Algorithmic Game Theory Algorithms for normal-form games and approximate Nash equilibria

Vangelis Markakis
markakis@gmail.com

Outline

- Algorithms for finding equilibria in general normal form games
- The support theorem
- Analysis of 2×2 and $2 x n$ games
- Complexity of general nxm games
- Approximate Nash equilibria
- A subexponential algorithm for any constant $\varepsilon>0$
- Polynomial time algorithms

Nash equilibria: Existence and computation

- In 0-sum games
- von Neumann's theorem establishes both existence and an algorithm for finding an equilibrium
- Boils down to solving one linear program
- In general games?
- Nash's theorem guarantees only existence
- Big research question over the last 2 decades

The support of a strategy

- To come up with efficient algorithms, we need to understand better the properties of Nash equilibria
- Definition: For a mixed strategy $\mathbf{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, the support of \mathbf{p} is the set of pure strategies that have a positive probability of being selected, when we play \mathbf{p}

$$
\operatorname{Supp}(p)=\left\{i: p_{i}>0\right\}
$$

- E.g. if $p=(2 / 7,0,0,3 / 7,0,2 / 7)$, then $\operatorname{Supp}(p)=\{1,4,6\}$
- For pl. 1, Supp(p) shows us which rows have a chance to be selected according to p
- Respectively, for a strategy of pl. 2, it shows the columns

Utility functions revisited

- Let (\mathbf{p}, \mathbf{q}) be a strategy profile in a nxm game
$-p=\left(p_{1}, p_{2}, \ldots, p_{n}\right), q=\left(q_{1}, q_{2}, \ldots, q_{m}\right)$
- Analyzing the utility function of pl. 1:

$$
u_{1}(\mathbf{p}, \mathbf{q})=\sum_{i=1}^{n} \sum_{j=1}^{m} p_{i} \cdot q_{j} \cdot u_{1}\left(s_{i}, t_{j}\right)=\sum_{i=1}^{n} p_{i} \sum_{j=1}^{m} q_{j} \cdot u_{1}\left(s_{i}, t_{j}\right)=\sum_{i=1}^{n} p_{i} \cdot u_{1}\left(e^{i}, \mathbf{q}\right)
$$

- The last term can also be written in terms of the support of p, hence:

$$
u_{1}(\mathbf{p}, \mathbf{q})=\sum_{i \in S u p p(\mathbf{p})} p_{i} \cdot u_{1}\left(e^{i}, \mathbf{q}\right)
$$

Support properties at Nash equilibria

- Let (\mathbf{p}, \mathbf{q}) be a Nash equilibrium and let $\mathrm{i}, \mathrm{j} \in \operatorname{Supp}(\mathrm{p})$
$-p_{i}>0, p_{j}>0$
- How are the quantities $u_{1}\left(e^{i}, \mathbf{q}\right)$ and $u_{1}\left(e^{j}, \mathbf{q}\right)$ related?
- If $u_{1}\left(e^{i}, \mathbf{q}\right)>u_{1}\left(e^{j}, q\right)$, then $p l .1$ has an incentive to reduce the probability p_{j} and increase the probability p_{i}
- But then (\mathbf{p}, \mathbf{q}) would not be a Nash equilibrium
- Similarly, if $u_{1}\left(\mathrm{e}^{i}, \mathbf{q}\right)<\mathrm{u}_{1}\left(\mathrm{e}^{j}, \mathbf{q}\right)$
- The only choice at an equilibrium is to have $u_{1}\left(e^{i}, \mathbf{q}\right)=u_{1}\left(e^{j}, \mathbf{q}\right)$
- If $\mathbf{i} \in \operatorname{Supp}(\mathbf{p})$ and $\mathrm{j} \notin \operatorname{Supp}(\mathbf{p})$?
- Then it must hold that $u_{1}\left(e^{i}, \mathbf{q}\right) \geq u_{1}\left(e^{j}, q\right)$, otherwise (\mathbf{p}, \mathbf{q}) is not an equilibrium

Support properties at Nash equilibria

Support theorem: A profile (\mathbf{p}, \mathbf{q}) is a Nash equilibrium if and only if
i. $\quad \forall i, j \in \operatorname{Supp}(\mathbf{p}), u_{1}\left(e^{i}, \mathbf{q}\right)=u_{1}\left(e^{j}, \mathbf{q}\right)$
ii. $\quad \forall i, j \in \operatorname{Supp}(\mathbf{q}), \mathrm{u}_{2}\left(\mathbf{p}, \mathrm{e}^{\mathrm{i}}\right)=\mathrm{u}_{2}\left(\mathbf{p}, \mathrm{e}^{j}\right)$
iii. $\quad \forall i \in \operatorname{Supp}(\mathbf{p})$ and $\forall j \notin \operatorname{Supp}(\mathbf{p}), \mathrm{u}_{1}\left(\mathrm{e}^{\mathrm{i}}, \mathbf{q}\right) \geq \mathrm{u}_{1}\left(\mathrm{e}^{\mathrm{j}}, \mathbf{q}\right)$
iv. $\quad \forall i \in \operatorname{Supp}(\mathbf{q})$ and $\forall j \notin \operatorname{Supp}(\mathbf{q}), \mathrm{u}_{2}\left(\mathbf{p}, \mathrm{e}^{i}\right) \geq \mathrm{u}_{2}\left(\mathbf{p}, \mathrm{e}^{j}\right)$

