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MARK STEINER 

MATHEMATICAL EXPLANATION* 

(Received 23 August, 1977) 

Philosophers have long pondered explanation in the natural sciences. If they 
have ignored it in the mathematical sciences, blame lies perhaps with a 
lingering distinction between 'matters of fact' and 'relations among ideas', 
the corollary being that mathematics (belonging to the latter class) has 
nothing to explain. Platonism, no less than empiricism, has also traditionally 
stressed the differences between natural science and mathematics. The growing 
acceptance, however, of continuity between the natural and mathematical 
sciences - urged by Quine, Putnam, and the present author' - has prepared 
the way for what follows here. 

Mathematical explanation exists. Mathematicians routinely distinguish 
proofs that merely demonstrate from proofs which explain. Solomon 
Feferman puts it this way: 
Abstraction and generalization are constantly pursued as the means to reach really 
satisfactory explanations which account for scattered individual results. In particular, 
extensive developments in algebra and analysis seem necessary to give us real insight into 
the behavior of the natural numbers.2 

Chang and Keisler, to cite two more logicians, propose to 'explain' preserva- 
tion phenomena - i.e. certain theories are such that submodels of their models 
of their models are again models, or that unions of chains of their models are 
models, or that homomorphisms of their models are models - to 'explain' 
these phenomena "just by the syntactical form of the axioms".3 For example, 
they prove that a theory is preserved under submodels iff it has a purely 
universal axiomatization; under unions of chains iff it has a universal-existential 
axiomatization; and so forth. Let us explore what is common to mathematical 
explanations such as these; we can always invoke 'family resemblances' later, 
if we fail. 

An obvious suggestion is to identify explanation with generality or abstrac- 
tion, as Feferman thinks. There is something general and abstract about 
complex analysis, which at present provides the greatest insight into the 
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136 MARK STEINER 

prime numbers, especially their aggregate behavior. We can divide Feferman's 
thesis into at least three: 

(a) A proof is explanatory per se if it is abstract (or general) in some 
absolute sense, yet to be specified. 

(b) A proof is explanatory per se if it is more abstract (or general) than 
what it proves.4 

(c) Of two proofs of the same theorem, the more explanatory is the more 
abstract (or general). 

Though (a) is probably not what Feferman has in mind, Feferman's 
example of analytic number theory illustrates either (b) or (c). Kreisel 
explicitly adopts (c) - in a private communication - writing that "familiar 
axiomatic analysis in terms of the greater generality of (the theorems occurring 
in) one proof than (in) the other" is 'sufficient' to distinguish between proofs' 
explanatory value. 

Naturally Feferman, or Kreisel, need to clarify 'generality' or 'abstraction'. 
As for the latter, abstraction surely increases in the ascent from first to 
higher 'order' arithmetic (second-order arithmetic invokes sets of numbers; 
third-order, sets of sets of numbers; and so forth). And Feferman could claim 
the following simple theorem for support: 

S(n)= 1+2+3+ *'- +n=n(n+ 1)/2. 

We can prove this by induction by remarking that 

S(n + 1) = S(n) + (n + 1) = n(n + 1)/2 + 2(n + 1)/2 
(n + l)(n + 2)/2. 

But a more illuminating proof is given by 

1 + 2 + 3 + . '.+ n =S 
n +(n-l)+(n-2)+ .. i + 1 S'=S 

(n+ l)+(n+ l)+(n+ 1)+ "- +(n+ l)=n(n+ 1) 

and this proof, when formalized, quantifies over sequences of natural 
numbers, using techniques expounded in Quine's Set Theory and Its Logic, 
whereas the first proof makes do with the numbers themselves and is thus 
less abstract. 

But I doubt whether the mere abstractness of the latter proof carries the 
day; rather, its pictorial aspect, the abstract sequences being necessary to 
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formalize the picture. Indeed, what is perhaps an even more explanatory 
proof than the latter is wholly geometric: 

By dividing a square of dots, n to a side, along its diagonal, we get an isosceles 
right triangle containing 

S(n) = I + 2 + 3 + * * * + n 

dots. The square of n2 dots is composed of two such triangles - though if 
we put the triangles together we count the diagonal (containing n dots) 
twice. Thus we have 

S(n) + S(n) = n2 + n, q.e.d. 

