Algorithmic Game Theory Algorithms for 0-sum games

Vangelis Markakis markakis@gmail.com

Nash equilibria: Computation

- Nash's theorem only guarantees the existence of Nash equilibria
 - Proof via Brouwer's fixed point theorem
- The proof does not imply an efficient algorithm for computing equilibria
 - Because we do not have efficient algorithms for finding fixed points of continuous functions
- Can we design polynomial time algorithms for 2player games?
 - For games with more players?

Zero-sum Games

A special case: 0-sum games

Games where for every profile (s_i, t_j) we have

 $u_1(s_i, t_j) + u_2(s_i, t_j) = 0$

- The payoff of one player is the payment made by the other
- Also referred to as strictly competitive
- It suffices to use only the matrix of player 1 to represent such a game
- How should we play in such a game?

4	2
1	3

A special case: 0-sum games

- Idea: Pessimistic play
- Assume that no matter what you choose the other player will pick the worst outcome for you
- Reasoning of player 1:
 - If I pick row 1, in worst case I get 2
 - If I pick row 2, in worst case I get 1
 - I will pick the row that has the best worst case
 - Payoff = $\max_i \min_j A_{ij} = 2$
- Reasoning of player 2:
 - If I pick column 1, in worst case I pay 4
 - If I pick column 2, in worst case I pay 3
 - I will pick the column that has the smallest worst case payment
 - Payment = $min_j max_i A_{ij} = 3$

4	2
1	3

0-sum games

Definitions

- For pl. 1:
 - The best of the worst-case scenarios:

 $v_1 = max_i min_j A_{ij}$

- We take the minimum of each row and select the best minimum
- For pl. 2:
 - Again the best of the worst-case scenarios

 $v_2 = min_j max_i A_{ij}$

- We take the max in each column and then select the best maximum
- In the example:

 $-v_1 = 2, v_2 = 3$

• The game also does not have pure Nash equilibria

Example 2

- Computing v₁ for pl. 1:
 - Row 1, min = 4
 - Row 2, min = 1
 - Row 3, min = 0
 - Row 4, min = 4
 - $-v_1 = \max{4, 1, 0, 4} = 4$
- Computing v₂ for pl. 2:
 - Column 1, max = 4
 - Column 2, max = 6
 - Column 3, max = 7
 - Column 4, max = 4
 - $-v_2 = \min \{4, 6, 7, 4\} = 4$

	t ₁	t ₂	t ₃	t ₄
s ₁	4	5	6	4
s ₂	2	6	1	3
S ₃	1	0	0	2
s ₄	4	4	7	4

Example 2

- In contrast to the first example, here we have v₁ = v₂
- Recommended strategies:
 - s₁ or s₄ for pl. 1
 - t₁ or t₄ for pl. 2
- Pessimistic play can lead to 4 different profiles
- Observations:
 - i. Same utility in all 4 profiles
 - ii. All 4 profiles are Nash equilibria!
 - iii. There is no other Nash equilibrium

Theorem: For every finite 2-player 0-sum game:

- $v_1 \leq v_2$
- There exists a Nash equilibrium with pure strategies if and only if $v_1 = v_2$
- If (s, t) and (s', t') are pure equilibria, then the profiles (s, t'), (s', t) are also equilibria
- When we have multiple Nash equilibria, the utility is the same for both players in all equilibria (v_1 for pl. 1 and $-v_1$ for pl. 2)

Corollary: In games where $v_1 < v_2$, there is no Nash equilibrium with pure strategies

- In general $v_1 \neq v_2$
- Pessimistic play with pure strategies does not always lead to a Nash equilibrium
- Idea (von Neumann): Use pessimistic play with mixed strategies!
- Definitions:
 - $w_1 = max_p min_q u_1(p, q)$
 - w₂ = min_q max_p u₁(**p**, **q**)
- We can easily show that: $v_1 \le w_1 \le w_2 \le v_2$
 - Because we are optimizing over a larger strategy space
- How can we compute w₁ and w₂?

Back to Example 1

- We will find first $w_1 = \max_p \min_q u_1(p, q)$
- We need to look for a strategy **p** = (p₁, p₂) = (p₁, 1 p₁) of pl. 1
- We need to look better at the 2 consecutive optimization steps
- Lemma: Given a strategy p of pl. 1, the term min_q u₁(p, q) is minimized at a pure strategy of pl. 2
 - Hence, no need to have both optimization steps over mixed strategies

4	2
1	3

- The lemma simplifies the process as follows:
- $w_1 = max_p min_q u_1(p, q)$
 - = max_p min{ u₁(**p**, e¹), u₁(**p**, e²) }
 - = max_{p1} min{ 4p₁ + 1-p₁, 2p₁ + 3(1-p₁) }
 - = $\max_{p_1} \min\{ 3p_1 + 1, 3 p_1 \}$