Support properties at Nash equilibria

In other words:

- If a pure strategy is used with positive probability at a Nash equilibrium, then this strategy should be at least as good as any other pure strategy, given the other player's strategy
- 2 pure strategies that have positive probability at a Nash equilibrium must have the same utility, given the other player's strategy
- The theorem yields a way to check if a profile is a Nash equilibrium
- And helps us understand why some profiles cannot form an equilibrium

Support properties at Nash equilibria

Generalizing the support theorem for multi-player games

Theorem: Consider a game with n players. The profile ($\mathbf{p}_{1}, \mathbf{p}_{2}$, ..., \mathbf{p}_{n}) is a Nash equilibrium if and only if for every player i, it holds that
i. $\quad \forall \mathrm{j}, \mathrm{k} \in \operatorname{Supp}\left(\mathbf{p}_{\mathrm{i}}\right), \mathrm{u}_{\mathrm{i}}\left(\mathrm{e}^{\mathrm{j}}, \mathbf{p}_{-\mathrm{i}}\right)=\mathrm{u}_{\mathrm{i}}\left(\mathrm{e}^{\mathrm{k}}, \mathbf{p}_{-\mathrm{i}}\right)$
ii. $\quad \forall \mathrm{j} \in \operatorname{Supp}\left(\mathbf{p}_{\mathrm{i}}\right) \kappa \alpha \iota \forall \mathrm{k} \notin \operatorname{Supp}\left(\mathbf{p}_{\mathrm{i}}\right), \mathrm{u}_{\mathrm{i}}\left(\mathrm{e}^{\mathrm{j}}, \mathbf{p}_{-\mathrm{i}}\right) \geq \mathrm{u}_{\mathrm{i}}\left(\mathrm{e}^{\mathrm{k}}, \mathbf{p}_{-\mathrm{i}}\right)$

Example

Use the support theorem to check if the profile (\mathbf{p}, q) with $\mathbf{p}=(3 / 4,0,1 / 4), \mathbf{q}=(0,1 / 3,2 / 3)$ is an equilibrium in the following game

Finding Nash equilibria

Corollary: If we knew the support of the strategies in one equilibrium profile, then we could compute a Nash equilibrium in polynomial time
In other words: if we only knew which rows and columns are needed in an equilibrium, we could then compute the probabilities of the mixed strategies
Proof:

- Suppose that someone guesses the support for both players
- All the conditions of the support theorem are linear functions of p_{1}, $p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{m}$
- We would also need to add that $\Sigma_{i} p_{i}=1, \Sigma_{i} q_{i}=1$
- By solving a single linear program (or a system of linear inequalities) we can compute the probabilities of the mixed strategies

Finding Nash equilibria

- At the end, finding a Nash equilibrium is a combinatorial problem
- It suffices to find the right supports
- Brute-force algorithm:
- Enumerate all possible pairs of supports for the two players
- For each pair of supports, check if the corresponding linear program has a solution
- Complexity of brute-force in nxm games: prohibitive!
-2^{n} choices for pl. 1
- 2^{m} choices for pl. 2
- We need to run $O\left(2^{n+m}\right)$ linear programs

Finding Nash equilibria

- Can we reduce it to solving only a few linear programs?
- Or a single LP?
- Probably no...
- Note: If the problem is solvable in polynomial time, then it can be reduced to a 0 -sum game, by what we said in previous lecture
- It turns out that finding Nash equilibria is a special case of a "linear complementarity problem" [Cottle, Dantzig, 1960s]

Finding Nash equilibria

Linear Complementarity Problems (LCP)

- They arise in various contexts in Operations Research
- A class of non-linear programs
- Non-linear constraints for Nash equilibria:
- By the support theorem, we need to express the fact that if $p_{i}>0$ at an equilibrium, then the i-th pure strategy gives maximum payoff among all pure strategies
- We cannot express such "if" statements with a linear program
- Instead: let w be the expected payoff of pl. 1 at an equilibrium (p, q)
- Support theorem \Rightarrow if $p_{i}>0$, then $u_{1}\left(e^{i}, q\right)=w$
- Equivalently: $\mathrm{p}_{\mathrm{i}} \cdot\left(\mathrm{u}_{1}\left(\mathrm{e}^{i}, \mathrm{q}\right)-\mathrm{w}\right)=0$ [complementarity condition]

