
The picture can't be displayed.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Introduction to SQL

The original presentation is changed and infused with more information and slides
by Verena Kantere

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 6th Edition

Outline

! Overview of The SQL Query Language
! Data Definition
! Basic Query Structure
! Additional Basic Operations
! Set Operations
! Modification of the Database
! Join  Expressions
! Integrity Constraints
! SQL Data Types and Schemas



©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 6th Edition

History

! IBM Sequel language developed as part of System R project at the 
IBM San Jose Research Laboratory. It stands for ‘Structured English 
Query Language’

! Renamed ‘Structured Query Language’ (SQL)
! ANSI and ISO standard SQL:

! SQL-86
! SQL-89
! SQL-92 
! SQL:1999 (language name became Y2K compliant!)
! SQL:2003
! More smaller updates in 2006, 2008, 2011, 2016, 2019

! Commercial systems offer most, if not all, SQL-92 features, plus 
varying feature sets from later standards and special proprietary 
features.  
! Not all examples here may work on your particular system.



©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 6th Edition

Data Definition Language

! The schema for each relation.
! The domain of values associated with each attribute.
! Integrity constraints
! And as we will see later, also other information such as 

! The set of indices to be maintained for each relations.
! Security and authorization information for each relation.
! The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the specification 
of information about relations, including:



©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 6th Edition

Domain Types in SQL

! char(n). Fixed length character string, with user-specified length n.
! varchar(n). Variable length character strings, with user-specified 

maximum length n.
! int. Integer (a finite subset of the integers that is machine-dependent).
! smallint. Small integer (a machine-dependent subset of the integer 

domain type).
! numeric(p,d). Fixed point number, with user-specified precision of p

digits, with d digits to the right of decimal point.  (ex., numeric(3,1), 
allows 44.5 to be stores exactly, but not 444.5 or 0.32)

! real, double precision. Floating point and double-precision floating 
point numbers, with machine-dependent precision.

! float(n). Floating point number, with user-specified precision of at least 
n digits.

! More are covered in Chapter 4.



©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 6th Edition

Create Table Construct

! An SQL relation is defined using the create table command:
create table r (A1 D1, A2 D2, ..., An Dn,

(integrity-constraint1),
...,
(integrity-constraintk))

! r is the name of the relation
! each Ai is an attribute name in the schema of relation r
! Di is the data type of values in the domain of attribute Ai

! Example:
create table instructor (

ID char(5),
name           varchar(20),
dept_name  varchar(20),
salary numeric(8,2))



©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 6th Edition

Integrity Constraints in Create Table

! not null
! primary key (A1, ..., An )
! foreign key (Am, ..., An ) references r

Example:

create table instructor (
ID char(5),
name           varchar(20) not null,
dept_name  varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references department);

primary key declaration on an attribute automatically ensures not null



©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 6th Edition

And a Few More Relation Definitions
! create table student (

ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

! create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2), 
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references section);

! Note: sec_id can be dropped from primary key above, to ensure a 
student cannot be registered for two sections of the same course in the 
same semester



©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 6th Edition

And more still

! create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),
foreign key (dept_name) references department);



©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 6th Edition

Updates to tables
! Insert  

! insert into instructor values (‘10211’, ’Smith’, ’Biology’, 66000);
! Delete 

! Remove all tuples from the student relation
4 delete from student  

! Drop Table
! drop table r

! Alter 
! alter table r add A D

4 where A is the name of the attribute to be added to relation 
r and D is the domain of A.

4 all existing tuples in the relation are assigned null as the 
value for the new attribute.  

! alter table r drop A     
4 where A is the name of an attribute of relation r



©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 6th Edition

Basic Query Structure 

! A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

! Ai represents an attribute
! Ri represents a relation
! P is a predicate.

! The result of an SQL query is a relation.



©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 6th Edition

The select Clause

! The select clause lists the attributes desired in the result of a query
! corresponds to the projection operation of the relational algebra

! Example: find the names of all instructors:
select name
from instructor

! NOTE:  SQL names are case insensitive (i.e., you may use upper- or 
lower-case letters.)  
! E.g.,  Name ≡ NAME ≡ name
! Some people use upper case wherever we use bold font.



©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 6th Edition

The select Clause (Cont.)

! SQL allows duplicates in relations as well as in query results.
! To force the elimination of duplicates, insert the keyword distinct

after select.
! Find the department names of all instructors, and remove duplicates

select distinct dept_name
from instructor

! The keyword all specifies that duplicates should not be removed.

select all dept_name
from instructor



©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 6th Edition

The select Clause (Cont.)

! An asterisk in the select clause denotes “all attributes”
select *
from instructor

! An attribute can be a literal  with  no from  clause
select  ‘437’

! Results is a table with one column and a single row with value “437”
! Can give the column a name using:

select ‘437’ as FOO
! An attribute can be a literal with from  clause

select  ‘A’
from instructor

! Result is a table with one column and N rows (number of tuples in the 
instructors table), each row with value “A”



©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 6th Edition

The select Clause (Cont.)

