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2. Pre-processing mobility data
m Cleansing, Simplification, Enrichment, Sampling, etc.

3. Analyzing mobility data
m Cluster analysis (group behavior) and outlier detection
m Collective behavior discovery
® Trajectory prediction

4. Summary



1.
Introduction —
Getting to know mobility data




Application domains

®m Road network: Find shortest path from location A to location
B; Which points of interest (POls) are found in a range of 5 km
from A¢

® Railway network: Find the number of stops on the stop A to

stop B route; Which stops that are reachable from stop A in 2
hrs. time horizon?

= Air (sea) path network: Find the flights from airport (seaport)
A to airport (seaport) B with direct connection (or at most 1
intermediate stop)

All images source: Wikipedia.org
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Examples of datasets @ land

m Geolife (source: Microsoft Research Asia)

m 182 user movements (under various
transportation means) organized in 17,621
trajectories;

m 68 Kmin 2,7 hrs. per trajectory, avg.;
m dense sampling (1 sample every ~5 sec)

m T-Drive (source: Microsoft Research Asiq):

m 2,357 taxis in Beijing for 1 week (15 million
points, in fotal);

m 869 Km per taxi, avg.;

= sparse sampling (1 sample every ~3 min) image source: research.microsoft.com



Examples of datasets @ land (cont.)

New York City Taxi Pickups
2009-2015

m NYC taxis (source: NYC Taxi & Limousine
Commission): 1.4 billion trips, Jan. 09 — Dec.17.
» Ride-hailing apps data are also provided
m Atftention: pickup — drop-off locations are only available

Brooklyn Monthly Taxi Pickups Manhattan Monthly Taxi Pickups

trailing 28 days, based on NYC TLC trip data Trailing 28 days

1,000,000
750,000
500,000

250,000 /

0

image source: toddwschneider.com



Examples of datasets @ seq

= AIS (Automatic Identification System)

m >250,000 vessels tfracked daily (source:
marinetraffic.com)

m AlS signal transmitted: every 2 to 10 sec
depending on speed while underway;
every 3 min while at anchor

[ 2= Station 2782: University of Piraeus

Status: Operator: N/A

Area Covered: Elevation: N/A
1845km?

Coverage Map > | Average:2.92 Max: 25.84

VesselsinRange >

e T — image source: marinetraffic.com
' + top: global snapshot on May 26, 2022; vessel colors

correspond to different vessel types (e.g., cargo is
green, tanker is red)

+ left: vessels tracked by the Univ. Piraeus’ AlS station
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Examples of datasets @ air

= ADS-B (Automatic Detection System
- Broadcast)

m >15,000 aircrafts flying at the same time
worldwide (source: flightradar24.com)

m ADS-B signal fransmitted: every 1 sec
while on air; not transmitted while on
the ground

QID46

United States - US Air Force (USAF)  fligh

#6 Worldwide d by 60

Sango:

MHZ . N/A

MILDENHALL
BST (UTC +01:00

ACTUAL 07:56 ESTIMATED

@ flightradar24

image source: flightradar24.com

+ top: global snapshot on May 25, 2022; yellow vs. blue
planes if located by terrestrial vs. satellite stations

* left: the route of a military aircraft



Learning from mobility data

m Examples:
® Find objects that move together (for long time)
= Find the most typical among objects’ routes as well as the outliers
= Find the most crowded places or routes
m Forecast the anticipated route of an object or traffic in an areq,

etc.

m Big Data problem!




Big Data challenges doo @

__ VELOCITY

)i ©
VARETY N

Volume S Variety
Velocity
. of ;
- . : |
12K distinct ships/day, 200M AlS ® 25
signals/monthyin EU waters Historical & aggregated datq,
geographical & environmental data,
contextual dataq, etc.
Noisy and error-prone
data due to receivers
limited coverage, Image source: (Claramunt et al. 2017)
positioning devices
switch-off
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2,
Pre-processing mobility data




Data pre-processing

= Definition: preparing data T={<p; 1> <pa2 1>, ..., <pn. 1>}
for analytics purposes -

m Data pre-processing includes:
® Cleansing (noise removal, smoothing, map matching, etc.)
» Transformation (frajectory segmentation, simplification, etc.)
= Enrichment (semantic annotation, data fusion, etc.)
etc.
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Data pre-processing (cont.)