Nash equilibria as a LCP

- Variables:
- $p_{1}, p_{2}, \ldots, p_{n}, q_{1}, q_{2}, \ldots, q_{m}$: for the probabilities of the mixed strategies
- $\mathrm{w}, \mathrm{w}^{\prime}$: for the expected utilities of the 2 players
- Constraints:
$-\Sigma_{i} p_{i}=1, \Sigma_{i} q_{i}=1$
$-p_{1} \geq 0, p_{2} \geq 0, \ldots, q_{1} \geq 0, \ldots, q_{m} \geq 0$
- $w \geq u_{1}\left(e^{i}, q\right)$ for $i=1, \ldots, n$
- $w^{\prime} \geq u_{2}\left(p, e^{j}\right)$ for $j=1, \ldots, m$
$-p_{i} \cdot\left(u_{1}\left(e^{i}, q\right)-w\right)=0$, for $i=1, \ldots, n$
$-q_{j} \cdot\left(u_{2}\left(p, e^{j}\right)-w^{\prime}\right)=0$, for $j=1, \ldots, m$
- Algorithm for solving LCPs: [Lemke, Howson '64]
- Exponential time in worst case, but relatively ok on average
- Based on ideas similar to simplex but for non-linear problems
- see GAMBIT http://www.gambit-project.org/

Finding Nash equilibria

- So far, we have only seen exponential time algorithms...
- In what cases can the support theorem help us in having better algorithms?
- 2×2 games:
- If there is a mixed strategy equilibrium then the support for pl. 1 must contain both rows
- The support of pl. 2 must contain both columns
- Applying the support theorem, it must hold that

$$
u_{1}\left(e^{1}, \mathbf{q}\right)=u_{1}\left(e^{2}, \mathbf{q}\right) \text {, and } u_{2}\left(\mathbf{p}, e^{1}\right)=u_{2}\left(\mathbf{p}, e^{2}\right)
$$

Applying the support theorem to

 Bach-or-Stravinsky (BoS)

If there exists a Nash equilibrium with mixed strategies, in the form (p_{1}, $\left.\left.1-p_{1}\right),\left(q_{1}, 1-q_{1}\right)\right)$, with $p_{1}, q_{1} \in(0,1)$, it should hold that

- $2 q_{1}=1-q_{1} \Rightarrow q_{1}=1 / 3$
- $p_{1}=2\left(1-p_{1}\right) \Rightarrow p_{1}=2 / 3$
- The conditions for pl. 1 give us the mixed strategy of pl. 2
- Similarly the conditions for pl. 2 give the strategy of pl. 1
- Hence we have the mixed equilibrium ((2/3, 1/3), ($1 / 3,2 / 3$))

From $2 x 2$ to $2 x n$ games

	t_{1}	t_{2}	t_{3}	t_{4}
S_{1}	3, -2	1, 2	4, 6	2, 8
S_{2}	1,12	5,10	2, 4	3,-4

- What are the Nash equilibria in this game?
- There is no Nash equilibrium with pure strategies, hence, there must be one with mixed strategies
- We will start with pl. 1
- i.e., with the player who has 2 pure strategies
- We are looking for a strategy $\mathbf{p}=\left(p_{1}, p_{2}\right)=\left(p_{1}, 1-p_{1}\right)$ of $p l .1$

Analysis of $2 x n$ games

- Step 1: We look at pl. 2 and compute the terms
$-u_{2}\left(p, e^{1}\right)=f_{1}\left(p_{1}\right)=-14 p_{1}+12$,
$-u_{2}\left(p, e^{2}\right)=f_{2}\left(p_{1}\right)=-8 p_{1}+10$,
$-u_{2}\left(p, e^{3}\right)=f_{3}\left(p_{1}\right)=2 p_{1}+4$
$-u_{2}\left(p, e^{4}\right)=f_{4}\left(p_{1}\right)=12 p_{1}-4$

Analysis of $2 x n$ games

Step 2: Graphical representation

Analysis of $2 x n$ games

Step 3: Candidate strategies for pl. 1

- Because pl. 2 will play a best response, we look at $\max \left\{\mathrm{f}_{1}\left(\mathrm{p}_{1}\right), \mathrm{f}_{2}\left(\mathrm{p}_{1}\right), \mathrm{f}_{3}\left(\mathrm{p}_{1}\right), \mathrm{f}_{4}\left(\mathrm{p}_{1}\right)\right\}$
- Candidate strategies for pl. 1 only at the intersection points of the max function
- 3 candidate strategies for pl . 1: $(1 / 3,2 / 3),(3 / 5,2 / 5),(4 / 5$, 1/5)

Analysis of $2 x n$ games

| | | t_{1} | t_{2} | t_{3} |
| :---: | :---: | :---: | :---: | :---: |$c t_{4}$.

