Algorithmic Game Theory

Truthful Mechanisms for Welfare Maximization

Vangelis Markakis markakis@gmail.com

Designing welfare maximizing truthful auctions for single parameter environments

Single parameter auctions

- For the single-item case, we saw that the Vickrey auction is ideal
- We would like to achieve the same properties for any other type of auction
 - truthfulness and individual rationality [incentive guarantees]
 - welfare maximization [economic performance guarantees]
 - implementation in polynomial time [computational performance guarantees]
- Can we achieve all 3 properties for any single-parameter environment?

Examples of single-parameter environments

k-item unit-demand auctions

- k identical items for sale
- each bidder submits his value per unit and can win at most one unit

Knapsack auctions

 k identical items, each bidder has a value for obtaining a certain number of units

Single-minded auctions

- a set of (non-identical) items for sale
- each bidder is interested in acquiring a specific subset of items (known to the mechanism)
- Each bidder submits his value for the set she desires

- We will see an illustration for knapsack auctions
- k identical items for sale
- Each bidder i has a publicly known demand for w_i items
 - Inelastic demand
 - The mechanism should either give w_i items to the bidder or should not give him anything
- Each bidder i submits a bid b_i for his value
- Real value per unit = v_i
- Assume the demands (w₁, w₂, ..., w_n) are known to the mechanism
 - Say bidders have no incentive to lie about them
- Only private information to bidder i is v_i

Alternative view of knapsack auctions

- •The auctioneer has a resource of total capacity k (a knapsack)
- •Each bidder requires size w_i, if he is served
- •Each bidder has a value v_i, if he is served
- •The auctioneer needs to select a subset of bidders to serve so as not to exceed the capacity k

Feasible allocations:

- $(x_1, x_2, ..., x_n)$ with $x_i \in \{0, 1\}$, and $\sum_i w_i x_i <= k$
- Just like the feasible solutions of a knapsack problem

Example

- Resource = the half-time break in the Champions League final
- •Capacity k = total length of the break
- •Each bidder corresponds to a company who wants to be advertised during the break
- •The size w_i is the duration of the ad of bidder i
- •The auctioneer needs to select a subset of bidders as winners and present their ads without exceeding the time capacity k

- Let $\mathbf{b} = (b_1, b_2, ..., b_n)$ be the biding vector
- Need to decide the allocation and payment rule
- For the allocation rule:
 - Think of maximizing the social welfare
 - Then we have precisely the 0-1 Knapsack problem!

```
max \Sigma_i b_i x_i
s.t.
\Sigma_i w_i x_i \le kx_i \in \{0, 1\}, \text{ for } i = 1, ..., n
```

Claim: The allocation rule that maximizes the social welfare is monotone

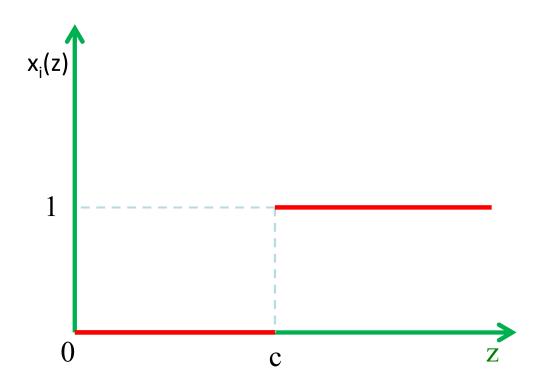
 Consider a winner and see what can happen if he increases his bid

Hence, we can apply Myerson's lemma How many jumps can we have for the allocation of a single player?

•At most one, a player can jump from being a loser $(x_i = 0)$ to being a winner $(x_i = 1)$

Myerson's lemma and knapsack auctions

- •The jump for a winner i happens at i's *critical bid*: the minimum he could bid and still be a winner, also known as *threshold bid*
- Generalization of the payment in Vickrey auction



Final mechanism:

- •Solve the knapsack problem and find an optimal solution
- •Give to each winner i, the requested number of items w_i
- •Charge the winners their critical bid

Myerson's lemma and knapsack auctions

Does this mechanism achieve the desirable properties we wanted?

- truthfulness [YES]
- welfare maximization [YES]
- implementation in polynomial time [?]
- Knapsack is an NP-complete problem
- •The properties can be enforced only for special cases where Knapsack is easy
 - If highest bid or highest demand is polynomial in n (by dynamic programming)
 - If weights form a super-increasing sequence

Algorithmic Mechanism Design

- The requirement for low complexity usually comes in conflict with the other criteria
- Goal of algorithmic mechanism design: explore the tradeoffs between the 3 main properties (or any other properties that we may require in a given setting)
 - Truthfulness
 - welfare maximization
 - implementation in polynomial time
- Approach: relax one of the criteria and see if we can achieve the others
- For Knapsack and in general whenever welfare maximization is NP-complete: resort to approximation algorithms

Goal for Knapsack:

- •Find an approximation algorithm for the social welfare
- Prove that it is monotone

Recall:

<u>Definition</u>: An algorithm A, for a maximization problem, achieves an approximation factor of γ ($\gamma \le 1$), if for every instance I of the problem, the solution returned by A satisfies:

$$SOL(I) \ge \gamma OPT(I)$$

Where OPT(I) is the value of the optimal solution for instance I

- There are several heuristics and approximation algorithms for Knapsack, but not all of them are monotone
- A greedy ½-approximation:
 - For each bidder i, we care to evaluate the quantity b_i/w_i
 - Intuitively, we prefer bidders with small size/demand and large value
- Step 1: Sort and re-index the bidders so that

$$b_1/w_1 \ge b_2/w_2 \ge ... \ge b_n/w_n$$

- Step 2: Pick bidders in that order until the first time that adding someone exceeds the knapsack capacity
- Step 3: Return either the previous solution, or just the highest bidder if he achieves higher social welfare on his own

- Why do we need the last step?
- Maybe there is a bidder with a very high value, but with a large demand as well
- The algorithm may not select this bidder in the first steps
- Step 3 ensures we do not miss out such highly-valued bidders
- Claim: This algorithm is monotone
- Theorem: Using Myerson's lemma, we can have a truthful polynomial time mechanism, that produces at least 50% of the optimal social welfare

Going further

- •Knapsack also admits an FPTAS (Fully Polynomial Time Approximation Scheme)
 - We can have a (1- ε)-approximation for any constant ε >0 [lbarra, Kim '75]
 - But this is not a monotone algorithm
- •[Briest, Krysta, Voecking '05]: A truthful FPTAS for Knapsack
- •Conclusion: For a knapsack auction and any $\varepsilon > 0$, we have a truthful mechanism that produces at least (1ε) -fraction of the optimal social welfare and runs in time polynomial in n and $1/\varepsilon$

General Approach

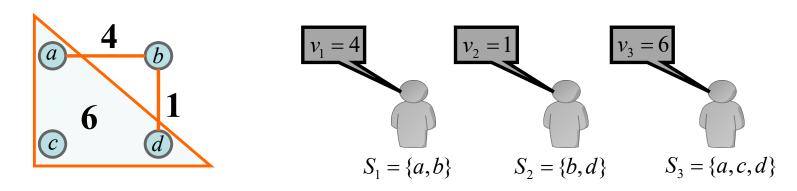
Suppose we have a single-parameter auction where the social welfare maximization problem is NP-hard

- ➤ Check if any of the known approximation algorithms for the problem is monotone (usually not)
- ➤If not, then try to tweak it so as to make it monotone (sometimes feasible)
- ➤Or design a new approximation algorithm that is monotone (hopefully without worsening the approximation guarantee)

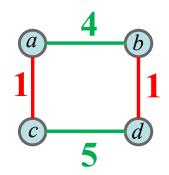
A single-parameter auction with non-identical items

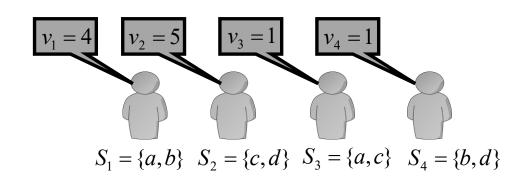
- The auctioneer has a set M of items for sale
- •Each bidder i is interested in acquiring a specific subset of items, $S_i \subseteq M$ (known to the mechanism)
 - If the bidder does not obtain S_i (or a superset of it), his value is 0
- •Each bidder submits a bid b_i for his value if he obtains the set
- Motivated by certain spectrum auctions
- Feasible allocations: the auctioneer needs to select winners who do not have overlapping sets

Examples



- In the example above, the auctioneer can accept only 1 bidder as a winner
- In the example below, the auctioneer can accept up to 2 bidders as winners





Social welfare maximization:

- •Given the bids of the players, select a set of bidders with nonoverlapping subsets, so as to maximize the sum of their bids
- •It contains the SET PACKING problem, hence NP-hard
- Actually it gets even worse w.r.t. approximation

Theorem [Sandholm '99]: Under certain complexity theory assumptions, we cannot have an algorithm with approximation factor better than 1/sqrt(m)

Q: Can we have a 1/sqrt(m)-approximation?

[Lehmann, O' Callaghan, Shoham '01]:

- Order the bidders in decreasing order of b_i/sqrt(s_i)
- Accept each bidder in this order unless overlapping with previously accepted bidders
- Payment i: largest bid b_j for set S_j with nonempty intersection with S_i .
- This algorithm achieves
 - 1/sqrt(m)-approximation, where m = |M|
 - 1/d-approximation, where d = max_i s_i
 - Monotonicity and truthfulness.

Final conclusion: truthful polynomial time mechanism with the best possible approximation to the social welfare

- $S_i = |S_i|$
- Order the bidders in decreasing order of b_i/sqrt(s_i)
- Accept each bidder in this order unless overlapping with previously accepted bidders
- A algorithm's solution (set of indices accepted by Greedy)
- •O optimal solution (set of indices accepted by OPT)

Wlog. assume that $O \cap A = \emptyset$.