What then of generality? Here the problem of definition is acute. Kitcher 
is right (in his recent article on Bolzano 5) in denying that cardinality has 
anything to do with generality (though he, as I mentioned in the previous 
note, deals primarily with thesis (b)). Nor is it easy to see why the geometric 
method of summing the first n integers is more general than the inductive 
proof. 

A partial criterion of generality emerges from considering that some 
proofs prove more than others. The so-called 'elementary' proof of the Prime 
Number Theorem proves that the ratio of II(x) - the number of primes less 
than or equal to x - to x/log (x) approaches 1 as x goes to infinity. But the 
analytic proofs which Feferman mentions given a much better estimate for 
given x how much H(x) deviates from x/log (x). This is why some mathemati- 
cians, and perhaps Feferman himself, regard the analytic proofs as more 
explanatory. Or consider the Pythagorean proof that the square root 
of 2 is not rational: if a2 -2b2, with a/b reduced to lowest terms, then al 
and thus a itself have to be even; thus a2 must be a multiple of 4, and 
b2 - and thus b - multiples of 2. Since therefore a2 = 2b2 implies that 
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both a and b must be even, contradicting our (allowable) stipulation that 
a/b be reduced to lowest terms, it can never be true, q.e.d. The key point 
here is the proposition that if a2 is even so is a. This can be verified by 
squaring an arbitrary odd number 2q + 1 and showing that the result must be 
odd. Indeed for each prime p, one can separately verify that if p divides a2 
it must divide a also, though the proofs become more and more complex 
(where p = 5, for example, one must square Sq + 1, Sq + 2, Sq + 3, and 
5q + 4 and show that in no case is the result divisible by 5).6 But by using 
the Fundamental Theorem of Arithmetic - that each number has a unique 
prime power expansion (e.g. 756 is uniquely 22 x 33 x 71) - we can argue for 
the irrationality of the square root of two swiftly and decisively. For in the 
prime power expansion of a2 the prime 2 will necessarily appear with an even 
exponent (double the exponent it has in the expansion of a), while in 2b2 its 
exponent must needs be odd. So a2 never equals 2b2, q.e.d. Generally, the 
same proof shows that a2 can never equal nb2, unless n is a perfect square (so 
that all the exponents in its prime power expansion will be even).7 

A final example of an explanatory proof which seems to highlight the role 
of generality in explanation we glean from Polya's book, Induction and 
Analogy in Mathematics.8 (Though Polya's book is a gold mine of examples 
of mathematical explanation, Polya himself does not discuss the notion.) 
The most explanatory proof of the Pythagorean Theorem - the proof Polya 
explains - is also the most general, i.e. proves the most. 

a /\ 

First, the areas of similar plane figures are to each other as the squares of 
their corresponding sides. In particular, any three similar figures constructed 
on the above right triangle have areas which can be represented as ka2, kb2, 
and kc2. Now if we could find any threesome of similar figures constructed 
on the sides of the triangle in which the sum of the figures on sides a and b 
were equal to the area of the figure on side c, we would be able to write 

ka2 + kb2 =kC2, 
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from which the Pythagorean Theorem follows immediately. Thus the 
Pythagorean Theorem is equivalent to a generalization; and the generaliza- 
tion, to any of its instances. But triangles I and II are obviously similar to 
each other and to the whole triangle, and the whole triangle may be regarded 
as being constructed on its own hypotenuse, c! Clearly, triangle I plus triangle 
II equals the whole triangle, so we have our similar threesome, q.e.d. 

In sum, we have given a partial interpretation to thesis (c) above: of two 
proofs, the more explanatory is the more general. To deduce a theorem as an 
instance of a generalization, or as a corollary of a stronger theorem, is more 
explanatory than to deduce it directly. 