- Step 4: We check all the candidate strategies to see if they can yield an equilibrium
$1^{\text {st }}$ candidate strategy of pl. $1:(1 / 3,2 / 3)$
- We will search for a strategy of pl. 2 in the form: $\mathbf{q}=\left(q_{1}, 1-q_{1}, 0,0\right)$
- Since from the diagram, the $1^{\text {st }}$ and $2^{\text {nd }}$ columns are the best responses of pl. 2 to the strategy of pl. 1
- From the support theorem, it must hold that $u_{1}\left(e^{1}, \mathbf{q}\right)=u_{1}\left(e^{2}, \mathbf{q}\right)$
$-3 q_{1}+1-q_{1}=q_{1}+5\left(1-q_{1}\right) \Rightarrow q_{1}=2 / 3$
- Since we found a valid probability, we have found a Nash equilibrium

Analysis of $2 x n$ games

| | | t_{1} | t_{2} | t_{3} |
| :---: | :---: | :---: | :---: | :---: |$c t_{4}$.

- Step 4: We check all the candidate strategies to see if they can yield an equilibrium
$2^{\text {nd }}$ candidate strategy of pl . $1:(3 / 5,2 / 5)$
- We will search for a strategy of pl. 2 in the form: $q=\left(0, q_{2}, 1-q_{2}, 0\right)$
- Since from the diagram, the $2^{\text {nd }}$ and $3^{\text {rd }}$ columns are the best responses against the strategy of pl. 1
- From the support theorem, it should hold that $u_{1}\left(e^{2}, q\right)=u_{1}\left(e^{3}, \mathbf{q}\right)$
- By solving this, we get $q_{2}=1 / 3$
- Since we found a valid probability, we have found one more equilibrium ${ }^{\beta}$

Analysis of $2 x n$ games

- Step 4: We check all the candidate strategies to see if they can yield an equilibrium
$3^{\text {rd }}$ candidate strategy of pl . $1:(4 / 5,1 / 5)$
- We will search for a strategy of pl. 2 of the form: $\mathbf{q}=\left(0,0, q_{3}, 1-q_{3}\right)$
- In a similar way, we get $q_{3}=1 / 3$
- Hence we have a $3^{\text {rd }}$ Nash equilibrium

Analysis of $2 x n$ games

- In total: 3 Nash equilibria
- ((1/3, 2/3), (2/3, 1/3, 0, 0))
- ((3/5, 2/5), (0, 1/3, 2/3, 0))
- ((4/5, 1/5), (0, 0, 1/3, 2/3,))

A modified example

- Suppose we change some of the payoffs of pl. 1 (here we changed the $2^{\text {nd }}$ column)
- Which parts of the analysis change?
- Observation: The candidate mixed strategies of pl. 1 were determined by the payoff matrix of pl. 2!
- Hence, steps 1-3 remain exactly the same
- Again, 3 candidate strategies for pl. 1

A modified example

	t_{1}	t_{2}	t_{3}	t_{4}
$\mathrm{~S}_{1}$	$3,-2$	5,2	4,6	2,8
$\mathrm{~S}_{2}$	1,12	1,10	2,4	$3,-4$

- Step 4: We check all the candidate strategies to see if they can yield an equilibrium
$1^{\text {st }}$ candidate strategy of pl. $1:(1 / 3,2 / 3)$
- We will search for a strategy of pl. 2 in the form: $\mathbf{q}=\left(q_{1}, 1-q_{1}, 0,0\right)$
- From the support theorem, it must hold that $u_{1}\left(e^{1}, \mathbf{q}\right)=u_{1}\left(e^{2}, \mathbf{q}\right)$
$-3 q_{1}+5\left(1-q_{1}\right)=q_{1}+1-q_{1} \Rightarrow q_{1}=2$
- Not a valid probability!
- Hence, this candidate strategy does not yield an equilibrium

A modified example

	t_{1}	t_{2}	t_{3}	t_{4}
$\mathrm{~S}_{1}$	$3,-2$	5,2	4,6	2,8
$\mathrm{~S}_{2}$	1,12	1,10	2,4	$3,-4$