® An example: data pre-processing pipeline (urban traffic)

L~
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e

Cleansed,

Streaming
GPS traces

integrated
GPS traces

Source: Track & Know EU project

map-matched,
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From GPS locations to trajectories

m GPS records correspond to samples (p;, 1) of our movement — inferring
‘continuous’ movement is not trivial.

m A typical representation of a moving object’s trajectory is a polyline (in 4D
space; x-, y-, z-, t-) — vertices correspond to (p;, 1)

= Typically, linear interpolation is assumed between

(o 1) and (P, ti) R /7 /
(M'i‘”) R
- = F -

¢~ /
. ]

i

t.
Xiy1 — X)),y + l ()’i+1—}’i))

i+1 — L i+1 — L

p(t) = (xi +

14



GPS Data Cleansing

m Erroneous recordings: noise vs. random errors

m Noise corresponds to values that are ‘impossible’ to
appear

m Can be detected and removed using
appropriate filters

® e.g., maximum speed

m Potential Area of
Activity (PAA)

S(P;): Limited
Area of P,




GPS Data Cleansing (cont.)

m Erroneous recordings: noise vs. random errors

® Random errors correspond to ‘possible’ values that appear to be small

deviations from actual ones

m Can be smoothed using a
plethora of statistical methods

® e.g., least squares spline
approximation (de Boor, 1978)

_____ o----- Original trace
—&——  Smoothed trace
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GPS Data Cleansing (cont.)

m Special case: network-constrained movement
m Requires an additional step: map-matching

m Several techniques (Quddus et al. 2003; 2007):
m Geometric map-matching
® Topological map-matching
® Probabilistic map-matching
= Hybrid map-matching

17



Trajectory segmentation

m Goal: Segment sequences of points in homogeneous sub-sequences (called
trajectories)

= Various approaches:
m Segmentation via raw (spatial / temporal) gap
m Segmentation via stop discovery

m Segmentation via prior knowledge (e.g., office / sleeping hours, arrival at ports)
m efC.
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Trajectory segmentation (cont.)

stop discovery
(Alvares et al. 2007)

= One possible solution: W
Segmentation via W

m Technical issue (when stop places P e
are not given): how to ‘learn’ stop
places from trajectories?

m A typical approach: extract
stationary points (i.e., those with
speed close to zero) and then,
perform density-based clustering

Example: speed of ferry boats serving the line
connecting Salamis island (left) and
Piraeus/Perama port (right)
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Trajectory simplification

® The need for simplification: efficiency in storage, processing time, etc.

= Actudlly, simplification is a form of
data compression

= Goal: maintain the original
‘'signature’ as much as possible
by keeping a set of critical
points only

m Approaches
m Offline, i.e., multi-pass, vs.
® Onling, i.e., 1-pass

CRITICAL POINTS

image source: aminess.eu
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Trajectory simplification (cont.)

m Offline approaches:
m top-down vs. bottom-up vs. sliding window vs. opening window

® e.9., Synchronous Euclidean Distance - SED (Meratnia & de By, 2004)

m Adapts the popular Douglas & Peucker polyline simplification (1973) to the mobility
domain

P,'('.\',',_l"',t,')Q O
W | O

image source:
https://commons.wikimedia.org/wiki
/File:Douglas-Peucker_animated.gif

P.(xpYets)

Ps(x5,y5.t5)
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Trajectory simplification (cont.)

= Online approaches, e.g., Trajectory Synopses o SN s alh
(Patroumpas et al. 2015; 2017) 5
= Maintains a velocity vector
per moving object in order : \ BN
to detect instantaneous N XIS A 0 i
events \\ N Gap end =

® stop; change in velocity
vector; etc.