But even this criterion fails. Let's look at the square root of two again. 
Hardy proves the general result that 

2 2 a = nb2 

implies that n is a perfect square by a method unlike the one above. Assume 
that a/b is reduced to lowest terms. If a prime p divides b, and thus b2, it 
must divide a2 and thus a, contradiction. So no prime divides b, and b must 
be the number 1; and n, of course, is a perfect square. Specializing to the case 
where n = 2, we get Pythagoras' result - that the square root of 2 is irrational - 
but it would be hard to claim that our present proof, though more general, is 
more explanatory of the specific result than Pythagoras' argument (we must 
here distinguish 'more explanatory' from 'explains more'). We reluctantly 
conclude that the proof invoking the Fundamental Theorem of Arithmetic 
is not more explanatory than Pythagoras' because more general, but for some 
other reason. 

An even more striking refutation of the generality criterion is furnished by 
the Eulerian identity 

(I +x)(1 +x3)(1 +X5).. = 1 +X2/(l -X2)+ 
x4/ (1 -X2)(l -x4) + x9/(1 -X2)(l -x4)(j_X6) +-x 

of which I will present two proofs which, though involved, are well worth the 
reader's patience. The first, by Euler,9 uses the device of introducing a second 
parameter, a: 

Let F(a) = F(a, x) = (1 + ax)(I + ax3)(I + ax5) *-- 
= 1+cla+ c2a2 + c3a3 + *-- 
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So each of the c's depends onx but not on a. F(a) is nothing but (1 + ax)F(ax2), 
so we have 

I +cla+c2a2 + *(1 + ax)(l + clax2 + c2a2x4 +*). 

Equating the coefficients of c, we obtain 

C = X +c1x2 

C2= C1X3 +c2x4 

Cm = CmX2ml+CmX2m 

So 
x2m-1 X 1+3+5+ **+ (2m-1) 

Cm = -- = _ _ _ __ _ _ 

1-X 2m Cm1 (1 -X2)(1 -X4) * ((1 _ X2M) 

~m2 xm 

(1 -X2)(1 -X4) ...(1 x2m 
Summing over m 

F(a) = (I+ax)(I +ax3)(1 +aX5). .= 
1 +,ax/(l -x2)+a2x4/(I -X2)(1 -X4)+ 

from which Euler's theorem follows by letting a = 1. This proof, despite its, 
brillance and generality does not really explain the identity. Note, in particular, 
that this proof could have been used, not only to verify the theorem, but to 
discover it. Thus, in passing, we have refuted a plausible suggestion even 
before we have had a chance to discuss it: that the explanatory proof is the 
one which could be used to determine, not merely verify, the result. Though 
our previous example - the proof, using the Fundamental Theorem of 
Arithmetic, that v/2 is irrational - lends credence to this suggestion, the 
present example shows that 'discoverability' is at best a symptom of explana- 
tion in mathematics, not a criterion. 

If Euler's own proof does not provide an explanation of his identity, how 
do we explain it? When we multiply the infinite product 

(1 +x)(l +x3)(1 +XS) . 

we see that the coefficient of x' will be (1 + 1 + 1 + ** ), as many units as 
the number n can be partitioned into odd and unequal parts. Now, consider 
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for example the partition of 15 into 1 1 + 3 + 1, representing it graphically as 
in the figure: 

V 

Clearly, any such partition - into odd and unequal parts - can be seen as a 
'self-adjoint' partition, that is, a partition which, like our figure, is symmetrical 
about a diagonal running NW to SE. Now, since the infinite product 
'enumerates' the partitions of n into odd and unequal parts, to prove Euler's 
identity, it would be sufficient to prove that the right side of the identity, 

1 + X2/(1 - X2) + X4/(1 - X2)(1 _ X4) + 
x9/(1 -X2)(1 -x4)(1 -X6) + * 

'enumerates' the self-adjoint partitions of n. (This means, remember, that 
when this infinite sum is resolved into a simple power series of x, the coef- 
ficient of x' will be always the number of such self-adjoint partitions of n.) 

But, again referring to our diagram, any self-adjoint partition of n can be 
seen as a square of size m2 dots, in this case m = 3, and two 'tails' each 
representing the same partition of the number 1/2(n - m2) into parts not 
exceeding m. In this case each tail represents a partition of 3 into 1 + 1 + 1. 
Keeping this comment in mind, we turn now to the general term of our 
infinite sum: 

m /(1 _X2)(1 _X4)(1 X6) (1-x2M). 

