Algorithmic Game Theory

Mechanisms for Revenue Maximization

Vangelis Markakis
markakis@gmail.com

Designing mechanisms for maximizing revenue for single parameter environments

Social Welfare vs Revenue

- Many reasons for focusing on social welfare:
- In government auctions, revenue may not be the first priority
- Also in competitive markets, greedily maximizing revenue may cause customers leave towards other sellers
- Strong positive results for social welfare maximization.
- If we do not care about computational efficiency, we can always have a truthful mechanism that maximizes welfare (VCG)
- We often have good approximations in polynomial time.
- Question: Similar results for revenue maximization?

Social Welfare vs Revenue

An illuminating example:

- Consider 1 item and only 1 bidder with private value v
- Only truthful mechanisms: set a price r independent of the declared bid
- Any other pricing rule that depends on the bid is not truthful
- These are called posted price mechanisms.
- If $v \geq r$, the bidder will buy the item, $s w=v$ and revenue $=r$
- If not, $s w=$ revenue $=0$

Social Welfare vs Revenue

- How do we maximize social welfare in this setting?
- Easy, just set r=0
- All we care about for social welfare is that the bidder gets the item
- We do not need to know the exact value of v
- With more bidders, we also do not need to know the exact values to maximize welfare, only who is the highest bidder
- Social welfare is quite special and relatively simple.

Social Welfare vs Revenue

- How do we maximize revenue?
- Optimal revenue we can extract: equal to v
- If we knew v , we would just set $\mathrm{r}:=\mathrm{v}$
- But vis private information!
- Optimal revenue really depends on the exact form of the valuation function
- E.g., if we just set $r=100$, then the mechanism does well only for bidders with $v \geq 100$ (and not too large!).
- For v < 100, it performs terribly

A Model for Revenue Maximization

Conclusions and modeling approach:

- Not easy to compare mechanisms
- We need to consider a different model
- Usual approach: Average case or Bayesian analysis

A Bayesian Model for Revenue Maximization

For single-parameter environments:

- Each bidder i has a value v_{i} which is private information
- For each bidder i, the value v_{i} is drawn from a probability distribution F_{i} on some interval $\left[0, \mathrm{v}_{\max }\right]$, with $\mathrm{v}_{\max } \neq+\infty$
- $F_{i}(z)=\operatorname{Pr}\left[v_{i} \leq z\right]$
- The distributions $F_{1}, F_{2}, \ldots, F_{n}$ are all independent
- Mechanism knows the distributions (but not the values)
- Typically derived from historical data
- Objective: design an auction to maximize expected revenue

Goal: Characterize truthful mechanisms that maximize expected revenue.

A Bayesian Model for Revenue Maximization

Back to single item and single bidder

- Value v of the bidder drawn from distribution F
- Suppose we post a price r
- Expected revenue $=r \cdot \operatorname{Pr}[v \geq r]=r \cdot(1-F(r))$
- It reduces to optimizing posted price r
- Optimal price r is called monopoly price of F.
- E.g., if F is uniform in $[0,1]$, then $F(z)=z$
- Optimal mechanism: post $r=1 / 2$ with expected revenue $1 / 4$

A Bayesian Model for Revenue Maximization

Single-item auction with two bidders?

- This already gets more complex
- Can we start with something simple first?
$2^{\text {nd }}$ price auction with a reserve price
- Fix a reserve price r
- Allocation rule: If no bidder exceeds r, nobody gets the item. Otherwise, winner is the highest bidder
- Payment rule: max \{reserve price, $2^{\text {nd }}$ highest bid\}

A Bayesian Model for Revenue Maximization

Single-item auction with two bidders:

- Reserve prices are used in practice to boost revenue
- Main advantage: much better revenue for the cases where $2^{\text {nd }}$ highest bid is low
- Main disadvantage: in some cases nobody wins (no revenue)
- Hopefully latter happens with small probability
- Is the optimal mechanism very far from such a format?

