we’ll
have αj = 0 for all the examples in the training set.

For such a sample, we have that every vector of the form x0+ηej
is an ERM. For simplicity, assume that x0 is the all zeros vector
and set η = 1. Then, LS(ej) = 0. However, LD(ej) = 1

2 . It
follows that the sample complexity of uniform convergence must
grow with log(d).

• Taking d to infinity we obtain a problem which is learnable but
for which the uniform convergence property does not hold. While
this seems to contradict the fundamental theorem of statistical
learning, which states that a problem is learnable if and only if
uniform convergence holds, there is no contradiction since the fun-
damental theorem only holds for binary classification problems,
while here we consider a more general problem.

3. Stability and asymptotic ERM is sufficient for learnability:

13In the hint, it is written mistakenly that αj = 1

36

Proof. Let h? ∈ argminh∈H LD(h) (for simplicity we assume that h?

exists). We have

E
S∼Dm

[LD(A(S))− LD(h?)]

= E
S∼Dm

[LD(A(S))− LS(A(S)) + LS(A(S))− LD(h?)]

= E
S∼Dm

[LD(A(S))− LS(A(S))] + E
S∼Dm

[LS(A(S))− LD(h?)]

= E
S∼Dm

[LD(A(S))− LS(A(S))] + E
S∼Dm

[LS(A(S))− LS(h?)]

≤ ε1(m) + ε2(m) .

4. Strong convexity with respect to general norms:

(a) Item 2 of the lemma follows directly from the definition of con-
vexity and strong convexity. For item 3, the proof is identical to
the proof for the `2 norm.

(b) The function f(w) = 1
2‖w‖

2
1 is not strongly convex with respect

to the `1 norm. To see this, let the dimension be d = 2 and
take w = e1, u = e2, and α = 1/2. We have f(w) = f(u) =
f(αw + (1− α)u) = 1/2.

(c) The proof is almost identical to the proof for the `2 case and is
therefore omitted.

(d) Proof. 14

Using Holder’s inequality,

‖w‖1 =

d∑
i=1

|wi| ≤ ‖w‖q‖(1, . . . , 1)‖p ,

where p = (1− 1/q)−1 = log(d). Since ‖(1, . . . , 1)‖p = d1/p = e <
3 we obtain that for every w,

‖w‖q ≥ ‖w‖1/3 .
14Errata: In the original question, there’s a typo: it should be proved that R is (1/3)

strongly convex instead of 1
3 log(d)

strongly convex.

37

Combining this with the strong convexity of R w.r.t. ‖ · ‖q we
obtain

R(αw + (1− α)u) ≤ αR(w) + (1− α)R(u)− α(1− α)

2
‖w − u‖2q

≤ αR(w) + (1− α)R(u)− α(1− α)

2 · 3
‖w − u‖21

This tells us that R is (1/3)-strongly-convex with respect to ‖ ·
‖1.

14 Stochastic Gradient Descent

1. Divide the definition of strong convexity by α and rearrange terms, to
get that

f(w + α(u−w))− f(w)

α
≤ f(u)− f(w)− λ

2
(1− α)‖w − u‖2 .

In addition, if v be a subgradient of f at w, then,

f(w + α(u−w))− f(w) ≥ α〈u−w,v〉 .

Combining together we obtain

〈u−w,v〉 ≤ f(u)− f(w)− λ

2
(1− α)‖w − u‖2 .

Taking the limit α → 0 we obtain that the right-hand side converges
to f(w)− f(u)− λ

2‖w − u‖2, which concludes our proof.

2. Plugging the definitions of η and T into Theorem 14.13 we obtain

E[LD(w̄)] ≤ 1

1− 1
1+3/ε

(
LD(w?) +

‖w?‖2(1 + 3/ε)ε2

24B2

)
≤ (1 + 3/ε)ε/3

(
LD(w?) +

(1 + 3/ε)ε2

24

)
= (1 + ε/3)

(
LD(w?) +

ε(ε+ 3)

24

)
= LD(w?) +

ε

3
LD(w?) +

ε

3

Finally, since LD(w?) ≤ LD(0) ≤ 1, we conclude the proof.