The fraction 

1/(l -X2)(1 -X4)(1 -X6) ... (1 -X2M) 

gives us the product of m different geometric series: 
1 +x2 +x2+2 +x2+2+2 + 

+X4 + X4+4 + X4+4+4 + 
1 +X6 +X6 6 +X6+6+6 + 

1 +X2M +X2M+2m +X2M+2m+2m + 
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Multiplying, we get a power series where the coefficient ofxn is (I + 1 + * * * + 1), 
the number of units equalling the number of partitions of n into even parts 
not exceeding 2m. (The coefficient for odd n is, accordingly, 0.) In other 
words, the fraction 1/(1 - x2) (1 - X4) (1 - X6 ) * (1 - X2m) enumerates 
the partitions of n into even parts not exceeding 2m. Obviously, then, the 
general term, which is this fraction multiplied by xm2, enumerates the parti- 
tions of n - m2 into the same even parts not exceeding 2m. But each such 
partition of n - m2 is obviously correlated with a partition of 1/2(n - m2) 
into even and odd parts not exceeding m. We thus have that the general 
term 

xm /(I X2)(I1-X4) ...* (I _X2M) 

enumerates the partition of 1/2(n - m2) into (odd and even) parts not 
exceeding m. But recall that this is also the number of partitions of n into 
a square of size M2 with two tails, i.e. the number of self-adjoint partitions 
of n which are based on a square of side m dots! Clearly, if we sum up the 
general term over m, we will get an enumeration of all self-adjoint partitions 
of n, q.e.d. This proof, though it proves only the result in question, is far 
more explanatory than the original Eulerian proof using an introduced 
parameter, even though the Eulerian proof is an instrument of discovery 
besides being more general! 

As for the explanatory proof of the Pythagorean Theorem, which was more 
general than the usual proofs, remember that any proof of the Pythagorean 
Theorem is tantamount to a proof of its generalization, once we notice that 
the areas of similar figures are to each other as the squares of their cor- 
responding sides. Note, too, that one need not in our proof detour through 
figures in general in order to prove the Pythagorean Theorem for squares. 
Once we realize that any right triangle can be decomposed into two similar 
right triangles similar to the original triangle by dropping an altitude to the 
hypotenuse, we can then immediately infer, from the decomposition of the 
whole triangle into triangle I + triangle II, that a2 + b2 =c2 without first 
concluding that the theorem holds for all similar figures. We need not even 
know that areas of similar figures are proportional to the squares of the 
corresponding sides, for which we need the general definition of the area of 
a plane figure as the limit of the areas of little squares which can be fit into 
the figure. For we have already the area of a triangle as 1/2bh independently. 
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Perhaps the explanatory value even of our proof of the Pythagorean Theorem 
lies not in its generality. 

So far we have rejected generality or abstractness as criteria for explana- 
tion in mathematics - in particular we have rejected the view that a proof is 
more explanatory than another because more general. Another suggestion, 
invoking mathematical discovery, was brusquely dismissed. A third criterion 
links explanation with ability to visualize a proof - and many explanatory 
proofs have this character. Aside from possible counter-examples, however, 
this criterion is too subjective to excite. Yet a satisfactory theory of 
mathematical explanation must show why all these suggestions are plausible. 

My view exploits the idea that to explain the behavior of an entity, one 
deduces the behavior from the essence or nature of the entity. Now the 
controversial concept of an essential property of x (a property x enjoys in 
all possible worlds) is of no use in mathematics, given the usual assumption 
that all truths of mathematics are necessary. Instead of 'essence', I shall 
speak of 'characterizing properties', by which I mean a property unique to 
a given entity or structure within a family or domain of such entities or 
structures. (I take the notion of a family as undefined in this paper; examples 
will follow shortly.) We have thus a relative notion, since a given entity can be 
part of a number of differing domains or families. Even in a single domain, 
entities may be characterized multiply. Thus, one way of epitomizing the 
number 18 is that it is the successor of 17. But often it is more illuminating 
to regard 18 in light of its prime power expansion, 2 x 32* 