- Step 4: We check all the candidate strategies to see if they can yield an equilibrium
$2^{\text {nd }}$ candidate strategy of pl .1 : $(3 / 5,2 / 5)$
- We will search for a strategy of pl. 2 in the form : $\mathbf{q}=\left(0, q_{2}, 1-q_{2}, 0\right)$
- From the support theorem, it should hold that $u_{1}\left(e^{2}, \mathbf{q}\right)=u_{1}\left(e^{3}, \mathbf{q}\right)$
$-5 q_{2}+4\left(1-q_{2}\right)=q_{2}+2\left(1-q_{2}\right) \Rightarrow q_{2}=-1$
- Not a valid probability
- Hence, no equilibrium

A modified example

	t_{1}	t_{2}	t_{3}	t_{4}
	$\mathrm{~s}_{1}$	$3,-2$	5,2	4,6
$\mathrm{~s}_{2}$	1,12	1,10	2,8	
		2,4	$3,-4$	

- Step 4: We check all the candidate strategies to see if they can yield an equilibrium
$3^{\text {rd }}$ candidate strategy of pl. 1: $(4 / 5,1 / 5)$
- Since we have not found any other equilibrium, Nash's theorem guarantees that now we will find one
- We will search for a strategy of pl. 2 of the form: $\boldsymbol{q}=\left(0,0, q_{3}, 1-q_{3}\right)$
- In the modified example, columns 3 and 4 have not changed
- Hence, we will arrive at the same result: $q_{3}=1 / 3$
- Unique Nash equilibrium: ((4/5, 1/5), (0, 0, 1/3, 2/3,))

Back to nxm games

- Summarizing known algorithms:
- Brute-force, based on the support theorem, worst case: need to solve $\mathrm{O}\left(2^{\mathrm{n}+\mathrm{m}}\right)$ linear programs
- [Lemke, Howson '64], worst case: still exponential
- Other approaches: [Kuhn '61, Mangasarian '64, Lemke '65], also exponential worst case running time
- Polynomial time algorithms only for special cases
- 0-sum games
- 2xn games
- Games with constant rank payoff matrices
- We are not aware of any polynomial time algorithm for general nxm normal form games!

Algorithms for normal form games

- Could it be that the problem is NP-complete?
- Probably not
- [Megiddo, Papadimitriou ' 89]: strong evidence that it cannot be NP-complete
- If it were $\Rightarrow \mathbf{N P}=$ co-NP (highly unlikely to be true)
- It is NP-complete if we add more requirements
- E.g. Find a Nash equilibrium that maximizes the sum of the utilities [Gilboa, Zemel' 89, Conitzer, Sandholm ' 03]
- A different problem than just finding a Nash equilibrium
- Further issues
- There exist games, with integer payoff matrices, and with ≥ 3 players, where the probabilities in their Nash equilibria are irrational numbers [Nash '51]
- Hence, we cannot even represent the mixed strategies by a finite number of bits

Back to the proof of Nash's theorem

- Theorem [Nash 1951]: Every finite game possesses at least one equilibrium when we allow mixed strategies
- Nash's proof reduces to using Brouwer's fixed point theorem
- Brouwer's theorem reduces to using Sperner's lemma

Brouwer's theorem

- Brouwer's theorem: Let $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D}$, be a continuous function, and suppose D is convex and compact. Then there exists x such that $f(x)=x$

Illustrations of Brouwer's theorem

Suppose D is a disc

Flip?

Illustrations of Brouwer's theorem

Suppose D is a disc

Rotate?

Sperner's lemma

In 2 dimensions

- Let D be the 2-dimensional simplex
- $D=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=1, x_{i} \geq 0\right.$, for $\left.i=1,2,3\right\}$
- D is a triangle
- Consider a triangulation of D
- Color all the vertices of the small triangles, using 3 colors such that:
- The 3 vertices of D have a different color
- Along each edge of D, we use only the colors of the 2 vertices of the edge (1 color forbidden)
- No restriction for the interior of D

Sperner's lemma

Sperner's

Lemma: Any such coloring has at least one trichromatic triangle

Algorithms for normal form games

Let us look at the computational problems:

- SPERNER: Given a coloring satisfying the conditions of Sperner's lemma, find a trichromatic triangle
- BROUWER: Given a function satisfying the conditions of Brouwer's theorem, find a fixed point
- NASH: Given a finite normal form game, find a Nash equilibrium

What is common with all 3 ?

- They are search problems, where we know a solution always exists

Complexity classes for search problems

Informal descriptions

- FP (Function P): The version of P for search problems
- FNP (Function NP): The version of NP for search problems
- TFNP (Total FNP): The class of search problems that always have a solution

Fact: $\mathrm{FP} \subseteq \mathrm{TFNP} \subseteq \mathrm{FNP}$

Complexity classes for search problems

- TFNP has several interesting subclasses
- Depending on how the proof of existence is established
- PLS (Polynomial time Local Search)
- PPA (Polynomial time Parity Argument)
- PPAD (Polynomial time Parity Argument, Directed)
- PPP (Polynomial time Pigeonhole Principle)
- And more...