38

3. Perceptron as a sub-gradient descent algorithm:

• Clearly, f(w?) ≤ 0. If there is strict inequality, then we can
decrease the norm of w? while still having f(w?) ≤ 0. But w? is
chosen to be of minimal norm and therefore equality must hold.
In addition, any w for which f(w) < 1 must satisfy 1−yi〈w,xi〉 <
1 for every i, which implies that it separates the examples.

• A sub-gradient of f is given by −yixi, where i ∈ argmax{1 −
yi 〈w,xi〉}.
• The resulting algorithm initializes w to be the all zeros vector and

at each iteration finds i ∈ argmini yi〈w,xi〉 and update w(t+1) =
w(t)+ηyixi. The algorithm must have f(w(t)) < 0 after ‖w?‖2R2

iterations. The algorithm is almost identical to the Batch Percep-
tron algorithm with two modifications. First, the Batch Percep-
tron updates with any example for which yi〈w(t),xi〉 ≤ 0, while
the current algorithm chooses the example for which yi〈w(t),xi〉
is minimal. Second, the current algorithm employs the parame-
ter η. However, it is easy to verify that the algorithm would not
change if we fix η = 1 (the only modification is that w(t) would
be scaled by 1/η).

4. Variable step size: The proof is very similar to the proof of Theorem
14.11. Details can be found, for example, in [1].

15 Support Vector Machines

1. LetH be the class of halfspaces in Rd, and let S = ((xi, yi))
m
i=1 be a lin-

early separable set. Let G = {(w, b) : ‖w‖ = 1, (∀i ∈ [m]) yi(〈w,xi〉+
b) > 0}. Our assumptions imply that this set is non-empty. Note that
for every (w, b) ∈ G,

min
i∈[m]

yi(〈w,xi〉+ b) > 0 .

On the contrary, for every (w, b) /∈ G,

min
i∈[m]

yi(〈w,xi〉+ b) ≤ 0 .

It follows that

arg max
(w,b):
‖w‖=1

min
i∈[m]

yi(〈w,xi〉+ b) ⊆ G .

39

Hence, solving the second optimization problem is equivalent to the
following optimization problem:

arg max
(w,b)∈G

min
i∈[m]

yi(〈w,xi〉+ b) .

Finally, since for every (w, b) ∈ G, and every i ∈ [m], yi(〈w,xi〉 +
b) = |〈w,xi〉 + b|, we obtain that the second optimization problem is
equivalent to the first optimization problem.

2. Let S = ((xi, yi))
m
i=1 ⊆ (Rd × {−1, 1})m be a linearly separable set

with a margin γ, such that maxi∈[m] ‖xi‖ ≤ ρ for some ρ > 0. The

margin assumption implies that there exists (w, b) ∈ Rd×R such that
‖w‖ = 1, and

(∀i ∈ [m]) yi(〈w,xi〉+ b) ≥ γ .

Hence,
(∀i ∈ [m]) yi(〈w/γ,xi〉+ b/γ) ≥ 1 .

Let w? = w/γ. We have ‖w?‖ = 1/γ. Applying Theorem 9.1, we
obtain that the number of iterations of the perceptron algorithm is
bounded above by (ρ/γ)2.

3. The claim is wrong. Fix some integer m > 1 and λ > 0. Let x0 =
(0, α) ∈ R2, where α ∈ (0, 1) will be tuned later. For k = 1, . . . ,m− 1,
let xk = (0, k). Let y0 = . . . = ym−1 = 1. Let S = {(xi, yi) : i ∈
{0, 1, . . . ,m − 1}}. The solution of hard-SVM is w = (0, 1/α) (with
value 1/α2). However, if

λ · 1 +
1

m
(1− α) ≤ 1

α2
,

the solution of soft-SVM is w = (0, 1). Since α ∈ (0, 1), it suffices to
require that 1

α2 > λ+ 1/m. Clearly, there exists α0 > 0 s.t. for every
α < α0, the desired inequality holds. Informally, if α is small enough,
then soft-SVM prefers to “neglect” x0.