Partition O into O_i , $i \in A$, s.t. $j \in O_i$ if $j \in O$ and $S_i \cap S_j \neq \emptyset$.

$$\sum_{j \in O_i} v_j \le \frac{v_i}{\sqrt{s_i}} \sum_{j \in O_i} \sqrt{s_j}$$
 Greedy property
$$\le \frac{v_i}{\sqrt{s_i}} \sqrt{\sum_{j \in O_i} s_j} \sqrt{|O_i|}$$
 Cauchy-Schwarz ineq.
$$\le \frac{v_i}{\sqrt{s_i}} \sqrt{m} \sqrt{s_i}$$
 $|O_i| \le s_i \text{ and } \sum_{j \in O_i} s_j \le m$

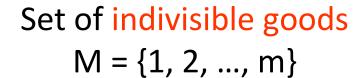
Wrapping Up

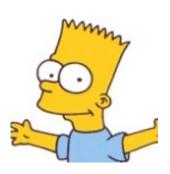
- Single parameter bidders: private information of bidder i is single value v_i, expressed by bid b_i
- Myerson's Lemma: truthful mechanism iff monotone allocation, payments are uniquely determined (and virtually always easy to compute).
 - 2nd price / Vickrey auction is the only truthful single-item auction.
 - Optimal is always monotone: if allocation problem is easy, we also get computational efficiency.
 - If allocation problem is hard, we seek monotone poly-time approximation algorithms.
 - (1-1/k)-approximation in time O(n^{k+1}) and FPTAS for Knapsack (with demand known).
 - Single-minded bidders / set packing: Greedy wrt b_i/sqrt(s_i) is monotone and O(sqrt(m))-approximation (best possible approximation in polynomial time).

Multi-dimensional Bidders / Combinatorial Auctions

The model

Set of players N = {1, 2, ..., n}





Combinatorial Auctions

- Any auction with multiple items for sale
- The players may be allowed to express interest / bids on various combinations of goods
- In practice very active field within the last 10-15 years
 - Spectrum licenses
 - The FCC incentive auction:
 - https://www.fcc.gov/about-fcc/fccinitiatives/incentive-auctions
 - Transportation routes
 - Logistics

Combinatorial auctions

- In practice, it seems economically more efficient and profitable to sell the items together than have a separate auction for each good
- Main challenges:
 - Algorithmic: How shall we design the allocation rule (especially if we have many overlaps in what the players want the most)?
 - Game-theoretic: Can we generalize Myerson's lemma to get truthful mechanisms?

Valuation functions

- So far we studied settings where a single parameter v_i determined all the information we needed for a player
- Most general scenario: consider that each player has a valuation function defined for every subset of the items
- $v_i : P(M) \rightarrow R$
 - where P(M) = powerset of M (all subsets of M)
 - For every $S \subseteq M$,
 - v_i(S) = value of player i if he acquires set S
 b_i(S) = maximum amount willing to pay for acquiring S
- We always assume monotonicity ("free-disposal"): for all $T \subseteq S$, $v_i(T) \le v_i(S)$.

Additive valuation functions

- For every $S \subseteq M$, $v_i(S) = \sum_{j \in S} v_{ij}$
 - where v_{ii} = utility of acquiring item j
- Hence, the function can be completely determined by specifying the vector $(v_{i1}, v_{i2}, ..., v_{im})$
- m parameters for each bidder
- In such cases, the goods can be auctioned independently:
 - The value of an item is not affected by other items that a bidder may have already obtained

- In practice, the items may be interrelated with each other and additive valuations are not appropriate
- The value they add to a player may depend on the other items that the player has
- The items may exhibit
 - Complementarity: some items may be valuable only when they
 are sold together with other items (e.g. left and right shoe)
 - Substitutability: some items may be of similar type and should not be sold together to the same player (e.g. 2 cars with the same features)

Subadditive functions

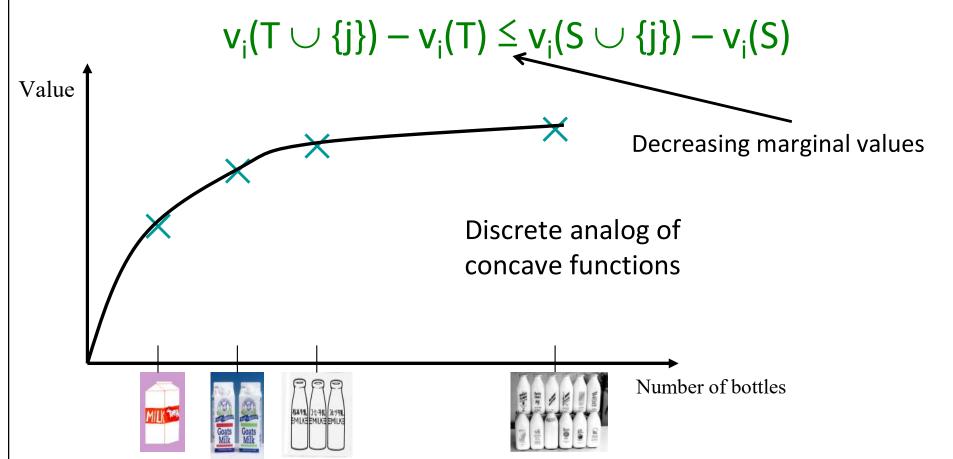
•For any 2 disjoint subsets $S \subseteq M$, $T \subseteq M$,