My proposal is that an explanatory proof makes reference to a charac- 
terizing property of an entity or structure mentioned in the theorem, such 
that from the proof it is evident that the result depends on the property. It 
must be evident, that is, that if we substitute in the proof a different 
object of the same domain, the theorem collapses; more, we should be able 
to see as we vary the object how the theorem changes in response. In effect, 
then, explanation is not simply a relation between a proof and a theorem; 
rather, a relation between an array of proofs and an array of theorems, where 
the proofs are obtained from one another by the 'deformation' prescribed 
above.10 (But we can say that each of the proofs in the array 'explains' its 
individual theorem.) Note that this proposal is an attempt at explicating 
mathematical explanation, not relative explanatory value, as the previous 
criteria. 

Our examples of explanation in mathematics are all analyzable this way. 
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Our proof that a2 = 2b2, which uses the prime power expansions of a and b 
(and 2), conforms to our description, since the prime power expansion of a 
number is a characterizing property. It's easy to see what happens, moreover, 
when 2 becomes 4 or any other square; the prime power expansion of 4, 
unlike that of 2, contains 2 raised to an even power, allowing 

a2 = 2b2. 

In the same way we get a general theorem: the square root of n is either an 
integer or irrational. Generalizing further, almost the same reasoning gives us 
the same for the pth root of n. It is not, then, the general proof which explains; 
it is the generalizable proof. 

Or take our 'good' proof of the Pythagorean Theorem. It characterizes the 
right triangle as the only one decomposable in this way, into two triangles 
similar to each other and to the whole. 

If we let the vertex of the right triangle vary (calling the largest side of the 
triangle, c, the hypotenuse), and try to decompose the triangle as before, by 
drawing lines x and y from the vertex to c, such that triangles I and II 
remain similar to each other and to the whole, we find that triangles I and II 
fail to exhaust the whole when the vertex varies between 90? and 1800; 
overlap when the vertex diminishes from 900 to 600; and at 600, coincide. We 
can even calculate the (positive or negative) difference, then, between the 
sum of squares constructed on the sides of the triangle, and the square on the 
hypotenuse for any triangle - calculate the error. The characterizing property 
for the right triangle, then, is simply the coincidence of lines x and y. (It is 
interesting to note that at the 'extremes', where the vertex is 600 or 1800, 
the sum of the squares on the sides is twice and one-half the hypotenuse 
square, respectively.) 

Both explanatory proofs that the sum of the first n integers equals n(n + 1)/2 
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proceed from characterizing properties: the one, by characterizing the sym- 
metry properties of the sum 1 + 2 + ... + n; the other its geometrical 
properties. By varying the symmetry or the geometry we obtain new results, 
conforming to our scheme. The proof by induction does not characterize 
anything mentioned in the theorem. Induction, it is true, characterizes the 
set of all natural numbers; but this set is not mentioned in the theorem.' 1 

Turning finally to Euler's identity, the explanatory proof is now seen to 
be so because it links the theorem to a characterizing property of the infinite 
sum and the infinite product - the property of enumerating certain partitions 
of n. Changing the geometry of the situation, we can suggest and prove new 
theorems, for example: 

(I + X)(l + X2)(l + X3)** 
1 + X(l -X) + x3/(1 -x)(1 -X2) + X61(1 -x)( -X2)(1 -X3) 

where the general term on the right is 
1+2+ * M 

/0 _ X)(1-X2) * Xm), 

or 
m M(m+l1)/2 /(l _X)(1_X2 )(I_XI) * * (1 _XM ) 

Now the left side clearly enumerates all partitions of n into unequal parts. 

j177 13=6+4+3 

And a partition of n into unequal parts can be seen as a decomposition of n 
into an isosceles right triangle of side m - whose total dots are 1 + 2 + - - + m = 
m(m + 1)/2 -plus a partition of the remaindern - m(m + 1)/2 into equal and 
unequal parts no greater than m. (In the above diagrams, a partition of 13 is 
redescribed as an isosceles right triangle of side 3 dots (total: 6) and a parti- 
tion of the remainder (7) into parts not exceeding 3.) But the general term of 
the right hand side obviously does enumerate all partitions of 

n1 -1 + 2 + .. 
...... m) 
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into (equal and unequal) parts no greater than m, corresponding to the parti- 
tions of n into unequal parts based on a triangle of side m. Summing the right 
hand side thus enumerates all partitions of n into unequal parts, the same as 
the left hand side, q.e.d. Thus the isosceles right triangle has taken the place 
of the square." 