Expected Revenue for Single-Parameter Bidders

- We focus on single-parameter bidders, monotone allocations and Myerson's truthful payments.
- Due to truthfulness, bids = true values.
- Maximize $\mathbb{E}_{v_{1} \sim F_{1}, \ldots, v_{n} \sim F_{n}}\left[\sum_{i=1}^{n} \boldsymbol{p}_{i}(\boldsymbol{v})\right]=\sum_{i=1}^{n} \mathbb{E}_{\boldsymbol{v}_{-i}}\left[\mathbb{E}_{v_{i}}\left[\boldsymbol{p}_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right)\right]\right]$
- Due to independence, we focus on single bidder i.
- We recall (dfn of expectation and Myerson's payments):
$\mathbb{E}_{v_{i}}\left[\boldsymbol{p}_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right)\right]=\int_{0}^{v_{\max }} \boldsymbol{p}_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right) f\left(v_{i}\right) d v_{i} \quad p_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right)=\int_{0}^{v_{i}} z \cdot \boldsymbol{x}_{i}^{\prime}\left(z, \boldsymbol{v}_{-i}\right) d z$
- Therefore:
$\mathbb{E}_{v_{i}}\left[\boldsymbol{p}_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right)\right]=\int_{0}^{v_{\text {max }}} \boldsymbol{p}_{i}\left(v_{i}, \boldsymbol{v}_{-i}\right) f\left(v_{i}\right) d v_{i}=\int_{0}^{v_{\text {max }}}\left[\int_{0}^{v_{i}} z \cdot \boldsymbol{x}_{i}^{\prime}\left(z, \boldsymbol{v}_{-i}\right) d z\right] f\left(v_{i}\right) d v_{i}$

Expected Revenue for Single-Parameter Bidders

- Reversing the order of integration:

$$
\begin{aligned}
\int_{0}^{v_{\max }}\left[\int_{0}^{v_{i}} z \cdot x_{i}^{\prime}\left(z, \mathbf{v}_{-i}\right) d z\right] f_{i}\left(v_{i}\right) d v_{i} & =\int_{0}^{v_{\max }}\left[\int_{z}^{v_{\max }} f_{i}\left(v_{i}\right) d v_{i}\right] z \cdot x_{i}^{\prime}\left(z, \mathbf{v}_{-i}\right) d z \\
& =\int_{0}^{v_{\max }}\left(1-F_{i}(z)\right) \cdot z \cdot x_{i}^{\prime}\left(z, \mathbf{v}_{-i}\right) d z
\end{aligned}
$$

- Integration by parts and simplification:

$$
\begin{aligned}
& \int_{0}^{v_{\max }} \underbrace{\left(1-F_{i}(z)\right) \cdot z}_{f} \cdot \underbrace{x_{i}^{\prime}\left(z, \mathbf{v}_{-i}\right)}_{g^{\prime}} d z \\
= & \underbrace{\left.\left(1-F_{i}(z)\right) \cdot z \cdot x_{i}\left(z, \mathbf{v}_{-i}\right)\right|_{0} ^{v_{\max }}}_{=0-0}-\int_{0}^{v_{\max }} x_{i}\left(z, \mathbf{v}_{-i}\right) \cdot\left(1-F_{i}(z)-z f_{i}(z)\right) d z \\
= & \int_{0}^{v_{\max }} \underbrace{\left(z-\frac{1-F_{i}(z)}{f_{i}(z)}\right)}_{:=\varphi_{i}(z)} x_{i}\left(z, \mathbf{v}_{-i}\right) f_{i}(z) d z=\mathbb{E}_{v_{i}}\left[\varphi\left(v_{i}\right) \cdot \boldsymbol{x}_{i}(\boldsymbol{v})\right]
\end{aligned}
$$

Virtual Valuations

We transform valuations to virtual valuations, that include information about valuation distribution.

Definition: For an agent i, with

- actual value v_{i},
- distribution F_{i},
- probability density function f_{i},
the virtual valuation at v_{i} is:

$$
\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)} \longleftarrow \quad \text { "information rent" } \quad \begin{aligned}
& \text { for agent } \mathrm{i}
\end{aligned}
$$

Monopoly price of F where virtual valuation is 0 :
Optimal revenue
extracted from i

$$
\left((r(1-F(r)))^{\prime}=0 \Leftrightarrow r-\frac{1-F(r)}{f(r)}=0 \Leftrightarrow \varphi(r)=0\right.
$$

Virtual Valuations

Example: uniform distribution on $[0,1]$ for player i :

- distribution function: $F_{i}(z)=z$
- density function: $\mathrm{f}_{\mathrm{i}}(\mathrm{z})=1$
- virtual valuation: $\phi_{i}\left(v_{i}\right)=v_{i}-\left(1-v_{i}\right) / 1=2 v_{i}-1$

Observations:

- Virtual valuations can also take negative values, even though $v_{i} \geq 0$
- For any distribution, $\phi_{i}\left(v_{i}\right) \leq v_{i}$

Summary: $\mathbb{E}_{\boldsymbol{v} \sim F}\left[\boldsymbol{p}_{i}(\boldsymbol{v})\right]=\mathbb{E}_{\boldsymbol{v} \sim F}\left[\varphi\left(v_{i}\right) \cdot \boldsymbol{x}_{i}(\boldsymbol{v})\right]$