4. Define the function g : X → R by g(x) = maxy∈Y f(x, y). Clearly, for
every x ∈ X and every y ∈ Y,

g(x) ≥ f(x, y) .

Hence, for every y ∈ Y,

min
x∈X

max
y∈Y

f(x, y) = min
x∈X

g(x) ≥ min
x∈X

f(x, y) .

40

Hence,
min
x∈X

max
y∈Y

f(x, y) ≥ max
y∈Y

min
x∈X

f(x, y) .

16 Kernel Methods

1. Recall that H is finite, and let H = {h1, . . . , h|H|}. For any two words
u, v in Σ∗, we use the notation u � v if u is a substring of v. We will
abuse the notation and write h � u if h is parameterized by a string
v such that v � u. Consider the mapping φ : X → R|H|+1 which is
defined by

φ(x)[i] =

1 if i = |H|+ 1

1 if hi � x
0 otherwise

Next, each hj ∈ H will be associated with w(hj) := (2ej ;−1) ∈
R|H|+1. That is, the first |H| coordinates of w(hj) correspond to the
vector ej , and the last coordinate is equal to −1. Then, ∀x ∈ X ,

〈w, φ(x)〉 = 2[φ(x)j]− 1 = hj(x) . (8)

2. In the Kernelized Perceptron, the weight vector w(t) will not be ex-
plicitly maintained. Instead, our algorithm will maintain a vector
α(t) ∈ Rm. In each iteration we update α(t) such that

w(t) =

m∑
i=1

α
(t)
i ψ(xi) . (9)

Assuming that Equation (9) holds, we observe that the condition

∃i s.t. yi〈w(t), ψ(xi)〉 ≤ 0

is equivalent to the condition

∃i s.t. yi

m∑
j=1

α
(t)
j K(xi,xj) ≤ 0 ,

which can be verified while only accessing instances via the kernel
function.

We will now detail the update α(t). At each time t, if the required
update is wt+1 = wt + yixi, we make the update

α(t+1) = α(t) + yiei .

41

A simple inductive argument shows that Equation (9) is satisfied.

Finally, the algorithm returns α(T+1). Given a new instance x, the

prediction is calculated using sign(
∑m

i=1 α
(T+1)
i K(xi,x)).

3. The representer theorem tells us that the minimizer of the training
error lies in span({ψ(x1), . . . , ψ(xm)}). That is, the ERM objective is
equivalent to the following objective:

min
α∈Rm

λ‖
m∑
i=1

αiψ(xi)‖2 +
1

2m

m∑
i=1

(〈
m∑
j=1

αjψ(xj), ψ(xi)〉 − yi)2

Denoting the gram matrix by G, the objective can be rewritten as

min
α∈Rm

λα>Gα +
1

2m

m∑
i=1

(〈α, G·,i〉 − yi)2 . (10)

Note that the objective (Equation (10)) is convex15. It follows that
a minimizer can be obtained by differentiating Equation (10), and
comparing to zero. Define λ′ = m · λ. We obtain

(λ′G+GGT)α−Gy = 0

Since G is symmetric, this can be rewritten as

G(λ′I +G)α = Gy .

A sufficient (and necessary in case that G is invertible) condition for
the above to hold is that

(λ′I +G)α = y .

Since G is positive semi-definite and λ′ > 0, the matrix λ′I + G is
positive definite, and thus invertible. We obtain that α∗ = (λ′I +
G)−1y is a minimizer of our objective.

4. Define ψ : {1, . . . , N} → RN by

ψ(j) = (1j; 0N−j) ,

15 The term 2
m

∑m
i=1(〈α,G↓i〉 − yi)2 is simply the least square objective, and thus it

is convex, as we have already seen. The Hessian of αTGα is G, which is positive semi-
definite. Hence, αTGα is also convex. Our objective is a weighted sum, with non-negative
weights, of the two convex terms above. Thus, it is convex.

