Algorithmic Game Theory Algorithms for 0-sum games

Vangelis Markakis
markakis@gmail.com

Nash equilibria: Computation

- Nash's theorem only guarantees the existence of Nash equilibria
- Proof via Brouwer's fixed point theorem
- The proof does not imply an efficient algorithm for computing equilibria
- Because we do not have efficient algorithms for finding fixed points of continuous functions
- Can we design polynomial time algorithms for 2player games?
- For games with more players?

Zero-sum Games

A special case: 0-sum games

- Games where for every profile ($\mathrm{s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}$) we have

$$
u_{1}\left(s_{i}, t_{j}\right)+u_{2}\left(s_{i}, t_{j}\right)=0
$$

- The payoff of one player is the payment made by the other

- Also referred to as strictly competitive
- It suffices to use only the matrix of player 1 to represent such a game
- How should we play in such a game?

A special case: 0-sum games

- Idea: Pessimistic play
- Assume that no matter what you choose the other player will pick the worst outcome for you
- Reasoning of player 1 :
- If I pick row 1, in worst case I get 2

- If I pick row 2 , in worst case I get 1
- I will pick the row that has the best worst case
- Payoff = max $_{i} \min _{\mathrm{j}} \mathrm{A}_{\mathrm{ij}}=2$
- Reasoning of player 2 :
- If I pick column 1, in worst case I pay 4
- If I pick column 2, in worst case I pay 3
- I will pick the column that has the smallest worst case payment
- Payment $=\min _{j} \max _{\mathrm{i}} \mathrm{A}_{\mathrm{ij}}=3$

0-sum games

Definitions

- For pl. 1:
- The best of the worst-case scenarios:

$$
v_{1}=\max _{\mathrm{i}} \min _{\mathrm{j}} \mathrm{~A}_{\mathrm{ij}}
$$

- We take the minimum of each row and select the best minimum
- For pl. 2:
- Again the best of the worst-case scenarios

$$
v_{2}=\min _{j} \max _{i} A_{i j}
$$

- We take the max in each column and then select the best maximum
- In the example:
$-v_{1}=2, v_{2}=3$
- The game also does not have pure Nash equilibria

Example 2

- Computing v_{1} for pl. 1 :
- Row 1, min = 4
- Row 2, min = 1
- Row $3, \mathrm{~min}=0$
- Row 4, min $=4$
$-\mathrm{v}_{1}=\max \{4,1,0,4\}=4$
- Computing v_{2} for pl. 2:
- Column 1, max $=4$
- Column 2, max $=6$
- Column 3, max $=7$
- Column 4, max $=4$
$-\mathrm{v}_{2}=\min \{4,6,7,4\}=4$

	t_{1}	t_{2}	t_{3}	t_{4}
S_{1}	4	5	6	4
S_{2}	2	6	1	3
S_{3}	1	0	0	2
S_{4}	4	4	7	4

Example 2

- In contrast to the first example, here we have $\mathrm{v}_{1}=\mathrm{v}_{2}$
- Recommended strategies:
- s_{1} or s_{4} for pl. 1
- t_{1} or t_{4} for pl. 2
- Pessimistic play can lead to 4 different profiles

	t_{1}	t_{2}	t_{3}	t_{4}
S_{1}	4	5	6	4
S_{2}	2	6	1	3
S_{3}	1	0	0	2
S_{4}	4	4	7	4

- Observations:
i. Same utility in all 4 profiles
ii. All 4 profiles are Nash equilibria!
iii. There is no other Nash equilibrium

Nash equilibria in 0-sum games

Theorem: For every finite 2-player 0-sum game:

- $\mathrm{v}_{1} \leq \mathrm{v}_{2}$
- There exists a Nash equilibrium with pure strategies if and only if $\mathrm{v}_{1}=\mathrm{v}_{2}$
- If (s, t) and $\left(s^{\prime}, t^{\prime}\right)$ are pure equilibria, then the profiles $\left(s, t^{\prime}\right),\left(s^{\prime}, t\right)$ are also equilibria
- When we have multiple Nash equilibria, the utility is the same for both players in all equilibria (v_{1} for pl. 1 and $-\mathrm{v}_{1}$ for pl. 2)

Corollary: In games where $\mathrm{v}_{1}<\mathrm{v}_{2}$, there is no Nash equilibrium with pure strategies

Nash equilibria in 0-sum games

- In general $\mathrm{v}_{1} \neq \mathrm{v}_{2}$
- Pessimistic play with pure strategies does not always lead to a Nash equilibrium
- Idea (von Neumann): Use pessimistic play with mixed strategies!
- Definitions:

$$
\begin{aligned}
& -w_{1}=\max _{p} \min _{q} u_{1}(p, q) \\
& -w_{2}=\min _{q} \max _{p} u_{1}(p, q)
\end{aligned}
$$

- We can easily show that: $\mathrm{v}_{1} \leq \mathrm{w}_{1} \leq \mathrm{w}_{2} \leq \mathrm{v}_{2}$
- Because we are optimizing over a larger strategy space
- How can we compute w_{1} and w_{2} ?