Expected Revenue Equals Expected Virtual Welfare

Main result for revenue maximization:

Consider a single-parameter domain with valuation distributions $F_{1}, F_{2}, \ldots, F_{n}$ and let $F=F_{1} \times F_{2} \times \ldots \times F_{n}$ be the product distribution. For every truthful mechanism (\mathbf{x}, \mathbf{p})

Surprisingly, finding the revenue-optimal mechanism reduces to maximizing the expected virtual welfare

Maximizing Virtual Welfare

- Although we care about payments, we reduced the problem to designing an appropriate allocation rule!
- How do we maximize expected virtual welfare?
- Forget about the expectation and maximize pointwise.
- For each profile $\mathbf{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, maximize $\sum_{i} \phi_{i}\left(v_{i}\right) \cdot x_{i}(\mathbf{v})$
- This is simply a welfare maximization problem
- With $\phi_{i}\left(v_{i}\right)$ playing the role of v_{i}
- We apply Myerson's Lemma, but for the virtual values.
- Allocation rule must be monotone (wrt bids / valuations v_{i}), as required for truthfulness.
- Whenever we can solve welfare maximization efficiently, we can also do it for the virtual welfare.

Maximizing Virtual Welfare

For the single-item auction:

- Give the item to bidder with the highest virtual value.
- Actually, not always...
- Recall: a virtual value can take negative values
- Give it to bidder with the highest positive virtual value
- Sometimes, the item is not allocated to anyone.
- Example: Let F_{i} be the uniform distribution on [0, 1]
- $\phi_{i}\left(v_{i}\right)=2 v_{i}-1$
- Allocation rule: give it to the highest bidder whose bid exceeds $1 / 2$ (reserve price), if such bidder exists

Monotonicity of Virtual Welfare Maximization

- Is the allocation rule that maximizes the virtual welfare monotone (wrt. bids)?
- If yes, then we are done by Myerson's lemma
- Unfortunately this depends on the distributions

Definition: A distribution is called regular if the
corresponding virtual valuation function is non-decreasing

- Examples: the uniform distribution and many other common distributions satisfy this
- Non-regular distributions: multi-modal distributions or with heavy tails

Monotonicity of Virtual Welfare Maximization

Observation: If we have regular distributions for all bidders, then the virtual welfare maximizing rule is monotone

Optimal mechanism for revenue maximization

Assumptions: Independent and regular distributions

- Collect the bids and transform each b_{i} into its corresponding virtual bid $\phi_{i}\left(b_{i}\right)$
- Choose an allocation $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ that maximizes the virtual welfare $\sum_{i} \phi_{i}\left(b_{i}\right) \cdot x_{i}$
- Charge each bidder according to Myerson's payment formula

Expected Revenue Maximization

Let's apply this to single-item auctions with i.i.d bidders

Implementing the revenue-optimal mechanism

- Collect the bids and transform each b_{i} into its corresponding virtual bid $\phi_{i}\left(b_{i}\right)$
- Allocation: since the virtual valuation function is nondecreasing, for i.i.d. bidders, the highest virtual value corresponds to the highest bidder
- Thus: we allocate the item to the highest bidder i , as long as $\phi_{i}\left(b_{i}\right) \geq 0$, otherwise, there is no winner
- Payment: need to find the threshold bid, where does the jump in the allocation occur?

Expected Revenue Maximization

- Consider i.i.d. bidders with the uniform distribution on [0, 1]
- $\phi_{\mathrm{i}}(\mathrm{z})=2 z-1$ for every bidder i
- Let i be the winner, and fix a profile \mathbf{b}_{-i} for the other bidders
- The jump in the allocation can happen either at the $2^{\text {nd }}$ highest bid or at $1 / 2$

2 cases to consider: Case 1: at least one other bidder has a positive virtual bid Case 2: no other bidder has a positive virtual bid Payment $=\max \left\{2^{\text {nd }}\right.$ highest bid, $\left.1 / 2\right\}$ This is a $2^{\text {nd }}$ price auction with reserve price $=1 / 2$

Either $2^{\text {nd }}$ highest bid or $1 / 2$

Expected Revenue Maximization

More generally:

- Consider a single-item auction
- Suppose we have i.i.d. bidders with a regular distribution
- Let ϕ be the common virtual valuation function