42

where 1j is the vector in Rj with all elements equal to 1, and 0N−j is
the zero vector in RN−j . Then, assuming the standard inner product,
we obtain that ∀(i, j) ∈ [N]2,

〈ψ(i), ψ(j)〉 = 〈(1i; 0N−i), (1j; 0N−j)〉 = min{i, j} = K(i, j) .

5. We will formalize our problem as an SVM (with kernels) problem.
Consider the feature mapping φ : P([d]) → Rd (where P([d]) is the
collection of all subsets of [d]), which is defined by

φ(E) =

d∑
j=1

1[j∈E]ej .

In words, φ(E) is the indicator vector of E. A suitable kernel function
K : P([d])×P([d])→ R is defined by K(E,E′) = |E ∩E′|. The prior
knowledge of the manager implies that the optimal hypothesis can be
written as a homogenous halfspace:

x 7→ sign(〈2w, φ(x)〉 − 1) ,

where w =
∑

i∈I ei, where I ⊂ [d], |I| = k, is the set of k relevant
items. Furthermore, the halfspace defined by (2w, 1) has zero hinge-
loss on the training set. Finally, we have that ‖(2w, 1)‖ =

√
4k + 1,

and ‖(φ(x), 1)‖ ≤
√
s+ 1. We can therefore apply the general bounds

on the sample complexity of soft-SVM, and obtain the following:

ES [L0−1
D (A(S))] ≤ min

w:‖w‖≤
√
4k+1

Lhinge
D (w) +

√
8 · (4k + 1) · (s+ 1)

m

=

√
8 · (4k + 1) · (s+ 1)

m
.

Thus, the sample complexity is polynomial in s, k, 1/ε,. Note that
according to the regulations, each evaluation of the kernel function K
can be computed in O(s log s) (this is the cost of finding the common
items in both carts). Consequently, the computational complexity of
applying soft-SVM with kernels is also polynomial in s, k, 1/ε.

6. We will work with the label set {±1}.

43

Observe that

h(x) = sign(‖ψ(x)− c−‖2 − ‖ψ(x)− c+‖2)
= sign(2〈ψ(x), c+〉 − 2〈ψ(x), c−〉+ ‖c−‖2 − ‖c+‖2)
= sign(2(〈ψ(x),w〉+ b))

= sign(〈ψ(x),w〉+ b) .

(a)(b) Simply note that

〈ψ(x),w〉 = 〈ψ(x), c+ − c−〉

=
1

m+

∑
i:yi=1

〈ψ(x), ψ(xi)〉+
1

m−

∑
i:yi=−1

〈ψ(x), ψ(xi)〉

=
1

m+

∑
i:yi=1

K(x,xi) +
1

m−

∑
i:yi=−1

K(x,xi) .

17 Multiclass, Ranking, and Complex Prediction
Problems

1. Fix some (x, y) ∈ S. By our assumption about S (and by the triangle
inequality),

‖x− µy‖ ≤ r , (∀y′ 6= y) ‖x− µy′‖ ≥ 3r

Hence,
‖x− µy‖2 ≤ r2 , (∀y′ 6= y) ‖x− µy′‖2 ≥ 9r2

It follows that for every y′ 6= y,

‖x−µy′‖2−‖x−µy‖2 = 2〈µy,x〉−‖µy‖2−(2〈µ′y,x〉−‖µy′‖2) ≥ 8r2 > 0 .

Dividing by two, we obtain

〈µy,x〉 −
1

2
‖µy‖2 − (〈µ′y,x〉 −

1

2
‖µy′‖2) ≥ 4r2 > 0 .

Define w as in the hint (that is, define w = [w1w2 . . .wk] ∈ R(n+1)k,
where each wi is defined by wi = [µi,−‖µi‖2/2]). It follows that

〈w, ψ(x, y)〉 − 〈w, ψ(x, y′)〉 ≥ 4r2 > 0 .

Hence, hw(x) = y, so `(w, (x, y)) = 0.

