COMPLEX ANALYSIS WORKSHEET 1 Instructor: G. Smyrlis

1. Let $f : \mathbb{C} \to \mathbb{C}$ be defined by

$$f(z) = \begin{cases} \frac{\overline{z}^{3}}{|z|^{2}}, & z \neq 0\\ 0, & z = 0. \end{cases}$$

Show that Cauchy-Riemann conditions hold at $z_0 = 0$, whereas f fails to be differentiable at $z_0 = 0$.

- 2. Find the largest domain on which $\operatorname{Log}\left(\frac{1+z}{1-z}\right)$ is holomorphic.
- 3. Show that the function $f(z) = f(x + iy) = e^y \cos x + ie^y \sin x$ is nowhere differentiable in \mathbb{C} .
- 4. Detect the points where the function $f(z) = \overline{z}e^{-|z|^2}$ is differentiable. Then compute the derivative of f at each of these points.
- 5. Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic. Show that the function $g(z) = \overline{f(\overline{z})}$ is holomorphic on \mathbb{C} too.
- 6. Find the holomorphic function $f = u + iv : \mathbb{C} \to \mathbb{C}$ in each of the following cases:
 - (i) $u(x,y) = -e^{-x} \sin y + \frac{y^2 x^2}{2}$, $(x,y) \in \mathbb{R}^2$, f(0) = 0. (ii) $u(x,y) = 3x^2y - y^3 + e^{2y} \cos(2x)$, $(x,y) \in \mathbb{R}^2$, f(0) = 1.
- 7. Let $A \subseteq \mathbb{C}$ be a domain and $f = u + iv : A \to \mathbb{C}$ be holomorphic satisfying $u_x + v_y = 0$ in A. Show that there exist $c \in \mathbb{R}$, $d \in \mathbb{C}$ such that

$$f(z) = icz + d, \quad z \in A.$$

8. Set $f(z) = z^3$, $z_1 = \frac{-1 + i\sqrt{3}}{2}$, $z_2 = \frac{-1 - i\sqrt{3}}{2}$. Show that there is no z_0 in the segment $[z_1, z_2]$ such that

$$f(z_2) - f(z_1) = f'(z_0)(z_2 - z_1).$$

Conclude that Mean Value Theorem fails for complex functions.

9. Let $A \subseteq \mathbb{C}$ be open, $z_0 = x_0 + iy_0 \in A$ and $f = u + iv : A \to \mathbb{C}$. Assume that u, v have continuous partial derivatives on some neighborhood of (x_0, y_0) and also that the limit

$$\lim_{z \to z_0} \operatorname{Re}\left(\frac{f(z) - f(z_0)}{z - z_0}\right)$$

exists in \mathbb{R} . Show that f is differentiable at z_0 .

- 10. Let $A \subseteq \mathbb{C}$ be a domain. Prove:
 - (i) If $f: A \to \mathbb{C}$ is a function such that both f, \overline{f} are holomorphic, then f is constant.
 - (ii) If $f: A \to \mathbb{C}$ is holomorphic such that |f| is constant, then f is constant.
 - (iii) If $f: A \to \mathbb{C}$ is a function such that both f^5 , \overline{f}^2 are holomorphic, then f is constant.
- 11. Let A ⊆ C be a domain and f : A → C be holomorphic. Prove:
 (i) If f(A) is contained in a straight line of the complex plane, then f is constant.
 (ii) If f(A) is contained in a circle of the complex plane, then f is constant.
- 12. (i) If x_0 is a negative real number, show that the limit $\lim_{w \to x_0} \text{Log} w$ does not exist. (*Hint*: Consider the sequences $|x_0|e^{i(\pi-1/n)}, |x_0|e^{i(-\pi+1/n)}, n \ge 1.$) (ii) Show that there is no holomorphic function $f : \mathbb{C} \setminus \{0\} \to \mathbb{C}$ such that

(Re
$$f$$
) $(x, y) = \frac{1}{2} \ln(x^2 + y^2), \quad (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\}.$