Back to Example 1

- We will find first $w_{1}=\max _{p} \min _{q} u_{1}(\mathbf{p}, \mathbf{q})$
- We need to look for a strategy $\mathbf{p}=\left(p_{1}, p_{2}\right)=$ ($p_{1}, 1-p_{1}$) of pl. 1
- We need to look better at the 2 consecutive optimization steps
- Lemma: Given a strategy \mathbf{p} of pl .1 , the term $\min _{q} u_{1}(\mathbf{p}, \mathbf{q})$ is minimized at a pure strategy of pl. 2
- Hence, no need to have both optimization steps over mixed strategies

Analysis of Example 1

- The lemma simplifies the process as follows:

$$
\begin{aligned}
w_{1} & =\max _{p} \min _{q} u_{1}(\mathbf{p}, \mathbf{q}) \\
& =\max _{p} \min \left\{u_{1}\left(p, e^{1}\right), u_{1}\left(p, e^{2}\right)\right\} \\
& =\max _{p 1} \min \left\{4 p_{1}+1-p_{1}, 2 p_{1}+3\left(1-p_{1}\right)\right\} \\
& =\max _{p 1} \min \left\{3 p_{1}+1,3-p_{1}\right\}
\end{aligned}
$$

Analysis of Example 1

- $w_{1}=\max _{p 1} \min \left\{3 p_{1}+1,3-p_{1}\right\}$
- We need to maximize the minimum of 2 lines

Analysis of Example 1

- $w_{1}=\max _{p 1} \min \left\{3 p_{1}+1,3-p_{1}\right\}$
- We need to maximize the minimum of 2 lines

- One line is increasing
- The other is decreasing
- The min. is achieved at the intersection point $\rightarrow \mathrm{p}_{1}=$ $1 / 2$

Analysis of Example 1

Summing up:

- $\mathrm{w}_{1}=\max _{\mathrm{p}} \min _{\mathrm{q}} \mathrm{u}_{1}(\mathbf{p}, \mathbf{q})=\max _{\mathrm{p} 1} \min \left\{3 \mathrm{p}_{1}+1\right.$, $\left.3-p_{1}\right\}=3 * 1 / 2+1=5 / 2$
- If pl. 1 plays strategy $\mathbf{p}=(1 / 2,1 / 2)$, he can guarantee on average $5 / 2$, independent of the choice of pl. 2

- Thus, with mixed strategies, pessimistic play provides a better guarantee than with pure $\left(v_{1}=2<2.5\right)$

Analysis of Example 1

With a similar analysis for pl. 2:

$$
\begin{aligned}
\mathrm{w}_{2} & =\min _{\mathrm{q}} \max _{\mathrm{p}} \mathrm{u}_{1}(\mathbf{p}, \mathbf{q}) \\
& =\min _{\mathrm{q}} \max \left\{\mathrm{u}_{1}\left(\mathrm{e}^{1}, \mathbf{q}\right), \mathrm{u}_{1}\left(\mathrm{e}^{2}, \mathbf{q}\right)\right\} \\
& =\min _{\mathrm{q} 1} \max \left\{4 \mathrm{q}_{1}+2\left(1-\mathrm{q}_{1}\right), \mathrm{q}_{1}+3\left(1-\mathrm{q}_{1}\right)\right\} \\
& =\min _{\mathrm{q} 1} \max \left\{2 \mathrm{q}_{1}+2,3-2 \mathrm{q}_{1}\right\}
\end{aligned}
$$

- We now want to minimize the max among 2 lines

Analysis of Example 1

- $\mathrm{w}_{2}=\min _{\mathrm{q} 1} \max \left\{2 \mathrm{q}_{1}+2,3-2 \mathrm{q}_{1}\right\}$
- Again, one is increasing, the other is decreasing

- The max. is achieved at the intersection point $\rightarrow q_{1}=1 / 4$
- min-max strategy: $(1 / 4,3 / 4)$