44

Then,

r∑
i=1

ṽiyi =
r∑
i=1

v̂iyi + (ṽs − v̂s)ys + (ṽt − v̂t)yt

=

r∑
i=1

v̂iyi + (s− v̂s)s+ (v̂s − s)t

=

r∑
i=1

v̂iyi + (s− v̂s)(s− t)

>

r∑
i=1

v̂iyi .

Hence, we obtain a contradiction to the maximality of v̂.

5. (a) Averaging sensitivity and specificity, F1-score, F-β-score (θ = 0):
Let y′ ∈ Rr, and let V = {−1, 1}r. Let v̂ = argmaxv∈V

∑r
i=1 viy

′
i.

We would like to show that v̂ = (sign(y′i), . . . , sign(y′r)). Indeed,
for every v ∈ V , we have

r∑
i=1

viy
′
i ≤

r∑
i=1

|viy′i| =
r∑
i=1

sign(y′i)y
′
i .

(b) Recall at k, precision at k: The proof is analogous to the previous
part.

18 Decision Trees

1. (a) Here is one simple (although not very efficient) solution: given h,
construct a full binary tree, where the root note is (x1 = 0?), and
all the nodes at depth i are of the form (xi+1 = 0?). This tree
has 2d leaves, and the path from each root to the leaf is composed
of the nodes (x1 = 0?), (x2 = 0?),. . . ,(xd = 0). It is not hard
to see that we can allocate one leaf to any possible combination
of values for x1, x2, . . . , xd, with the leaf’s value being h(x) =
h((x1, x2, . . . , xd)).

(b) Our previous result implies that we can shatter the domain {0, 1}d.
Thus, the VC-dimension is exactly 2d.

2. We denote by H the binary entropy.

47

(a) The algorithm first picks the root node, by searching for the fea-
ture which maximizes the information gain. The information
gain16 for feature 1 (namely, if we choose x1 = 0? as the root) is:

H

(
1

2

)
−
(

3

4
H

(
2

3

)
+

1

4
H(0)

)
≈ 0.22

The information gain for feature 2, as well as feature 3, is:

H

(
1

2

)
−
(

1

2
H

(
1

2

)
+

1

2
H

(
1

2

))
= 0.

So the algorithm picks x1 = 0? as the root. But this means that
the three examples ((1, 1, 0), 0),((1, 1, 1), 1), and ((1, 0, 0), 1) go
down one subtree, and no matter what question we’ll ask now,
we won’t be able to classify all three examples perfectly. For
instance, if the next question is x2 = 0? (after which we must give
a prediction), either ((1, 1, 0), 0) or ((1, 1, 1), 1) will be mislabeled.
So in any case, at least one example will be mislabeled. Since we
have 4 examples in the training set, it follows that the training
error is at least 1/4.

(b) Here is one such tree:

x2 = 0?

x3 = 0?

1

yes

0

no

yes

x3 = 0?

0

yes

1

no

no

16Here we compute entropy where log is to the base of e. However, one can pick any
other base, and the results will just change by a constant factor. Since we only care about
which feature has the largest information gain, this won’t affect which feature is picked.

48

19 Nearest Neighbor

1. We follow the hints for proving that for any k ≥ 2, we have

ES∼Dm

 ∑
i:|Ci∩S|<k

P [Ci]]

 ≤ 2rk

m
.

The claim in the first hint follows easily from the linearity of the expec-
tation and the fact that

∑
i:|Ci∩S|≤k P[Ci] =

∑r
i=1 1[|Ci|≤k] P[Ci]. The

claim in the second hint follows directly from Chernoff’s bounds. The
next hint leaves nothing to prove. Finally, combining the fourth hint
with the previous hints,

ES∼Dm

 ∑
i:|Ci∩S|<k

P[Ci]]

 ≤ r∑
i=1

max{8/(me), 2k/m} .

Since k ≥ 2, our proof is completed.