Admittedly, Euler's own proof of the original identity also yields this last 
identity. For Euler, you remember, proved 

(I +ax)(l +ax3)(1 +ax') ... = 1 +ax/(l-x2)+ 
a2x4 /(1 - X2)(1 - X4) + . _ 

and merely setting a= x and replacing x2 by x immediately gives us our 
result. The new result is contained within the old. The point is, however, that 
generalizability through varying a characterizing property is what makes a 
proof explanatory, not simple generality. 

Our account of mathematical explanation suggests why the other criteria 
are plausible. First, generality is often necessary for capturing the essence of a 
particular, and the same goes for abstraction. To characterize the primes may 
take the full resources of complex analysis. Another suggestion was that the 
explanatory proof could have been used to discover the result, and it is often 
the case that a characterizing proof is intuitive enough to serve as an instru- 
ment of discovery. Finally, a characterizing property is likely to be visualizable 
(as is certainly the case with a geometrical property). 

The present theory illuminates, aside from explanation, the notion of 
relevance in mathematics. For example: Euclid demonstrated the impossibility 
of a sixth regular solid by remarking that the sum of the angles around any 
vertex must be less than 360?, that it takes three polygons to form a vertex, 
and that regular polygons of six or more sides require angles of 1200 or more. 
But actually this theorem has nothing to do with regular solids, for it follows 
from Euler's discovery that in any polyhedron 

V-E+F=2 

(where V is the number of vertices; E, the number of edges; F, the number of 
faces), using only the facts that in a regular solid all the faces are bounded by 
the same number of edges, and that the number of edges meeting in each of 
the vertices is the same. Euclid's theorem then follows from the topological 
regularity of a regular solid, without the assumption of metrical regularity 
(i.e. the assumption that each face is a regular polygon). Euler's discovery 
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cited above does not, actually, merely characterize polyhedrons, but all their 
continuous deformations. In fact the number 2 in Euler's formula really 
characterizes the sphere and surfaces 'homeomorphic' to it. (In fact, there are 
polyhedrons - those, for example, with 'tunnels' - which are not homeo- 
morphic to the sphere, and in fact Euler's discovery does not apply to them.) 
This suggests asking how many topologically regular polyhedrons there are 
homeomorphic to some other topological surface, such as the torus, in which 

V-E+F=O 

Euclid's theorem proceeds from a characterizing property of an entity 
(the sphere) not mentioned overtly in the theorem itself. The properties 
responsible for there being no more than five regular solids do not uniquely 
characterize regular solids, since 'deforming' the solids does not 'deform' the 
theorem. Rather they characterize a topological space, and for this reason we 
say that Euclid's theorem is 'really' topological in character, and that any 
geometrical proof is 'irrelevant'. 

We have, then, this result: an explanatory proof depends on a characterizing 
property of something mentioned in the theorem: if we 'deform' the proof, 
substituting the characterizing property of a related entity, we get a related 
theorem. A characterizing property picks out one from a family ('family' in 
the essay undefined); an object might be characterized variously if it belongs 
to distinct families. 'Deformation' is similarly undefined - it implies not 
just mechanical substitution, but reworking the proof, holding constant the 
proof-idea. 