Stop
Slow motion

» Tradeoff: degree of
compression vs. quality of >
approximation  Takeoff

“ 4. Landing

-4 Change in Heading
u Gap start

Gap end

* Change in Speed
* Change in Altitude
¢ Slow motion ‘
® Stop

0‘72‘ 2
- «

images source:
DATACRON EU project

,.
il

22



Trajectory enrichment

= From “raw” sequences (p.,t) of fime-
stamped locations

® ... fo meaningful mobility tuples
<where, when, what/how/why>

= Semantic trajectory (Yan et al.
2011; 2012, Parent et al. 2015)
®m semantically-annotated

representation of the motion path of
a moving object

= sequence of episodes (stops/moves)
along with appropriate tags

.s
------
o

'
S esmnuunt

.
. -

. .

- -..__t"l.

------

A 6:30pm-9pm
11lpm-8am P

Noise Price range
Temperature Reviews
Air polution Open-close hours

Heart Emotional
rate status

Hetart Stage of
fate sleep

®
1
D o
B
kS
)
o8

Image source:
MASTER EU project
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3.
Analyzing mobility data




Types of mobility data analytics

® Discovering groups and outliers

m Discovering frequent routes (hot paths) and
frequent locations (hot spofts)

= Trajectory prediction tasks, etfc.

OUTPUT | CORRECT VALUE | OBJECTIVE FUN. | VALUE
- Far from

- " 3 i 200
T

s N 3 Closer 100
ﬁ ﬁ Very close 0

image source: kdnuggets.com




Orthogonal issue: Trajectory similarity

® How do we measure similarity between two trajectories A, B2
m not so trivial as it sounds

A Yo

B .\\.}

. .
= Alternative approaches: .-:. ‘ A
= Trajectory as a 2D time-series e 0@ -
» Trajectory as a 2D polyline q.}.-\
= Tragjectory as a movement function L.\g
()



Trajectory as a tfime series

® Time series similarity has been studied extensively (e.g., Vlachos et al. 2002;
Chen et al. 2005). Examples:

® Fuclidean distance, Chebyshev distance, Dynamic Time Warping (DTW),
m L ongest Common SubSequence (LCSS),

m Edit Distance on Real sequences (EDR),

m Edit distance with Real Penalty (ERP), etc.

27



Trajectory as a polyline

® DISSIM (Nanni & Pedreschi, 2006; Frentzos et al. 2007)
m Extension of Euclidean distance:

t, Euclidean M

DISSIM(R,S) = j tan(R(t),S(t))dt

n—1

1
DISSIM(R, S) ~ Ez ((LZ(R(tkLS(tk)) + Ly (R (tis1), S(tisn)) )
k=1
(1 — tk))
m DISSIM function is a metric 1. d(z,y) >0
m Conditions: (1) non-negativity; (2) identity of indiscernibles; 2 d(x’ v) ; loz=y
(3) symmetry; (4) triangle inequality 3 d(a:,y) o)
4. d(z,z) < d(z,y) +d(y, 2)



Point clustering

= DBSCAN (Ester et al. 1996): A density-based algorithm for
discovering clusters in large spatial databases with noise

® Method parameters:
m radius of an object’s neighborhood (e)
= minimum population within an object’s neighborhood (m)

m Cores (build clusters) vs. Borders (assigned to their cores’ clusters) vs. Noise

= The notion of density reachability

m Directly Density-Reachable vs. Density-Reachable vs. Density Connected

\ ) L ] l ]
I 1

|
e

m:3 @ Ofop ) p
g

g o}
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Point clustering (cont.)

MinPts = 5

= OPTICS (Ankerst et al. 1996): ordering points to identify the
clustering structure

® The notions of core distance and reachability distance

Reachability plot: partitions the dataset in a sequence of
‘valleys’ (==> clusters) and ‘hills’ (==> outliers)

—
—_—

core-distance(0)
reachability-distancegp, 03
q

reachability-distance(q,o

> £y
=0 ‘av
Qv oS
UC & _Cp
£0 517}
U0 o0
oo (

ordering of points ordering of points
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Trajectory clustering

m Objectives:
m Cluster trajectories w.r.t. similarity
m Eventually, detect outliers

m |ssues:
= Which similarity functione

m Upon the entire tfrajectories or
portions (sub-trajectories?