2. The claim in the first hint follows from

EZ1,...,Zk P
y∼p

[y 6= y′] = p

(
1− P

Z1,...,Zk
[p′ > 1/2]

)
+ (1− p)

(
P

Z1,...,Zk
[p′ > 1/2]

)
.

The next hints leave nothing to prove.

3. We need to show that

P
y∼p

[y 6= y′]− P
y∼p′

[y 6= y′] ≤ |p− p′| (15)

Indeed, if y′ = 0, then the left-hand side of Equation (15) equals p−p′.
Otherwise, it equals p′ − p. In both cases, Equation (15) holds.

4. Recall that πj(x) is the j-th NN of x. We prove the first claim. The
probability of misclassification is bounded above by the probability
that x falls in a “bad cell” (i.e., a cell that does not contain k instances
from the training set) plus the probability that x is misclassified given
that x falls in a “good cell”. The next hints leave nothing to prove.

49

20 Neural Networks

1. Let ε > 0. Following the hint, we cover the domain [−1, 1]n by disjoint
boxes such that for every x, x′ which lie in the same box, we have
|f(x)− f(x′)| ≤ ε/2. Since we only aim at approximating f to an ac-
couracy of ε, we can pick an arbitrary point from each box. By picking
the set of representative points appropriately (e.g., pick the center of
each box), we can assume w.l.o.g. that f is defined over the discrete
set [−1 + β,−1 + 2β, . . . , 1]d for some β ∈ [0, 2] and d ∈ N (which
both depends on ρ and ε). From here, the proof is straightforward.
Our network should have two hidden layers. The first layer has (2/β)d

nodes which correspond to the intervals that make up our boxes. We
can adjust the weights between the input and the hidden layer such
that given an input x, the output of each neuron is close enough to 1
if the corresponding coordinate of x lies in the corresponding interval
(note that given a finite domain, we can approximate the indicator
function using the sigmoid function). In the next layer, we construct
a neuron for each box, and add an additional neuron which outputs
the constant −1/2. We can adjust the weights such that the output
of each neuron is 1 if x belongs to the corresponding box, and 0 oth-
erwise. Finally, we can easily adjust the weights between the second
layer and the output layer such that the desired output is obtained
(say, to an accuracy of ε/2).

2. Fix some ε ∈ (0, 1). Denote by F the set of 1-Lipschitz functions from
[−1, 1]n to [−1, 1]. Let G = (V,E) with |V | = s(n) be a graph such
that the hypothesis class HV,E,σ, with σ being the sigomid activation
function, can approximate every function f ∈ F , to an accuracy of ε.
In particular, every function that belongs to the set {f ∈ F : (∀x ∈
{−1, 1}n) f(x) ∈ {−1, 1}} is approximated to an accuracy ε. Since
ε ∈ (0, 1), it follows that we can easily adapt the graph such that
its size remains Θ(s(n)), and HV,E,σ contains all the functions from
{−1, 1}n to {−1, 1}. We already noticed that in this case, s(n) must
be exponential in n (see Theorem 20.2).

3. Let C = {c1, . . . , cm} ⊆ X . We have

|HC | = |{((f1(c1), f2(c2)), . . . , (f1(cm), f2(cm))) : f1 ∈ F1, f2 ∈ F2}|
= |{((f1(c1), . . . , f1(cm)), (f2(c1), . . . , f2(cm))) : f1 ∈ F1, f2 ∈ F2}|
= |F1C ×F2C |
= |F1C | · |F2C | .

50

It follows that τH(m) = τF2(m)τF1(m).

4. Let C = {c1, . . . , cm} ⊆ X . We have

|HC | = |{f2(f1(c1)), . . . , f2(f1(cm)) : f1 ∈ F1, f2 ∈ F2}|

=

∣∣∣∣∣∣
⋃

f1∈F1

{(f2(f1(c1)), . . . , f2(f1(cm)) : f2 ∈ F2}

∣∣∣∣∣∣
≤ |F1C | · τF2(m)

≤ τF1(m)τF2(m) .

It follows that τH(m) = τF2(m)τF1(m).