In fact, our problems belong to one of these subclasses

The class PPAD

[Papadimitriou '94]
> Consists of problems where the existence of a solution can be established by a particular kind of parity argument
> Namely, PPAD contains all problems that can be reduced to:
END OF THE LINE:

- We are given a directed graph with in-degree(u), out-degree(u) ≤ 1 for every vertex u
- The graph is given implicitly by two circuits P, C
- (u, v) is an edge iff $u=P(v)$ and $v=C(u)$
- i.e., we are only allowed to ask queries for the successor or the predecessor of a node (at most polynomially many queries)
- We are also given a source node (in-degree=0)
- Goal: Find the sink, or another source
- existence of such a node is guaranteed, by a parity argument: the total number of sources and sinks is even

The class PPAD

Complexity of finding a Nash equilibrium

- Open problem for many years
- Eventually:
- The problem belongs to PPAD
- Membership in PPAD is established via the Lemke-Howson algorithm
- [Daskalakis, Goldberg, Papadimitriou, September 2005]: PPAD-complete for 4-player games, conjectured that for 2 players there is an efficient algorithm
- [Chen, Deng, November 2005]: PPAD-complete even for 2-player games!
- [Chen, Deng, Teng, February 2006]: PPAD-complete even for some approximate versions of equilibria
- Current belief is that problems in PPAD are not poly-time solvable
- Finding an exact Nash equilibrium is most probably intractable

Other PPAD-complete problems

How can we define BROUWER as a computational problem?

- Consider a function f that satisfies the conditions of Brouwer's theorem
- It may not be easy to succinctly describe fas input to the algorithm
- Also, the fixed point may contain irrational numbers
- Thus, the function is given implicitly via a circuit (only allowed to ask queries for the value of the function at any point of the domain)
- Goal: Find an approximate fixed point: a point x such that $|f(x)-x|<\varepsilon$

Theorem: BROUWER is PPAD-complete

Finding a Nash equilibrium is equivalent to finding approximate fixed points of continuous functions

- Note that the proof of Nash's theorem only showed that finding an equilibrium is at most as difficult as finding fixed points

Approximate Nash equilibria

Approximate Nash equilibria

- Since the problem of computing equilibria is hard, we can consider possible relaxations of the initial definition
- Recall the definition of Nash equilibria: A profile of mixed strategies (p, q) is a Nash equilibrium if
$-u_{1}(p, q) \geq u_{1}\left(e^{i}, q\right)$ for every pure strategy e^{i} of $p l .1$
$-u_{2}(p, q) \geq u_{2}\left(p, e^{j}\right)$ for every pure strategy e^{j} of $p l .2$

Approximate Nash equilibria

- Definition: A profile of mixed strategies (p, q) is an ε-Nash equilibrium if
$-u_{1}(p, q) \geq u_{1}\left(e^{i}, q\right)-\varepsilon$, for every pure strategy e of pl. 1
$-u_{2}(p, q) \geq u_{2}\left(p, e^{j}\right)-\varepsilon$, for every pure strategy ej of $p l .2$
- In words: a profile of strategies is an ε-Nash equilibrium if no player can gain more than ε by deviating
- When we study ε-Nash equilibria, we usually normalize the utilities to be in $[0,1]$
- Thus also $\varepsilon \in[0,1]$

Example of approximate Nash

equilibria

Consider the profile $(p, q)=((0.6,0.4),(0.4,0.6))$

- $u_{1}(p, q)=0.6 \times 0.4 \times 2 / 3+0.4 \times 0.6 \times 1 / 3=0.24$
- $u_{1}\left(e^{1}, q\right)=0.4 \times 2 / 3=0.267=u_{1}(p, q)+0.027$
- $u_{1}\left(e^{2}, q\right)=0.6 \times 1 / 3=0.2<0.24$
- Similar analysis for pl. 2
- Hence, this profile is a 0.027-Nash equilibrium

None of the players can gain more than 0.027 by deviating to another strategy

Approximate Nash equilibria

A stronger notion of approximation

- In words: a profile of strategies (p, q) is an ε-wellsupported Nash equilibrium if any strategy from $\operatorname{Supp}(p)$ is an approximate best response to q and vice versa
- Formally: (p, q) is an ε-well-supported Nash equilibrium if:

$$
\begin{aligned}
& -u_{1}\left(e^{i}, q\right) \geq u_{1}\left(e^{k}, q\right)-\varepsilon \text {, for every } i \in \operatorname{Supp}(p) \text { and } \\
& \text { every } k \in\{1,2, \ldots, n\} \\
& -\quad u_{2}\left(p, e^{j}\right) \geq u_{2}\left(p, e^{k}\right)-\varepsilon \text {, for every } i \in \operatorname{Supp}(q) \text { and } \\
& \text { every } k \in\{1,2, \ldots, n\}
\end{aligned}
$$