Analysis of Example 1

Final conclusions:

- We found the profile
- $\mathbf{p}=(1 / 2,1 / 2), \mathbf{q}=(1 / 4,3 / 4)$
- $w_{1}=w_{2}=5 / 2$
- Both players guarantee something better to themselves by using mixed strategies

- With pure strategies:

$$
\max _{\mathrm{i}} \min _{\mathrm{j}} \mathrm{~A}_{\mathrm{ij}} \neq \min _{\mathrm{j}} \max _{\mathrm{i}} \mathrm{~A}_{\mathrm{ij}}
$$

- With mixed strategies, we have equality

$$
\max _{p} \min _{q} u_{1}(\mathbf{p}, \mathbf{q})=\min _{q} \max _{p} u_{1}(\mathbf{p}, \mathbf{q})
$$

- Also, (\mathbf{p}, \mathbf{q}) is a Nash equilibrium! (check)

Nash equilibria in 0-sum games

Theorem (von Neumann, 1928): For every finite 2player 0 -sum game:

1. $w_{1}=w_{2}$ (referred to as the value of the game)
2. The profile (\mathbf{p}, \mathbf{q}), where w_{1} and w_{2} are achieved forms a Nash equilibrium
3. If (\mathbf{p}, \mathbf{q}) and ($\mathbf{p}^{\prime}, \mathbf{q}^{\prime}$) are equilibria, then the profiles $\left(\mathbf{p}, \mathbf{q}^{\prime}\right)$, (p^{\prime}, q) are also equilibria
4. In every Nash equilibrium, the utility to each player is the same (w_{1} for pl .1 and $-\mathrm{w}_{1}$ for pl . 2)

Nash equilibria in 0-sum games

Conclusions from von Neumann's theorem

- For the family of 2-player 0-sum games, all the problematic issues we had identified for normal form games are resolved
- Existence: guaranteed
- Non-uniqueness: not a problem, because all equilibria yield the same utility to each player
- If there are multiple equilibria, all of them are equally acceptable

Nash equilibria in 0-sum games

Computation of Nash equilibria

- Till now we saw how to find Nash equilibria in 2×20-sum games
- The same reasoning can also be applied for $2 \times n$ games
- Can we find an equilibrium for arbitrary nxm 0-sum games?

0-sum nxm games

- What happens when $\mathrm{n} \geq 3$ and $m \geq 3$?
- With 4 pure strategies, we need to look for a mixed strategy of pl. 1 in the form
$p=\left(p_{1}, p_{2}, p_{3}, 1-p_{1}-p_{2}-p_{3}\right)$
- Suppose we start with the same

	t_{1}	t_{2}	t_{3}	t_{4}
S_{1}	6	5	3	5
S_{2}	1	2	6	4
S_{3}	3	8	3	2
S_{4}	5	4	2	0

$$
\begin{aligned}
\mathrm{w}_{1} & =\max _{\mathrm{p}} \min _{q} \mathrm{u}_{1}(\mathbf{p}, \mathbf{q}) \\
& =\max _{\mathrm{p}} \min \left\{\mathrm{u}_{1}\left(\mathbf{p}, \mathrm{e}^{1}\right), \mathrm{u}_{1}\left(\mathbf{p}, \mathrm{e}^{2}\right), \mathrm{u}_{1}\left(\mathbf{p}, \mathrm{e}^{3}\right), \mathrm{u}_{1}\left(\mathbf{p}, \mathrm{e}^{4}\right)\right\} \\
& =\max _{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3} \min \left\{6 \mathrm{p}_{1}+\mathrm{p}_{2}+3 p_{3}+5\left(1-\mathrm{p}_{1}-\mathrm{p}_{2}-\mathrm{p}_{3}\right), 5 p_{1}+2 p_{2}+8 p_{3}+4(1-\right. \\
p_{1} & \left.\left.-p_{2}-p_{3}\right), \ldots, \ldots\right\}
\end{aligned}
$$

- Problem with 3 variables, cannot visualize as before

0-sum nxm games

- We need a different approach
- We can try to see if von Neumann's theorem implies an efficient algorithm
- The initial proof of von Neumann's theorem (1928) is not constructive
- Based on fixed point theorems
- Fortunately: there is an alternative algorithmic proof of existence
- Finding w_{1} and the strategy of pl. 1 can be modeled as a linear programming problem
- Finding the equilibrium strategy of pl. 2 can be modeled as the dual problem to that of pl. 1

Linear Programming

- What is a linear program?
- Any optimization problem where
- The objective function is linear
- The constraints are also linear

$$
\begin{aligned}
& \operatorname{maximize} Z(x)=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n} \\
& \text { subject to: } \\
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
& x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0
\end{aligned}
$$

- We can also have inequalities with \geq or equalities in the constraints
- We can solve linear programs very fast, even with hunderds of variables and constraints (Matlab, AMPL,...)