We have not analyzed mathematical explanation, but explanation by proof; 
there are other kinds of mathematical explanation. Feferman (in a com- 
muncation) mentions the example of fll sets of natural numbers, which 
behave somewhat like recursively enumerable sets, and that of A' sets which 
behave somewhat like recursive sets. Many results from recursion theory 
about recursive and recursively enumerable sets carry over, but the analogy 
breaks down. Kreisel and Sacks explain both the analogy and the breakdowns 
by (a) generalizing the notion of recursion to recursion on transfinite ordinals; 
(b) showing that generalized recursive sets bounded by an ordinal less than 
W1, the first nonrecursive ordinal, resemble finite sets from ordinary recur- 
sion theory; (c) showing that the generalized recursively enumerable sets 
bounded by X are exactly the flI sets, and that the generalized recursive 
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sets bounded by X are exactly the AI sets. This would explain, for example, 
why Craig's theorem - providing a recursive axiom set for recursively 
enumerable theories - fails to provide a A' axiomatization for a Ill theory: 
Craig's theorem does not guarantee a finite axiomatization. We explain here 
not a single theorem, but the 'behavior' of a mathematical object. Other 
examples of this include Hardy's explanation of the lawless behavior of a 
certain numerical function by regarding it, a la Ramanujan, as a 'snapshot' at 
each n of the resultant of infinitely many sine waves of incompatible periods 
and decreasing amplitudes. It is significant, however, that both explanations 
involve characterizing properties: in the case of the A' and the HI sets, their 
being generalized recursive (or recursively enumerable) sets bounded by c; 
in the latter case, it is the Ramanujan characterization of the function. Perhaps 
all mathematical explanations, then, may be treated similarly. 

Consider a final objection (also suggested by Feferman) to the views 
expressed here. Galois theory explains the prior results that the general 
polynomial equation is solvable in radicals if and only if the equation is of 
degree less than five (special cases of this had been proved by Cardan and 
Abel). The explanation assigns a group of automorphisms to each equation, 
and studies the groups instead of the equations. Let E be an equation with 
coefficients in a field F. We can demonstrate the existence of a smallest field 
K containing F in which E can be factored and thus solved (not necessarily 
in radicals) - call this the splitting field of E. The group G of automorphisms 
of K which leave F alone is called the Galois group of E. Now an automorphism 
of K (i.e. any member of G) is determined by its action on the roots of E (for 
K is the smallest field containing F and the n roots). Also, it is obvious that 
any member of G maps a root of E onto (the same or another) root of E. 
Thus the Galois group of E is a certain subset of the permutations of the 
roots of E. A final definition from group theory: G is solvable if it is the 
culmination of a finite chain of groups 

OCG1CG2C ** CGn = G, 

in which each group is a normal subgroup of the next (H is a normal sub- 
group of G if GHG-' = H). The explanation of Cardan's and Abel's results 
consists of the following triad: 

(a) An equation is solvable in radicals if and only if its Galois group is 
solvable. 

(b) The Galois group of the general polynomial equation of degree n 
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consists of every possible permutation on n different objects. This group is 
called the symmetric group on n letters. 

(c) The symmetric group on n letters is solvable if and only if n is less 
than five (this is the whole reason for this detour into group theory; groups 
are easier to study than equations). 

But this example, in fact, supports our view. If we take the family E(n) 
of equations of degree n, then the Galois group of E(n) - the symmetric 
group on n letters - characterizes each equation as required."3 Nevertheless, 
Feferman's example suggests another which does compel further develop- 
ment: if E is an irreducible (unfactorable), solvable (in radicals) equation of 
prime degree q, then its Galois group turns out to be a group of linear permu- 
tations of the roots, all (therefore) with the property of fixing at most one 
of the q roots of E, except the identity map (also in the Galois group, of 
course) which fixes all of them. This striking fact yields information about E. 
Suppose E has rational coefficients; the splitting field, therefore, a subfield 
of the complex numbers. The map taking each complex number into its 
complex conjugate is certainly an automorphism of the complex numbers 
(the conjugate of the sum/product is the sum/product of the conjugates). 
So this map is in the Galois group of E. But since each real number is its own 
complex conjugate, the map fixes each real number. Having already obtained 
the result that each pemutation in the Galois group (if not the identity map) 
fixes at most one root, we get the following provocative theorem: 14 

If E is a solvable, irreducible equation of prime degree q with real coef- 
ficients, then it either has exactly one real root, or all its roots are real. (For 
example, consider 

x5 -4x+2=0. 