Fact: An ε-well-supported Nash equilibrium is also an ε-Nash equilibrium (but not vice versa)

Searching for Approximate Equilibria

- We will focus on the simpler version of ε-Nash equilibria
- At the same time, we also want to focus on strategy profiles that are simple, and easy to describe

Definition: A k-uniform strategy is a strategy where all probabilities are integer multiples of $1 / k$
e.g. $(3 / k, 0,0,1 / k, 5 / k, 0, \ldots, 6 / k)$

Important observation: Support size of a k-uniform strategy $\leq k$
Can we have approximate equilibria with k-uniform strategies for small values of k ?

A Subexponential Algorithm (Quasi-PTAS)

Theorem [Lipton, Markakis, Mehta '03]: Consider a nxn game. For any ε in $(0,1)$, and for every $k \geq 9 \operatorname{logn} / \varepsilon^{2}$, there exists a pair of k-uniform strategies (p, q) that forms an ε-Nash equilibrium

Lesson learnt: there is no need to use a big support!

- For 0-sum games already proved in [Althofer '94, Lipton, Young '94]

Proof idea:

- Use of the "Probabilistic Method"
- Sample a mixed strategy for each player according to the distribution of a Nash equilibrium
- Feasible because of Nash's theorem
- Then prove that with positive probability the desired property holds

A Subexponential Algorithm (Quasi-PTAS)

Theorem [Lipton, Markakis, Mehta '03]: Consider a nxn game. For any ε in $(0,1)$, and for every $k \geq 9 \log n / \varepsilon^{2}$, there exists a pair of k-uniform strategies (p, q) that forms an ε-Nash equilibrium

Corollary: We can compute an ε-Nash equilibrium in time

$$
n^{O}\left(\log n / \epsilon^{2}\right)
$$

Proof of Corollary: There are $n^{O(k)}$ pairs of supports to look at. Verify the ε-equilibrium condition.

Generalizations

- The same property holds for ε-well-supported equilibria as well [Kontogiannis, Spirakis '10]
- For m-player games with n pure strategies per player, the same technique yields an algorithm for approximate Nash equilibria with
- support size: $k=O\left(m^{2} \log \left(m^{2} n\right) / \varepsilon^{2}\right)$
- running time: exponential in logn, $m, 1 / \varepsilon$
- Previously known approximations:
- [Scarf '67]: exponential in $n, m, \log (1 / \varepsilon)$) (via fixed point approximations)

An application

[McCarthy, Laan, Wang, Vayanos, Sinha, Tambe '18]

- Threat Screening Games: Games for modeling decision problems related to screening at airports, borders, and other areas
- Motivated by a collaboration with the US Transportation Security Administration
- Use of mixed strategies for selecting how to screen quite popular during last years
- Main practical result: Simulations for screening in a large airport (comparable to the Los Angeles International Airport) show that approximate equilibria with k-uniform small support strategies behave very well and have the potential to be deployed in practice

Moving on...

- How good is an algorithm with running time $\mathrm{n}^{0\left(\operatorname{logn} / \varepsilon^{\wedge} 2\right)}$?
- For sure better than exponential
- Better than n^{n} or 2^{n}
- But still not polynomial running time
- Usually referred to as quasi-polynomial
- For what values of ε can we have polynomial time algorithms?

Polynomial Time Approximation Algorithms

For $\varepsilon=1 / 2$:

- Pick arbitrary row i
- Let $j=\mathrm{BR}(\mathrm{i})=$ best response to i
- Find $k=\mathrm{BR}(\mathrm{j})$, pl. 1 plays i or k with prob. 1/2 each
- PI. 2 just plays j

Proposition: This is a $1 / 2$-approximate equilibrium with support size ≤ 2 for both players!
[Feder, Nazerzadeh, Saberi '07]: For $\varepsilon<1 / 2$, we need in worst case, support at least $\Omega(\log n)$

Polynomial Time Approximation Algorithms

Better than $1 / 2$-approximations in polynomial time
[Daskalakis, Mehta, Papadimitriou '07]: polynomial time algorithm for $\varepsilon=1-1 / \varphi=(3-\sqrt{ } 5) / 2 \approx 0.382$ ($\varphi=$ golden ratio)

- Based on sampling + Linear Programming
- Need to solve polynomial number of linear programs
- Not a very fast algorithm
- Polynomial time algorithm but still a large number of linear programs to be solved

Polynomial Time Approximation Algorithms

[Bosse, Byrka, Markakis '07]: a different LP-based method with the same approximation of 0.382