4	2
1	3

- $w_1 = \max_{p_1} \min \{ 3p_1 + 1, 3 p_1 \}$
- We need to maximize the minimum of 2 lines

 p_1

- $w_1 = \max_{p_1} \min \{ 3p_1 + 1, 3 p_1 \}$
- We need to maximize the minimum of 2 lines

4	2
1	3

- One line is increasing
- The other is decreasing
- The min. is achieved at the intersection point → p₁ = 1/2

Summing up:

 $(v_1 = 2 < 2.5)$

- w₁ = max_p min_q u₁(p, q) = max_{p1} min { 3p₁ + 1, 3 - p₁ } = 3*1/2 + 1 = 5/2
- If pl. 1 plays strategy p = (1/2, 1/2), he can guarantee on average 5/2, independent of the choice of pl. 2

4	2
1	3

With a similar analysis for pl. 2:

- $w_2 = min_q max_p u_1(p, q)$
 - = min_q max{ u₁(e¹, **q**), u₁(e², **q**) }
 - = $\min_{q_1} \max\{ 4q_1 + 2(1-q_1), q_1 + 3(1-q_1) \}$

$$= \min_{q_1} \max\{ 2q_1 + 2, 3 - 2q_1 \}$$

4	2
1	3

We now want to minimize the max among 2 lines

- $w_2 = \min_{q_1} \max\{ 2q_1 + 2, 3 2q_1 \}$
- Again, one is increasing, the other is decreasing

- The max. is achieved at the intersection point \rightarrow q₁ = 1/4
- min-max strategy: (1/4, 3/4)

Final conclusions:

- We found the profile
 - $\mathbf{p} = (1/2, 1/2), \mathbf{q} = (1/4, 3/4)$
- $w_1 = w_2 = 5/2$
- Both players guarantee something better to themselves by using mixed strategies
- With pure strategies:

max_i min_j A_{ij} ≠ min_j max_i A_{ij}

- With mixed strategies, we have equality max_p min_q u₁(p, q) = min_q max_p u₁(p, q)
- Also, (**p**, **q**) is a Nash equilibrium! (check)

4	2
1	3

<u>Theorem</u> (von Neumann, 1928): For every finite 2player 0-sum game:

- 1. $w_1 = w_2$ (referred to as the value of the game)
- 2. The profile (**p**, **q**), where w_1 and w_2 are achieved forms a Nash equilibrium
- If (p, q) and (p', q') are equilibria, then the profiles (p, q'),
 (p', q) are also equilibria
- 4. In every Nash equilibrium, the utility to each player is the same (w_1 for pl. 1 and $-w_1$ for pl. 2)

Conclusions from von Neumann's theorem

- For the family of 2-player 0-sum games, all the problematic issues we had identified for normal form games are resolved
 - Existence: guaranteed
 - Non-uniqueness: not a problem, because all equilibria yield the same utility to each player
 - If there are multiple equilibria, all of them are equally acceptable

Computation of Nash equilibria

- Till now we saw how to find Nash equilibria in 2x2 0-sum games
- The same reasoning can also be applied for 2xn games
- Can we find an equilibrium for arbitrary nxm 0-sum games?

0-sum nxm games

- What happens when n ≥ 3 and m ≥ 3?
- With 4 pure strategies, we need to look for a mixed strategy of pl. 1 in the form **p** = (p₁, p₂, p₃, 1 - p₁ - p₂ - p₃)
- Suppose we start with the same methodology:

$$\begin{split} w_1 &= \max_{\mathbf{p}} \min_{\mathbf{q}} u_1(\mathbf{p}, \mathbf{q}) \\ &= \max_{\mathbf{p}} \min\{ u_1(\mathbf{p}, e^1), u_1(\mathbf{p}, e^2), u_1(\mathbf{p}, e^3), u_1(\mathbf{p}, e^4) \} \\ &= \max_{p_{1}, p_{2}, p_{3}} \min\{ 6p_1 + p_2 + 3p_3 + 5(1 - p_1 - p_2 - p_3), 5p_1 + 2p_2 + 8p_3 + 4(1 - p_1 - p_2 - p_3), ..., ... \} \end{split}$$

Problem with 3 variables, cannot visualize as before

	t ₁	t ₂	t ₃	t ₄
S ₁	6	5	3	5
s ₂	1	2	6	4
S ₃	3	8	3	2
s ₄	5	4	2	0

0-sum nxm games

- We need a different approach
- We can try to see if von Neumann's theorem implies an efficient algorithm
- The initial proof of von Neumann's theorem (1928) is not constructive
 - Based on fixed point theorems
- Fortunately: there is an alternative algorithmic proof of existence
- Finding w₁ and the strategy of pl. 1 can be modeled as a linear programming problem
- Finding the equilibrium strategy of pl. 2 can be modeled as the dual problem to that of pl. 1

Linear Programming

- What is a linear program?
- Any optimization problem where
 - The objective function is linear
 - The constraints are also linear

maximize $Z(x) = c_1x_1 + c_2x_2 + \ldots + c_nx_n$ subject to:

```
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1

a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2

\vdots

a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m

x_1 \ge 0, x_2 \ge 0, \ldots, x_n \ge 0
```

- We can also have inequalities with ≥ or equalities in the constraints
- We can solve linear programs very fast, even with hunderds of variables and constraints (Matlab, AMPL,...)