Sketching xS - 4x + 2, we can see that it crosses the x-axis three times. Thus 
the equation cannot be solved.) 

This proof seems explanatory - the nub of the explanation is that the 
Galois group here is a group of linear permutations. Yet here we don't need 
to know the exact Galois group, as we did before, Indeed, an arbitrary equa- 
tion with rational coefficients has not a unique Galois group, in the sense that 
no other equation has it (though it is, of course, the only Galois group of the 
equation). And there is no obvious way to find an equation with rational 
coefficients which has a given group as its Galois group - an unsolved Hilbert 
problem. This is no isolated example; the contemporary style is to study 
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domain X by assigning a counterpart in domain Y to each object in X. The 
object in Y need not uniquely characterize anything in X; examples are 
Galois theory and algebraic topology. 

For exaplanations in Galois theory (and others), the concept of 'charac- 
terization' will have to be weakened to allow for partial characterization. 
The Galois group of E characterizes it in that the properties of the Galois 
group tell us much about E. 'Deforming' a proof in Galois theory produces 
results linking a new Galois group to any equation with that group - but we 
still must look for equations having the group (an unsolved problem in 
general). Thus our analysis (suitably developed in the direction sketched here) 
should account for explanatory proofs in contemporary, as well as classical, 
mathematics; but the detailed demonstration of this, I shall leave for another 
occasion. 

Hebrew University of Jerusalem 
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Philosophy of Mathematics (Oxford University Press, 1969), p. 98. Feferman has sub- 
sequently argued that the passage is literally true, since it does not state that the method 
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that his words should not be taken literally as an endorsement of my (c). 
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6 See G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 2nd 
ed. (Clarendon Press, Oxford, 1945), pp. 39-43, for a thorough mathematical and 
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This proof idea is due to Georg Kreisel. 
G. Polya, Induction and Analogy in Mathematics (Princeton University Press, 1954), 

pp. 16-17. 
9 Both proofs are given in Hardy and Wright, pp. 275-278, from which the present 
account is adapted. 

I am indebted to Morgenbesser for the formulation. 
Dale Gottlieb has objected that the inductive proof does make use of the definitions 

S(O)=O, 
S(n+ 1)=S(n)+(n+ 1), 

which characterize S. But a characterizing property is not enough to make an explanatory 
proof. One must be able to generate new, related proofs by varying the property and 
reasoning again. Inductive proofs usually do not allow deformation, since before one 
reasons one must have laready conjectured the theorem. Changing the equations for S 
will not immediately reevaluate S(n) - it must be conjectured anew. 

2 Adapted from Hardy and Wright, pp. 277-278. 
13 Feferman has also suggested the following counter-example: If A = aa, + bb, + cc, + 
dd, B = ab1 - ba1 + cdl - dc , etc., then - Euler discovered - 

(a2 +b2 +C2 +d2)(a2 +b2 +C2 +d )A2 +B2 +C2 +D2. 

(This formula is used to show that every number is a sum of four squares once one 
knows it for every prime.) Feferman continues: 

Euler's formula can be verified by direct calculation. However, we feel we have explained 
why this is so when we look at the algebra of quaternions cf = a + bi + cj + dk; ol may be 
represented as quaternion A + Bi + Cy + Dk using the table of products of i, j, k. Taking 
N(a + bi + ci + dk) = a2 + b2 + c2 + d2, we can verify (just as for complex numbers on 
various algebraic number fields) that N(aca ) = N(co)N(otl ). Combining these gives Euler's 
formula. Now just what is the 'essence' of the entities involved in Euler's formula which 
is operative in this explanation'? 

The answer is that in Euler's formula each sum of four squares is the norm of a quaternion - 
substituting the norm of a complex number, we deform Euler's proof and conclude that 
the product of sums of two squares is the sum of two squares. 
14 The details of this proof are to be found in the supplement, by A. N. Milgram, to E. 
Artin, Galois Theory, 2nd ed. (University of Notre Dame Press, Notre Dame and London, 
1971). 
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