$$v_i(S \cup T) \leq v_i(S) + v_i(T)$$

- •In this case, we have substitutability among the goods
- •They are also called complement-free functions (since we do not have complementarity)

Submodular functions

For any 2 subsets S, T, with $S \subseteq T \subseteq M$, and for every $j \notin T$



- Submodular functions form a special class of subadditive valuations
- Hence, they also do not exhibit complementarity
- They play a key role in micro-economic theory
- Expressing the fact that utility gets "saturated" as we keep allocating substitutes to the same player

Symmetric submodular

- Special case of submodular functions, where all goods are identical
 - Hence, the final utility depends only on how many items the player receives
- Applicable for multi-unit auctions
 - E.g., auctions for government bonds fall under this framework
- For k identical items, such functions can be represented by a vector of k marginal values
 - $(m_i(1), m_i(2), ..., m_i(k))$ with $m_i(j) \ge m_i(j+1)$
 - Where m_i(j) = additional utility to the player for obtaining the j-th unit, if the player already has j-1 units

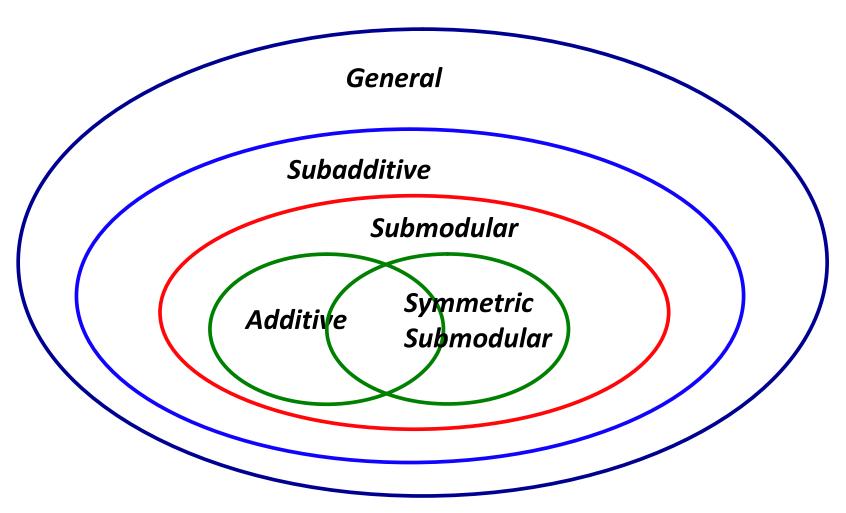
Superadditive functions

•For any 2 disjoint subsets $S \subseteq M$, $T \subseteq M$,

$$v_i(S \cup T) \ge v_i(S) + v_i(T)$$

- •In this case, we have complementarity
- •For example, the items may not have any value if they are sold on their own, but only when sold in bundles with other goods
 - Single-minded bidders fall under this class

Relations between different classes of valuation functions



Social Welfare Maximization

- Need to define social welfare in this more general setting
- Definition: Let $S = (S_1, S_2, ..., S_n)$ be an allocation of the items to the players, where $S_i = \text{subset}$ assigned to player i. Then the social welfare derived from S is

$$SW(S) = \sum_{i} v_{i}(S_{i})$$

The SWM problem (Social Welfare Maximization):

<u>Input:</u> The valuation functions of the players (how?)

<u>Output:</u> Find an allocation $S^* = (S_1, S_2, ..., S_n)$ that produces the highest possible social welfare:

 $SW(S^*) \ge SW(S)$ for any other allocation S

Social welfare maximization

Example with additive valuations

- 3 players, 4 items
- The input can be determined by a 3 x 4 array

48	41	11	0
35	10	50	5
45	20	10	25

- Optimal allocation: $S^* = (S_1, S_2, S_3) = (\{1, 2\}, \{3\}, \{4\})$
- Optimal social welfare: 48 + 41 + 50 + 25 = 164