Linear Programming

- Basic component for the alternative proof of von Neumann's theorem:
- Duality theorem: For every maximization LP, there is a corresponding dual minimization LP such that
 - The primal LP has an optimal solution iff the dual LP has an optimal solution
 - The optimal value (when it exists) for both the primal and the dual LP is the same

- Consider a 0-sum game with an nxm matrix A for pl. 1
- LP-based proof of von Neumann's theorem: The max-min and the min-max strategies of pl. 1 and pl. 2 are obtained by solving the linear programs:

$$\begin{array}{ll} \max w \\ \text{s. t.:} \\ w \leq \sum_{i=1}^{n} A_{ik} p_i, \forall k = 1, \dots, m \\ \sum_{i=1}^{n} p_i = 1 \\ p_i \geq 0, \quad \forall i = 1, \dots, n \\ \end{array} \qquad \begin{array}{ll} \min w \\ \text{s. t.:} \\ w \geq \sum_{j=1}^{m} A_{ij} q_j, \forall i = 1, \dots, n \\ \sum_{j=1}^{m} q_j = 1 \\ q_j \geq 0, \quad \forall j = 1, \dots, m \\ \end{array} \qquad \begin{array}{ll} \min w \\ \text{s. t.:} \\ w \geq \sum_{j=1}^{m} A_{ij} q_j, \forall i = 1, \dots, n \\ p_i \geq 0, \quad \forall i = 1, \dots, n \\ \end{array}$$

Example

- v₁ = 3, v₂ = 5, no pure Nash equilibrium
- We have to use linear programming to find the equilibrium profile

Primal LP

max w s.t. $w \le 6p_1 + p_2 + 3p_3$ $w \le 5p_1 + 2p_2 + 8p_3$ $w \le 3p_1 + 6p_2 + 3p_3$ $w \le 5p_1 + 4p_2 + 3p_3$

- $w \le 5p_1 + 4p_2 + 2p_3$ $p_1 + p_2 + p_3 = 1$
- $p_1, p_2, p_3 \ge 0$

	t ₁	t ₂	t ₃	t ₄
s ₁	6	5	3	5
s ₂	1	2	6	4
S 3	3	8	3	2

Dual LP min w s.t. $w \ge 6q_1 + 5q_2 + 3q_3 + 5q_4$ $w \ge q_1 + 2q_2 + 6q_3 + 4q_4$ $w \ge 3q_1 + 8q_2 + 3q_3 + 2q_4$ $q_1 + q_2 + q_3 + q_4 = 1$ $q_1, q_2, q_3, q_4 \ge 0$

Summary on O-sum games

- There always exists a Nash equilibrium in finite 0-sum games, when we allow mixed strategies
- w₁ = w₂ = value of the game
- If there are multiple equilibria, they all have the same utility for each player (w₁ for pl. 1, -w₁ for pl. 2)
- The value of the game as well as the equilibrium profile can be computed in polynomial time by solving a pair of primal and dual linear programs

0-sum games and optimization

Further connections with Computer Science and Algorithms:

- 1. Every linear program is "equivalent" to solving a 0-sum game
 - Finding the optimal solution to any linear program can be reduced to finding an equilibrium in some 0-sum game
 - Initially stated in [Dantzig '51], complete proof in [Adler '13]
- 2. Every problem solvable in polynomial time (class **P**), can be reduced to linear programming, and hence to finding a Nash equilibrium in some appropriately constructed 0-sum game!

O-sum games and complexity classes

Class P

Shortest paths, minimum spanning trees, sorting, ...

 \Leftrightarrow

0-sum games

Matching Pennies, Rock-Paper-Scissors,

. . .

And some more observations

- Anything we have seen so far also hold for constant-sum games
- In a constant-sum game, for every profile (s, t) with $s \in S^1$, $t \in S^2$

 $u_1(s, t) + u_2(s, t) = c$, for some parameter c

- WHY?
 - We can subtract c from the payoff matrix of pl. 1 (or pl. 2 but not both), so as to convert it to a 0-sum game
 - Adding/subtracting the same parameter from every cell of a payoff matrix do not change the set of Nash equilibria