- Needs to solve only 1 linear program
- Similar idea in [Kontogiannis, Spirakis '07] for wellsupported approximation
- A small tweak can also yield a better approximation of 0.36

Recall: 0-sum games can be solved in polynomial time (equivalent to linear programming)

- Given a game defined by the arrays (A, B), start

7 with an equilibrium of the 0 -sum game $(A-B, B-A)$

- If incentives to deviate are "high", players adjust their strategies via best response moves

A 0.382-approximation algorithm

Parameters of the algorithm: $\alpha, \delta_{2} \in[0,1]$

1. Find an equilibrium x^{*}, y^{*} of the 0 -sum game $(A-B, B-A)$
2. Let g_{1}, g_{2} be the maximum gain by deviating to a pure strategy for row and column player. Suppose $g_{1} \geq g_{2}$
3. If $g_{1} \leq \alpha$, output x^{*}, y^{*}
4. Else: let $b_{1}=$ best response to $y^{*}, b_{2}=$ best response to b_{1}
5. Output:

$$
\begin{aligned}
& x=b_{1} \\
& y=\left(1-\delta_{2}\right) y^{*}+\delta_{2} b_{2}
\end{aligned}
$$

Theorem: The algorithm with $\alpha=1-1 / \varphi$ and $\delta_{2}=\left(1-g_{1}\right) /\left(2-g_{1}\right)$ achieves a (1-1/ φ)-approximation

A 0.382-approximation algorithm

Yet another approach

- [Spirakis, Tsaknakis '07]: algorithm with an approximation of $\varepsilon=0.339$
- Best known approximation for many years, till recently
- A different optimization approach, but yet another LP-based method
- It starts with a descent-based method to identify a stationary point
- Needs to solve a polynomial number of linear programs (one per each iteration)
- [Deligkas, Fasoulakis, Markakis '22]: Currently best approximation of $\varepsilon=$ 1/3
- Based on a tweak of the Spirakis-Tsaknakis algorithm
- Improving the bottleneck case of their algorithm
- Big open problem:
- Can we find algorithms for lower values of ε, closer to 0 ?
- Is it possible to have a poly-time algorithm for any constant $\varepsilon>0$?
- Probably not... [Rubinstein '16]
- So far, there have been further improvements for several special classes of games
- Low-rank matrices, sparse matrices, symmetric games, win-lose games, ...

Progress on other notions of approximation

- ε-well-supported equilibria:
- [Kontogiannis, Spirakis '10]: Polynomial time only for $\varepsilon=2 / 3$, based also on solving 0 -sum games
- More recently improved to 0.6528 [Czumaj et al. '18]
- And even more recently improved to $1 / 2$ [Deligkas, Fasoulakis, Markakis '23]
- Even stronger notion of approximation: require that the profile found is geometrically close to an exact Nash equilibrium
- [Etessami, Yannakakis '07]: mostly negative results
- Open problem to provide more positive results, even for special cases, for these concepts as well

The story so far for ε-NE and ε-WSNE

$\varepsilon-N E:$

[Deligkas, Fasoulakis, [Bosse, Byrka,
Markakis '22] Markakis '07]

PPAD-complete
for $\varepsilon<\boldsymbol{n}^{-6}$

[Rubinstein '16]
Under ETH for PPAD, \exists very
small constant ε^{*} s.t. no
poly-time algorithm for $\varepsilon<\varepsilon^{*}$
ε-WSNE:
PPAD-complete
for $\varepsilon<\boldsymbol{n}^{-6}$

[Tsaknakis, Spirakis '07] [Daskalakis, Mehta,
Papadimitriou '06, '07]
[Kontogiannis,
Panagopoulou,
Spirakis '06]

Post-Mortem

- Difficult to find exact Nash equilibria for an arbitrary 2-player game
- A bit less difficult to find approximate Nash equilibria
- But still challenging and not yet well understood
- Is it a catastrophe if we do not have efficient algorithms for every game?
- Players in practice may also be able to adjust their strategies and gradually converge to an equilibrium by observing each other's actions
- Still, "if your laptop cannot find an equilibrium, then neither can the market", quote from Kamal Jain (2003)
- Despite the high complexity, the notion of a Nash equilibrium remains among the most important notions in game theory

Post-Mortem

- Take-home story: Nash equilibria form a good starting point from a conceptual point of view
- But when intractable, we should think towards alternative and tractable variations of equilibrium concepts
- Ongoing research:
- Learning algorithms with convergence guarantees
- Also connected to training neural networks
- Many positive results for 0-sum games (starting with fictitious play [Robinson '51])
- Not as easy for general games
- No-regret algorithms provide convergence "on average"
- Several variations of gradient descent under consideration during last 5 years...