Integer Programming Formulation

$$\max \sum_{i,S} x_{i,S} v_i(S) \qquad \min \sum_{j \in [m]} p_j + \sum_{i \in [n]} u_i$$

$$\sum_{S} x_{i,S} \le 1 \qquad \forall i \in [n] \qquad u_i \ge v_i(S) - \sum_{j \in S} p_j \qquad \forall i, S$$

$$\sum_{S} x_{i,S} \le 1 \qquad \forall j \in [m] \qquad p_j \ge 0 \qquad \forall j \in [m]$$

$$x_{i,S} \ge 0 \qquad \forall i \in [n]$$

- p_i is the price of item j and u_i is the utility of bidder i
- $u_i = \max_{S} \{ v_i(S) p(S) \}$

 $\forall i, S$

- Complementary slackness: in optimal solution (assuming integrality), each bidder gets a utility maximizing set and each item with positive price is allocated.
- Optimal solutions, if integral, correspond to equilibrium! 39

Walrasian (Competitive) Equilibrum

- Competitive (Walrasian) equilibrium is price vector $\mathbf{p} = (p_1, ..., p_m)$ and allocation $\mathbf{S}^* = (S_1, ..., S_m)$ such that
 - $v_i(S_i) p(S_i) \ge v_i(S) p(S)$, for any subset S of items.
 - Every item j with p_i > 0 is allocated.
- Example: two bidders Alice and Bob, two items x and y.
 - Alice has value 2 for x, y and x+y, 0 for empty set.
 - Bob has value 4 for x+y and 0 for anything else.
 - $p_x = p_y = 2$, Alice nothing, Bob x+y is equilibrium.
 - If Bob had value 3 for x+y and 0 for anything else,
 Walrasian equilibrium does not exist!

Walrasian (Competitive) Equilibrum

- Competitive (Walrasian) equilibrium is price vector $\mathbf{p} = (p_1, ..., p_m)$ and allocation $\mathbf{S}^* = (S_1, ..., S_m)$ such that
 - $v_i(S_i) p(S_i) \ge v_i(S) p(S)$, for any subset S of items.
 - Every item j with $p_i > 0$ is allocated.
- First Welfare Theorem: (If exists,) Walrasian equilibrium maximizes social welfare, even among fractional solutions.

For any feasible (fractional) solution $x_{i,S}$, for any bidder i,

$$v_i(S_i) - \sum_{j \in S_i} p_j \ge \sum_{S} x_{i,S} \left(v_i(S) - \sum_{j \in S} p_j \right) \tag{1}$$

by first condition and because $\sum_{S} x_{i,S} \leq 1$.

 We sum up (1) and observe that sums of prices cancel out, because allocations must be disjoint.

Walrasian (Competitive) Equilibrum

- Competitive (Walrasian) equilibrium is price vector $\mathbf{p} = (p_1, ..., p_m)$ and allocation $\mathbf{S}^* = (S_1, ..., S_m)$ such that
 - $v_i(S_i) p(S_i) \ge v_i(S) p(S)$, for any subset S of items.
 - Every item j with p_i > 0 is allocated.
- Second Welfare Theorem: If LP admits integral optimal solution, then Walrasian equilibrium exists.
 - Follows from complementary slackness conditions.
- LP admits integral optimal solution for gross substitutes.
 - When price for an item increases and prices for other items remain constant, the demand for other items does not decrease.
 - Walrasian equilibrium computed by natural tatonnement process.
 [Kelso-Crawford, '82] Special case of discrete convexity!!!
 - http://www.inbaltalgam.com/slides/GS%20Tutorial%20Part%20I.pdf 42

Walrasian Tatonnement

Demand correspondence:

$$D(v,p) = \left\{ S \subseteq U : v(S) - p(S) \ge v(T) - p(T), \ \forall T \subseteq U \right\}$$

$$D_i(p) = \left\{ S \subseteq U : v_i(S) - p(S) \ge v_i(T) - p(T), \ \forall T \subseteq U \right\}$$

An item-price ascending auction for substitutes valuations:

Initialization:

For every item $j \in M$, set $p_j \leftarrow 0$. For every bidder i let $S_i \leftarrow \emptyset$.

Repeat

For each i, let D_i be the demand of i at the following prices:

 p_j for $j \in S_i$ and $p_j + \epsilon$ for $j \notin S_i$.

If for all $i S_i = D_i$, exit the loop;

Find a bidder i with $S_i \neq D_i$ and update:

- For every item $j \in D_i \setminus S_i$, set $p_j \leftarrow p_j + \epsilon$
- $S_i \leftarrow D_i$
- For every bidder $k \neq i$, $S_k \leftarrow S_k \setminus D_i$

Finally: Output the allocation $S_1, ..., S_n$.

Mechanisms for Combinatorial Auctions

How do the players describe their valuations to auctioneer?

- For a general function, the bidder would need to specify $v_i(S)$, for every $S \subseteq M$ (2^m numbers, prohibitive!)
- Three approaches:
 - 1. Some functions can be described with a small number of parameters
 - E.g. additive or symmetric submodular (m parameters)
 - 2. The auctioneer can ask the bidders during the auction for their values on certain subsets of items
 - Value queries.
 - No need to know the entire function.
 - 3. The auctioneer computes prices and let the bidders decide on their utility maximizing set.
 - Demand queries NP-hard to compute, in general.
 - No information about valuation is given to auctioneer.

