COMPLEX ANALYSIS

WORKSHEET 1

Instructor: G. Smyrlis

1. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
f(z)=\left\{\begin{array}{cl}
\frac{\bar{z}^{3}}{|z|^{2}}, & z \neq 0 \\
0, & z=0
\end{array}\right.
$$

Show that Cauchy-Riemann conditions hold at $z_{0}=0$, whereas f fails to be differentiable at $z_{0}=0$.
2. Find the largest domain on which $\log \left(\frac{1+z}{1-z}\right)$ is holomorphic.
3. Show that the function $f(z)=f(x+i y)=e^{y} \cos x+i e^{y} \sin x$ is nowhere differentiable in \mathbb{C}.
4. Detect the points where the function $f(z)=\bar{z} e^{-|z|^{2}}$ is differentiable. Then compute the derivative of f at each of these points.
5. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. Show that the function $g(z)=\overline{f(\bar{z})}$ is holomorphic on \mathbb{C} too.
6. Find the holomorphic function $f=u+i v: \mathbb{C} \rightarrow \mathbb{C}$ in each of the following cases:
(i) $u(x, y)=-e^{-x} \sin y+\frac{y^{2}-x^{2}}{2},(x, y) \in \mathbb{R}^{2}, f(0)=0$.
(ii) $u(x, y)=3 x^{2} y-y^{3}+e^{2 y} \cos (2 x),(x, y) \in \mathbb{R}^{2}, f(0)=1$.
7. Let $A \subseteq \mathbb{C}$ be a domain and $f=u+i v: A \rightarrow \mathbb{C}$ be holomorphic satisfying $u_{x}+v_{y}=0$ in A. Show that there exist $c \in \mathbb{R}, d \in \mathbb{C}$ such that

$$
f(z)=i c z+d, \quad z \in A .
$$

8. Set $f(z)=z^{3}, z_{1}=\frac{-1+i \sqrt{3}}{2}, z_{2}=\frac{-1-i \sqrt{3}}{2}$. Show that there is no z_{0} in the segment $\left[z_{1}, z_{2}\right]$ such that

$$
f\left(z_{2}\right)-f\left(z_{1}\right)=f^{\prime}\left(z_{0}\right)\left(z_{2}-z_{1}\right) .
$$

Conclude that Mean Value Theorem fails for complex functions.
9. Let $A \subseteq \mathbb{C}$ be open, $z_{0}=x_{0}+i y_{0} \in A$ and $f=u+i v: A \rightarrow \mathbb{C}$. Assume that u, v have continuous partial derivatives on some neighborhood of (x_{0}, y_{0}) and also that the limit

$$
\lim _{z \rightarrow z_{0}} \operatorname{Re}\left(\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right)
$$

exists in \mathbb{R}. Show that f is differentiable at z_{0}.
10. Let $A \subseteq \mathbb{C}$ be a domain. Prove:
(i) If $f: A \rightarrow \mathbb{C}$ is a function such that both f, \bar{f} are holomorphic, then f is constant.
(ii) If $f: A \rightarrow \mathbb{C}$ is holomorphic such that $|f|$ is constant, then f is constant.
(iii) If $f: A \rightarrow \mathbb{C}$ is a function such that both f^{5}, \bar{f}^{2} are holomorphic, then f is constant.
11. Let $A \subseteq \mathbb{C}$ be a domain and $f: A \rightarrow \mathbb{C}$ be holomorphic. Prove:
(i) If $f(A)$ is contained in a straight line of the complex plane, then f is constant.
(ii) If $f(A)$ is contained in a circle of the complex plane, then f is constant.
12. (i) If x_{0} is a negative real number, show that the limit $\lim _{w \rightarrow x_{0}} \log w$ does not exist.
(Hint: Consider the sequences $\left|x_{0}\right| e^{i(\pi-1 / n)},\left|x_{0}\right| e^{i(-\pi+1 / n)}, n \geq 1$.)
(ii) Show that there is no holomorphic function $f: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ such that

$$
(\operatorname{Re} f)(x, y)=\frac{1}{2} \ln \left(x^{2}+y^{2}\right), \quad(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}
$$