.,\- ’:,f..

Could you detect |
clusters? outliers?

m State-of-the-art:
m Clustering on the entire trajectories: T-OPTICS (Nanni & Pedreschi, 2006)

m Clustering on sub-frajectories: TraClus (Lee et al. 2007); $2T-Clustering (Pelekis et al.
2017a; 2017b), DSC (Tampakis et al. 2019)
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Clustering on the enfire trajectories

m T-OPTICS (Trajectory OPTICS) (Nanni & Pedreschi, 2006)

m Builds upon OPTICS (Ankerst et al, 1999) and DISSIM distance

function tn
DISSIM(R,S) = J Ly(R(t),S(t))dt

ty

= The reachability plot produces “valleys” and *hills”
m Valleys =2 clusters; Hills = outliers (noise)
m Recall that DISSIM is a metric = indexing is allowed

Time

Reachabilify pIdt
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Clustering on the sub-trajectories

= Motivation: how many clusters are formed
by these four trajectories? zero? one?

= What if we consider sub-trajectories?

m Two recent solutions:

m $2T-Clustering (Sampling-based Sub-Trajectory
Clustering) (Pelekis et al. 2017a; 2017b)

= Distributed Subtrajectory Join (Tampakis et al.
2020) and Clustering (Tampakis et al. 2019)

33



Discovering collective mobillity behavior

m Detecting a large enough subset of objects
moving along paths close to each other for
a certain time. Main approaches:

m Spherical-like clustering: Flocks (Laube et al.
2005; Gudmundsson & van Kreveld, 2006) vs.

m Density-based clustering: Convoys (Jeung et
al. 2008); Swarms (Li et al. 2010), etc.

= Hybrid: Evolving Clusters (Tritsarolis et al. 2021)

m Note: these methods work on time-

aligned location sequences = need for
fixed re-sampling




Flocks and variants

m [nferesting applications of the flock/convoy pattern discovery:
m |dentify long flock patterns (top-k longest flock pattern discovery)
m Discover meetings (fixed- vs. varying- versions)
m Discover convergences
m Discover leaders and followers O

convergence
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Location / Trajectory prediction .

F2 &~ B
traffic jam ___ \‘4 to
® Prediction aims to predict the future location(s) of _F ’i
(or even the entire trajectory to be followed by) /:\ /f‘ t
a moving object. h

= Two main approaches: Formula- vs. Pattern-based prediction
= Motion function models, e.g., RMF (Tao et al. 2004)

m vs. patterns built upon the history, e.g., Personal profiles (Trasarti et al. 2017)

m A survey of 50+ methods: (Georgiou et al. 2018)




Location / Trajectory prediction (cont.)

» MyWay (Trasarti et al. 2017) maintains a Personal Mobility Data Store (PMDS) per
participating person
= How is a person moving? User’s Personal Mobility Data Store

m According to his/her past S ndidial l s N
movement patterns :“rz:;:“’/—/? “‘ Predictor /
» What if the personal datastore T

is not adequate?

m | ook into the collective
knowledge base

m 3 predictors: personal (red),
collective (blue), hybrid (green)

image source: kdd.isti.cnr.it 37



Summary




Summary

= The Mobility Data Analytics field (Pelekis & Theodoridis
2014) includes many success stories on:

= Data management - access methods & query processing
techniques, DBMS extensions (the so-called, Moving Object
Databases), etc.

®» Data mining — clusters, flocks, convoys, hot spots, etc.

® The new era that has emerged this decade is around
two keywords:

= Semantically-enriched trajectories (Parent et al. 2013):
information about when, where, what, how, why

» Extreme-scale mobility data processing (Vouros et al. 2018):
voluminous, streaming, disperse information about objects’ T
movement _~a, S

=
z D

Evening sleep
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The Data Science Lab @ UniPi.GR

Our research agenda:

® Extreme-scale mobility
data processing

= Mobility data analytics
at the (edge/fog/cloud)
compute continuum

= Time series analytics &
forecasting

m Data fusion & semantic
integration

m efc.

hitps://www.datastories.org