Mechanisms for Combinatorial Auctions

- Truthful mechanisms for combinatorial auctions?
- Can we generalize the 2nd price auction when we have multiple items?
- We need to generalize:
 - The allocation algorithm: with 1 item, the winner was the highest bidder
 - multiple winners (with non-overlapping sets of goods),
 but monotonicity still necessary!
 - The payment rule: with 1 item, we offered a «discount» to the winner
 - Adjust the discount to the more general setting (and we also need a separate discount for each winner)

The VCG mechanism

- A generalization of the Vickrey auction
- Named after [Vickrey '61, Clarke '71, Groves '73]
 - **1.** $S^* = (S_1, S_2, ..., S_n)$ social welfare maximizing allocation.
 - 2. Allocation rule: For i=1, ..., n, player i receives set S_i
 - 3. Payment rule:
 - Payment of player i: $p_i = SW_{-i}^* \sum_{j \neq i} v_j (S_j)$ where $SW_{-i}^* = optimal social welfare without player i$
 - Every player pays the "externality" that his presence causes to the welfare of the others
 - Utility (value payment) of player i: u_i = SW* SW_{-i}*
 - Every player has utility equal to the increase in the social welfare due to his presence.

The VCG mechanism

In conclusion:

- •Every player receives the items specified by the optimal allocation (w.r.t. the social welfare)
- •His payment is determined by the declarations of the other players, just as in the Vickrey auction

Theorem: For any valuation functions, the VCG mechanism is truthful and maximizes the social welfare

Can we implement efficiently the VCG mechanism?

-Only when we can solve the SWM problem efficiently

The VCG Mechanism Truthfulness

Fix i and \mathbf{b}_{-i} . When the chosen outcome $\mathbf{x}(\mathbf{b})$ is ω^* , i's utility is

$$v_i(\omega^*) - p_i(\mathbf{b}) = \underbrace{\left[v_i(\omega^*) + \sum_{j \neq i} b_j(\omega^*)\right]}_{(A)} - \underbrace{\left[\max_{\omega \in \Omega} \sum_{j \neq i} b_j(\omega)\right]}_{(B)}.$$

- Part (B) is independent of i' bid b_i (truthfulness holds for any (B) that does not depend on b_i).
 - Part (B), a.k.a. Clarke pivot rule, ensures non-positive transfers (NPT) and individual rationality (IR).
- Bidding truthfully, i.e. $b_i = v_i$, allows the mechanism to maximize part (A), which is exactly what player i wants!
 - Players' incentives fully aligned with objective of mechanism!

How to compute the allocation and the payment rule of VCG:

- It suffices to solve n+1 instances of the SWM problem
- 1 instance with all players present to determine the allocation of the items
- n more instances with a different player absent each time (SWM with n-1 out of the initial n players)
- Final complexity: O(n) · (complexity of SWM)

Additive valuations

- Input: n x m matrix
- Solving SWM: Easy, greedy algorithm
 - For every item j: give it to the player with the highest value
- Implementing the payment rule of VCG:
 - Easy, solve n more times SWM with 1 player absent each time

Example with additive valuations

•3 players, 4 items

48	41	11	0
35	10	50	5
45	20	10	25

- Optimal allocation: $S^* = (S_1, S_2, S_3) = (\{1, 2\}, \{3\}, \{4\})$
- Optimal social welfare: 48 + 41 + 50 + 25 = 164

Example with additive valuations

•3 players, 4 items

48	41	11	0
35	10	50	5
45	20	10	25

Payments:

•
$$p_1 = SW_{-1}^* - \sum_{i \neq 1} v_i(S_i) = 140 - (50+25) = 65$$

•
$$p_2 = SW_{-2}^* - \sum_{j \neq 2} v_j(S_j) = 125 - (89+25) = 11$$

• Similarly, $p_3 = 5$

Additive valuations

- What if we run m independent Vickrey auctions for every item separately?
- We get the same result!
- It is due to the fact that we have additive valuations (hence, the values of different items for a player are not correlated)

Corollary:

For additive valuations, the VCG mechanism is equivalent to executing an independent Vickrey auction for each item

Submodular functions?

Good news

Theorem: The VCG mechanism can be implemented in polynomial time for **symmetric** submodular valuations

- Greedy (wrt. marginal values) allocation is optimal.

Bad news

- For general submodular valuations, SWM is NP-complete
 - Reduction from Knapsack
- The same also holds for subadditive valuations

Submodular functions?

[Lehmann, Lehmann, Nisan '01]: greedy, 1/2-approximation

- Fix an ordering of the goods, 1, 2, ..., m
- For j = 1, ..., m
 - \triangleright Let $(S_1, S_2, ..., S_n)$ be the current allocation to the bidder
 - Allocate next good to the bidder with currently highest marginal value for this good
 - i.e., calculate $v_i(S_i \cup \{j\}) v_i(S_i)$ for each player i
 - We measure how much extra welfare is derived by adding the good to the currently assigned bundle of a player

Submodular functions?