Linear Programming

- Basic component for the alternative proof of von Neumann's theorem:
- Duality theorem: For every maximization LP, there is a corresponding dual minimization LP such that
- The primal LP has an optimal solution iff the dual LP has an optimal solution
- The optimal value (when it exists) for both the primal and the dual LP is the same

Nash equilibria in 0-sum games

- Consider a 0-sum game with an nxm matrix A for pl. 1
- LP-based proof of von Neumann's theorem: The max-min and the min-max strategies of pl .1 and pl. 2 are obtained by solving the linear programs:
$\max w$
s. t.:

$$
w \leq \sum_{i=1}^{n} A_{i k} p_{i}, \forall k=1, \ldots, m
$$

$$
\sum_{i=1}^{n} p_{i}=1
$$

$$
p_{i} \geq 0, \quad \forall i=1, \ldots, n
$$

$\min w$
s. t.:

$$
\begin{aligned}
& w \geq \sum_{j=1}^{m} A_{i j} q_{j}, \forall i=1, \ldots, n \\
& \sum_{j=1}^{m} q_{j}=1 \\
& q_{j} \geq 0, \quad \forall j=1, \ldots, m
\end{aligned}
$$

Example

- $v_{1}=3, v_{2}=5$, no pure Nash equilibrium
- We have to use linear programming to find the equilibrium profile

Primal LP

max w
s.t.
$w \leq 6 p_{1}+p_{2}+3 p_{3}$
$w \leq 5 p_{1}+2 p_{2}+8 p_{3}$
$w \leq 3 p_{1}+6 p_{2}+3 p_{3}$
$w \leq 5 p_{1}+4 p_{2}+2 p_{3}$
$p_{1}+p_{2}+p_{3}=1$
$p_{1}, p_{2}, p_{3} \geq 0$

	t_{1}	t_{2}	t_{3}	t_{4}
	6	5	3	5
$\mathrm{~s}_{1}$	6	1	2	6
$\mathrm{~s}_{2}$	1	4		
	$\mathrm{~s}_{3}$	3	8	3

Dual LP

$\min w$
s.t.
$w \geq 6 q_{1}+5 q_{2}+3 q_{3}+5 q_{4}$
$w \geq q_{1}+2 q_{2}+6 q_{3}+4 q_{4}$
$w \geq 3 q_{1}+8 q_{2}+3 q_{3}+2 q_{4}$
$q_{1}+q_{2}+q_{3}+q_{4}=1$
$q_{1}, q_{2}, q_{3}, q_{4} \geq 0$

Summary on 0-sum games

- There always exists a Nash equilibrium in finite 0-sum games, when we allow mixed strategies
- $w_{1}=w_{2}=$ value of the game
- If there are multiple equilibria, they all have the same utility for each player (w_{1} for pl. 1, $-\mathrm{w}_{1}$ for pl. 2)
- The value of the game as well as the equilibrium profile can be computed in polynomial time by solving a pair of primal and dual linear programs

0 -sum games and optimization

Further connections with Computer Science and Algorithms:

1. Every linear program is "equivalent" to solving a 0-sum game - Finding the optimal solution to any linear program can be reduced to finding an equilibrium in some 0 -sum game

- Initially stated in [Dantzig '51], complete proof in [Adler '13]

2. Every problem solvable in polynomial time (class \mathbf{P}), can be reduced to linear programming, and hence to finding a Nash equilibrium in some appropriately constructed 0-sum game!

0 -sum games and complexity classes

Class \mathbf{P}

0-sum games

And some more observations

- Anything we have seen so far also hold for constant-sum games
- In a constant-sum game, for every profile (s, t) with $s \in S^{1}$, $t \in S^{2}$

$$
\mathrm{u}_{1}(\mathrm{~s}, \mathrm{t})+\mathrm{u}_{2}(\mathrm{~s}, \mathrm{t})=\mathrm{c}, \text { for some parameter } \mathrm{c}
$$

- WHY?
- We can subtract c from the payoff matrix of pl. 1 (or pl. 2 but not both), so as to convert it to a 0 -sum game
- Adding/subtracting the same parameter from every cell of a payoff matrix do not change the set of Nash equilibria