5. The hints provide most of the details. We skip to the conclusion part.
By combining the graphs above, we obtain a graph G = (V,E) with

V = O(n) such that the set {a(i)j }(i,j)∈[n]2 is shattered. Hence, the

VC-dimension is at least n2.

6. We reduce from the k-coloring problem. The construction is very
similar to the construction for intersection of halfspaces. The same
set of points (namely {e1, . . . , en} ∪ {(ei + ej)/2 : {i, j} ∈ E, i < j}) is
considered. Similarly to the case of intersection of halfspaces, it can
be verified that the graph is k-colorable iff minh∈HV,E,sign Ls(h) = 0.
Hence, the k-coloring problem is reduced to the problem of minimizing
the training error. The theorem is concluded.

21 Online Learning

1. Let X = Rd, and let H = {h1, . . . , hd}, where hj(x) = 1[xj=1]. Let
xt = et, yt = 1[t=d], t = 1, . . . , d. The Consistent algorithm might
predict pt = 1 for every t ∈ [d]. The number of mistakes done by the
algorithm in this case is d− 1 = |H| − 1.

2. Let d ∈ N, and let X = [d] and let H = {hA : A ⊆ [d]}, where

hA(x) = 1[x∈A] .

For t = 1, 2, . . ., let xt = t, yt = 1 (i.e., the true hypothesis corresponds
to the set [d]). Note that at every time t,

|{h ∈ Vt : h(xt) = 1}| = |{h ∈ Vt : h(xt) = 0}| ,

51

where the second equality follows from the fact that ht only depends
on x1, . . . , xt−1, and xt is independent of x1, . . . xt−1.

22 Clustering

1. Let R2 ⊆ X = {x1,x2,x3,x4}, where x1 = (0, 0), x2 = (0, 2), x3 =
(2
√
t, 0), x4 = (2

√
t, 2). Let d be the metric induced by the `2 norm.

Finally, let k = 2.

Suppose that the k-means chooses µ1 = x1, µ2 = x2. Then, in the first
iteration it associates x1,x3 with the center µ1 = (

√
t, 0). Similarly, it

associates x2,x4 with the center µ2 = (
√
t, 2). This is a convergence

point of the algorithm. The value of this solution is 4t. The opti-
mal solution associates x1,x2 with the center (0, 1), while x3,x4 are
associated with the center (2

√
t, 1). The value of this solution is 4.

2. The K-means solution is:

µ1 = 2, C1 = {1, 2, 3}, µ2 = 4, C2 = {3, 4} .

The value of this solution is 2 · 1 = 2. The optimal solution is

µ1 = 1.5, C1 = {1, 2}, µ2 = 3.5, C2 = {3, 4}

whose value is 1 = 4 · (1/2)2.

3. For every j ∈ [k], let rj = d(µj , µj+1). Following the notation in the
hint, it is clear that r1 ≥ r2 ≥ . . . ≥ rk ≥ r. Furthermore, by definition
of µk+1 it holds that

max
j∈[k]

max
x∈Ĉj

d(x, µj) ≤ r .

The triangle inequality implies that

max
j∈[k]

diam(Ĉj) ≤ 2r .

The pigeonhole principle implies now that at least 2 of the points
µ1, . . . , µk+1 lie in the same cluster in the optimal solution. Thus,

max
j∈[k]

diam(C∗j) ≥ r .

53

4. Let k = 2. The idea is to pick elements in two close disjoint balls, say
in the plane, and another distant point. The k-diam optimal solution
would be to separate the distant point from the two balls. If the
number of points in the balls is large enough, then the optimal center-
based solution would be to separate the balls, and associate the distant
point with its closest ball.

Here are the details. Let X ′ = R2 with the metric d which is induced
by the `2-norm. A subset X ⊆ X ′ is constructed as follows: Let
m > 0, and let X1 be set of m points which are evenly distributed
on the sphere of the ball B1((2, 0)) (a ball of radius 1 around (2, 0)) .
Similarly, let X2 be a set of m points which are evenly distributed on
the sphere of B1((−2, 0)). Finally, let X3 = {(0, y)} for some y > 0,
and set X = ·∪3i=1Xi. Fix any monotone function f : R+ → R+.
We note that for large enough m, an optimal center-based solution
must separate between X1 and X2, and associate the point (0, y) with
the nearest cluster. However, for large enough y, an optimal k-diam
solution would be to separate X3 from X1 ·∪ X2.