- Further progress: (1 1/e ≈ 0.632)-approximation with value queries [Vondrak '08]
- [Mirrokni, Schapira, Vondrak '08]: Better approximation would require exponentially many value queries.
- Unfortunately these algorithms cannot be combined with the VCG payment formula to obtain a truthful mechanism
- Open problem to derive a computationally efficient truthful mechanism for submodular valuations with the best possible approximation to the social welfare

Truthful Mechanisms for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira 05]:

- 1. Query each bidder for values of all singleton sets and U.
- 2. Find best "matching" allocation where each bidder gets at most one good (maximum bipartite matching).
 - Complete bipartite graph with agents on the left, goods on the right, and weight v_i({ j }) on each { agent i, good j} edge.
- 3. Return best of maximum "matching" and max{ $v_i(U)$ }
- Algorithm finds optimal over subset of feasible allocations, that includes only "matchings" and "winner-takes-all".
 - Maximal-in-Range (MiR) mechanisms: optimize over a predetermined subset of feasible solutions (a.k.a. "range").
 - Allocation is optimal-in-range: truthfulness with VCG payments!
 - Range chosen to guarantee good approximation and polynomialtime optimization.

Truthful Mechanisms for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira 05]:

- 1. Query each bidder for values of all singleton sets and U.
- 2. Find best "matching" allocation where each bidder gets at most one good (maximum bipartite matching).
 - Complete bipartite graph with agents on the left, goods on the right, and weight v_i({ j }) on each { agent i, good j} edge.
- 3. Return best of maximum "matching" and max{ v_i(U) }
- Approximation ratio O(sqrt(m)) for subadditive valuations.
 - If most of OPT SW by "large sets" (cardinality $\ge \text{sqrt}(m)$, so at most sqrt(m) of them), max{ $v_i(U)$ } is sqrt(m)-approximation.
 - If most of OPT SW by "small sets" (cardinality < sqrt(m)) maximum "matching" is sqrt(m)-approximation (due to subadditivity and bound on cardinality).</p>

Truthful Mechanisms for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira '05]:

- 1. Query each bidder for values of all singleton sets and U.
- 2. Find best "matching" allocation where each bidder gets at most one good (maximum bipartite matching).
 - Complete bipartite graph with agents on the left, goods on the right, and weight v_i({ j }) on each { agent i, good j} edge.
- 3. Return best of maximum "matching" and max{ $v_i(U)$ }
- Theorem. MiR algorithm above is truthful with VCG payments and achieves sqrt(m)-approximation for subadditive valuations.
- Maximal-in-Distributional Range gives sqrt(m)-approximation for CAs with general valuations [Lavi, Swamy '05] https://www.cs.princeton.edu/~smattw/Teaching/521fa17lec19.pdf https://www.math.uwaterloo.ca/~cswamy/papers/mechdeslp-journ.pdf

Linear Programming Relaxation of Social Welfare Maximization

$$\begin{aligned} \max \sum_{i,S} x_{i,S} v_i(S) & \min \sum_{j \in [m]} p_j + \sum_{i \in [n]} u_i \\ \sum_{S} x_{i,S} \leq 1 & \forall i \in [n] & u_i \geq v_i(S) - \sum_{j \in S} p_j & \forall i, S \\ \sum_{i,S:j \in S} x_{i,S} \leq 1 & \forall j \in [m] & p_j \geq 0 & \forall j \in [m] \\ x_{i,S} \geq 0 & \forall i \in [n] \end{aligned}$$

• p_j is the price of item j and u_j is the utility of bidder i

$$u_i = \max_{S} \{v_i(S) - p(S)\}$$

$$D_i(U_i, p) = \left\{ S \subseteq U_i : v_i(S) - p(S) \ge v_i(T) - p(T), \ \forall T \subseteq U_i \right\}$$

Demand Queries [Krysta, Vocking, '12]:

Algorithm 1. Overselling MPU algorithm

- 1 For each good $e \in U$ do $p_e^1 := p_0$.
- 2 For each bidder $i = 1, 2, \dots, n$ do
- Set $S_i := D_i(U_i, p^i)$, for a suitable $U_i \subseteq U$.
- Update for each good $e \in S_i$: $p_e^{i+1} := p_e^i \cdot 2$
- Binary search in optimal prices of goods!
- Truthful because prices p_i do not depend on bidder i and demand queries.
- If $p_0 = max\{v_i(U)\}/(4m)$, Alg1 allocates $\leq log_2(4m)+1$ copies of each good.
 - After allocating so many copies of good e,
 p_e > max{ v_i(U) } and no player can afford it anymore.