Optimal mechanism: $2^{\text {nd }}$ price auction with reserve $=\phi^{-1}(0)$

- i.e., the eBay format is optimal (with appropriate opening bid)
- Surprising that the optimal mechanism has such a simple format

Single-Item Auctions with Non I.I.D. Bidders

- Things become complicated when bidders are not i.i.d.
- For example, suppose bidders' valuations are drawn independently but from from different regular distributions
- The revenue-optimal auction does not resemble any format used in practice
- It is also not easy to interpret as a natural rule to follow and does not have a practical appeal
- Current research: Identify simple auction rules for which we can prove they are near-optimal in terms of expected revenue
- Based again on virtual valuations and on using prophet inequalities for estimating the derived revenue

Prophet Inequality and Simple Single-Item Auctions

- Let F_{1}, \ldots, F_{n} be independent distributions, let X_{1}, \ldots, X_{n} be realizations from F_{1}, \ldots, F_{n}, and let $X^{*}=\max _{i}\left\{X_{i}\right\}$.
- Let $\mathrm{t}: \operatorname{Prob}\left[\mathrm{X}^{*} \geq \mathrm{t}\right]=1 / 2$ (or simply $\mathrm{t}=\mathrm{E}\left[\mathrm{X}^{*}\right] / 2$)
- Then, accepting an arbitrary $X_{i} \geq t$ (if any) guarantees an expected reward of $\geq E\left[X^{*}\right] / 2$.
- Choose ts.t $\mathbb{P}_{\boldsymbol{v}}\left[\max _{i} \varphi\left(v_{i}\right)^{+} \geq t\right]=1 / 2$ (or $t=\mathbb{E}_{\boldsymbol{v}}\left[\max _{i} \varphi\left(v_{i}\right)^{+}\right] / 2$)
- Threshold t can be computed (or estimated), given F_{1}, \ldots, F_{n}
- Give the item to arbitrary bidder i with $\phi_{i}\left(v_{i}\right) \geq t$, if any, at (i's reserve) price r_{i} defined as $\phi_{i}\left(r_{i}\right)=t$.
- If many candidate winners, any monotone selection works. E.g., highest bidder.
- Also applies if bidders arrive online and offers are take-it-or-leave-it.

Prophet Inequality and Simple Single-Item Auctions

- Choose t s.t $\mathbb{P}_{\boldsymbol{v}}\left[\max _{i} \varphi\left(v_{i}\right)^{+} \geq t\right]=1 / 2$ (or $t=\mathbb{E}_{\boldsymbol{v}}\left[\max _{i} \varphi\left(v_{i}\right)^{+}\right] / 2$)
- Threshold t can be computed (or estimated), given F_{1}, \ldots, F_{n}
- Give the item to arbitrary bidder i with $\phi_{i}\left(v_{i}\right) \geq t$, if any, at (i's reserve) price r_{i} defined as $\phi_{i}\left(r_{i}\right)=t$.
- If many candidate winners, choose the highest bidder.
- Prophet inequality implies $\geq 50 \%$ of optimal revenue!
- Simple, virtual valuations determine reserves, not the winner.
- However, reserves are still player-dependent.
- Open Problem: how much of optimal revenue we can recover with anonymous reserve prices, if bidders are independent but not identically distributed.

Prior-Independent Auctions

- Design auctions that extract significant fraction of optimal revenue without resorting to knowledge of valuation distributions F_{1}, \ldots, F_{n}
- Distributions are used in the analysis of the auction, not in its design.
- Expected revenue of Vickrey auction with $n+1$ i.i.d. bidders from any regular distribution $F \geq$ expected revenue of optimal auction (Vickrey auction with optimal reserve price derived with knowledge of F) with n i.i.d. bidders from F.

Theorem 4.1 (Bulow-Klemperer Theorem [1]) Let F be a regular distribution and n a positive integer. Then:

$$
\begin{equation*}
\mathbf{E}_{v_{1}, \ldots, v_{n+1} \sim F}[\operatorname{Rev}(V A)(n+1 \text { bidders })] \geq \mathbf{E}_{v_{1}, \ldots, v_{n} \sim F}\left[\operatorname{Rev}\left(O P T_{F}\right)(n \text { bidders })\right], \tag{6}
\end{equation*}
$$

where VA and $O P T_{F}$ denote the Vickrey auction and the optimal auction for F, respectively. ${ }^{3}$

Multi-Parameter Revenue Maximization

- A much harder problem!
- Recall Myerson's lemma does not hold any more for more complex valuations
- Not easy to characterize truthful mechanisms when the valuation functions depend on multiple private parameters of the bidders
- Very active research field even for auctions with a small number of items