5. (a) Single Linkage with fixed number of clusters:

i. Scale invariance: Satisfied. multiplying the weights by a pos-
itive constant does not affect the order in which the clusters
are merged.

ii. Richness: Not satisfied. The number of clusters is fixed, and
thus we can not obtain all possible partitions of X .

iii. Consistency: Satisfied. Assume by contradiction that d, d′

are two metrics which satisfy the required properties, but
F (X , d′) 6= F (X , d). Then, there are two points x, y which
belong to the same cluster in F (x, d′), but belong to different
clusters in F (X , d) (we rely here on the fact that the number
of clusters is fixed). Since d′ assigns to this pair a larger value
than d (and also assigns smaller values to pairs which belong
to the same cluster), this is impossible.

(b) Single Linkage with fixed distance upper bound:

i. Scale invariance: Not satisfied. In particular, by multiply-
ing by an appropriate scalar, we obtain the trivial clustering
(each cluster consists of a single data point).

ii. Richness: Satisfied. Easily seen.

iii. Consistency: Satisfied. The argument is almost identical to
the argument in the previous part: Assume by contradiction

54

that d, d′ are two metrics which satisfy the required prop-
erties, but F (X , d′) 6= F (X , d). Then, either there are two
points x, y which belong to the same cluster in F (x, d′), but
belong to different clusters in F (X , d) or there are two points
x, y which belong to different clusters in F (x, d′), but belong
to the same cluster in F (X , d) . Using the relation between
d and d′ and the fact that the threshold is fixed, we obtain
that both of these events are impossible.

(c) Consider the scaled distance upper bound criterion (we set the
threshold r to be αmax{d(x, y) : x, y ∈ X}. Let us check which
of the three properties are satisfied:

i. Scale invariance: Satisfied. Since the threshold is scale-invariant,
multiplying the metric by a positive constant doesn’t change
anything.

ii. Richness: Satisfied. Easily seen.

iii. Consistency: Not Satisfied. Let α = 0.75. Let X = {x1, x2, x3},
and equip it with the metric d which is defined by: d(x1, x2) =
3, d(x2, x3) = 7, d(x1, x3) = 8. The resulting partition is
X = {x1, x2}, {x3}. Now we define another metric d′ by:
d(x1, x2) = 3, d(x2, x3) = 7, d(x1, x3) = 10. In this case the
resulting partition is X = X . Since d′ satisfies the required
properties, but the partition is not preserved, it follows that
consistency is not satisfied.

Summarizing the above, we deduce that any pair of properties
can be attained by one of the single linkage algorithms detailed
above.

6. It is easily seen that Single Linkage with fixed number of clusters
satisfies the k-richness property, thus it satisfies all the mentioned
properties.

23 Dimensionality Reduction

1. (a) A fundamental theorem in linear algebra states that if V,W are
finite dimensional vector spaces, and let T be a linear transfor-
mation from V to W , then the image of T is a finite-dimensional
subspace of W and

dim(V) = dim(null(T)) + dim(image(T)).

55

	Gentle Start
	A Formal Learning Model
	Learning via Uniform Convergence
	The Bias-Complexity Tradeoff
	The VC-dimension
	Non-uniform Learnability
	The Runtime of Learning
	Linear Predictors
	Boosting
	Model Selection and Validation
	Convex Learning Problems
	Regularization and Stability
	Stochastic Gradient Descent
	Support Vector Machines
	Kernel Methods
	Multiclass, Ranking, and Complex Prediction Problems
	Decision Trees
	Nearest Neighbor
	Neural Networks
	Online Learning
	Clustering
	Dimensionality Reduction
	Generative Models
	Feature Selection