Lemma. p_e^* denotes final price of good e. Then,

$$\operatorname{Alg} = \sum_{i=1}^{n} v_i(S_i) \ge \sum_{e \in U} p_e^* - mp_0$$

$$\sum_{i=1}^{n} v_i(S_i) \ge \sum_{i=1}^{n} \sum_{e \in S_i} p_e^i$$

$$= \sum_{i=1}^{n} \sum_{e \in S_i} 2^{\ell_e^i} p_0 \qquad \qquad \ell_e^i = \text{copies of } i \text{ sold before } i$$

$$= p_0 \sum_{e \in U} \sum_{k=1}^{\ell_e^* - 1} 2^k \qquad \qquad \ell_e^* = \text{copies } i \text{ sold in total}$$

$$= p_0 \sum_{e \in U} (2^{\ell_e^*} - 1)$$

$$= \sum_{e \in U} p_e^* - mp_0 = \sum_{e \in U} p_e^* - \frac{\text{OPT}}{4} \qquad p_0 = \frac{\max\{v_i(U)\}}{4m} \le \frac{\text{OPT}}{4m}$$

- Approximation ratio: compare social welfare of Alg and OPT
 - Demand query ensures that:

$$\forall \text{ player } i, \ v_i(S_i) \ge v_i(S_i^*) - \sum_{e \in S_i^*} p_e^*$$

Summing up and using Lemma:

$$\mathrm{Alg} \geq \mathrm{OPT} - \sum_{e \in U} p_e^* \geq \mathrm{OPT} - \mathrm{Alg} - \tfrac{\mathrm{OPT}}{4}$$

We get Alg ≥ 30PT/8 (but with logarithmic "overselling").

Algorithm 1. Overselling MPU algorithm

```
1 For each good e \in U do p_e^1 := p_0.

2 For each bidder i = 1, 2, ..., n do

3 Set S_i := D_i(U_i, p^i), for a suitable U_i \subseteq U.

4 Update for each good e \in S_i: p_e^{i+1} := p_e^i \cdot 2
```

- "Overselling" is fixed with oblivious rounding and sets U_i
 - U_i is the set of available goods at step i.
 - After the demand query $D_i(U_i, p^i)$ is answered, S_i is allocated with probability $1/\log_2(4m)$
 - Approximation ratio increases by factor O(log₂(4m)) for submodular valuations.
- Demand-query truthful approximations extends to budgeted bidders and liquid welfare: LiquidValuation;(S) = min{ v;(S), B; }

Negative Cycles, Monotonicity and Truthfulness

- Consider allocation (and truthfulness) from viewpoint of single bidder (as in Myerson's Lemma, but multi-dimensional)
 - Fix allocation rule x, other bids b_{-i} and payments p.
 - Consider allocation x(b), payments p(b) and utility v(x(b)) p(b) of bidder i as functions of i's bid b and i's true valuation (a.k.a. type) v.
 - We want to characterize allocation rules x that allow for truthful payments p (similar to Myerson's Lemma).
 - Definition of truthfulness:
 - $v(x(v)) p(v) \ge v(x(b)) p(b)$, for all types v, b
 - Focus on discrete domains (finite set of types), but everything generalizes to infinite (and continuous) domains.

Negative Cycles, Monotonicity and Truthfulness

- Let D set of all possible types.
- Correspondence graph G(D, E, w) is an edge-weighted complete directed graph on D.
 - Let b and b' be two types / vertices and o = x(b) and o' = x(b') corresponding outcomes.
 - w(b, b') = b(o) b(o') (and w(b', b) = b'(o') b'(o)).
 - When true type b, how much bidder prefers o (outcome if he is truthful) to o' (outcome if he misreports b')
 - Payments p function of outcomes (only)!
- Allocation x is truthful (without payments!) iff w(b, b') ≥ 0, for all edges (b, b').

Negative Cycles, Monotonicity and Truthfulness

- Correspondence graph G(D, E, w).
 - Let b, b' be types and o = x(b), o' = x(b') outcomes.
 - w(b, b') = b(o) b(o') (and w(b', b) = b'(o') b'(o)).
- Allocation **x** admits **truthful** payments **p** : Outcomes -> R_+ , if all edges (b, b') become non-negative after we apply **p**: $b(o) p(o) \ge b(o') p(o')$
- Allocation x admits truthful payments p iff G(D, E, w) does not have negative cycles!
 - Truthful payments computed by Johnson's algorithm!
- If domain D is convex, allocation x admits truthful payments
 p iff G(D, E, w) does not have negative 2-cycles.
 - Weak monotonicity: b(o) b'(o) ≥ b(o') b'(o'), for all b, b' [Zaks, Yu '05]

Research questions on the implementation of truthful mechanisms

- Find special cases where SWM is solvable in polynomial time
- Design approximation algorithms for SWM for various types of valuation functions
- General problem with approximation algorithms: they cannot always be combined with some payment rule and get a truthful mechanism
- At the end, we need to understand how truthful mechanisms look like for multi-parameter environments, esp. when SWM is difficult