! The select clause can contain arithmetic expressions involving the 
operation, +, –, *, and /, and operating on constants or attributes of 
tuples.
! The query: 

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor relation, 
except that the value of the attribute salary is divided by 12.

! Can rename “salary/12” using the as clause:
select ID, name, salary/12  as monthly_salary



©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 6th Edition

The where Clause

! The where clause specifies conditions that the result must satisfy
! Corresponds to the selection predicate of the relational algebra.  

! To find all instructors in Comp. Sci. dept
select name
from instructor
where dept_name = ‘Comp. Sci.'

! Comparison results can be combined using the logical connectives 
and, or, and not 
! To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = ‘Comp. Sci.' and salary > 80000

! Comparisons can be applied to results of arithmetic expressions.



©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 6th Edition

The from Clause

! The from clause lists the relations involved in the query
! Corresponds to the Cartesian product operation of the relational 

algebra.
! Find the Cartesian product instructor X teaches

select *
from instructor, teaches

! generates every possible instructor – teaches pair, with all attributes 
from both relations.

! For common attributes (e.g., ID), the attributes  in the resulting table 
are renamed using the  relation name (e.g., instructor.ID)

! Cartesian product not very useful directly, but useful combined with 
where-clause condition (selection operation in relational algebra).



©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 6th Edition

Cartesian Product
instructor teaches



©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 6th Edition

Examples

! Find the names of all instructors who have taught some course and the 
course_id
! select name, course_id

from instructor , teaches
where instructor.ID = teaches.ID 

! Find the names of all instructors in the Art department who have taught 
some course and the course_id
! select name, course_id

from instructor , teaches
where instructor.ID = teaches.ID  and instructor. dept_name = ‘Art’



©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 6th Edition

The Rename Operation

! The SQL allows renaming relations and attributes using the as clause:
old-name as new-name

! Find the names of all instructors who have a higher salary than 
some instructor in ‘Comp. Sci’.
! select distinct T.name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = ‘Comp. Sci.’

! Keyword as is optional and may be omitted
instructor as T ≡ instructor T



©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 6th Edition

String Operations

! SQL includes a string-matching operator for comparisons on character 
strings.  The operator like uses patterns that are described using two 
special characters:
! percent ( % ).  The % character matches any substring.
! underscore ( _ ).  The _ character matches any character.

! Find the names of all instructors whose name includes the substring 
“dar”.

select name
from instructor
where name like '%dar%' 

! Match the string “100%”
like ‘100 \%' escape  '\' 

in that above we use backslash (\) as the escape character.



©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 6th Edition

String Operations (Cont.)

! Patterns are case sensitive. 
! Pattern matching examples:

! ‘Intro%’ matches any string beginning with “Intro”.
! ‘%Comp%’ matches any string containing “Comp” as a substring.
! ‘_ _ _’ matches any string of exactly three characters.
! ‘_ _ _ %’ matches any string of at least three characters.

! SQL supports a variety of string operations such as
! concatenation (using “||”)
! converting from upper to lower case (and vice versa)
! finding string length, extracting substrings, etc.



©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 6th Edition

Ordering the Display of Tuples

! List in alphabetic order the names of all instructors 
select distinct name
from    instructor
order by name

! We may specify desc for descending order or asc for ascending 
order, for each attribute; ascending order is the default.
! Example:  order by name desc

! Can sort on multiple attributes
! Example: order by dept_name, name



©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 6th Edition

Where Clause Predicates

! SQL includes a between comparison operator
! Example:  Find the names of all instructors with salary between $90,000 

and $100,000 (that is, ³ $90,000 and £ $100,000)
! select name

from instructor
where salary between 90000 and 100000

! Tuple comparison
! select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, ’Biology’);



©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 6th Edition

Set Operations

! Find courses that ran in Fall 2009 or in Spring 2010

! Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
union

(select course_id from section where sem = ‘Spring’ and year = 2010)

! Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall’ and year = 2009)
intersect

(select course_id from section where sem = ‘Spring’ and year = 2010)

(select course_id from section where sem = ‘Fall’ and year = 2009)
except

(select course_id from section where sem = ‘Spring’ and year = 2010)



©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 6th Edition

Set Operations (Cont.)

! Find the salaries of all instructors that are less than the largest salary.
! select distinct T.salary

from instructor as T, instructor as S
where T.salary < S.salary 

! Find all the salaries of all instructors
! select distinct salary

from instructor

! Find the largest salary of all instructors.
! (select “second query” )

except
(select “first query”)



©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 6th Edition

Set Operations (Cont.)

! Set operations union, intersect, and except
! Each of the above operations automatically eliminates duplicates

n To retain all duplicates use the corresponding multiset versions union 
all, intersect all and except all.

n Suppose a tuple occurs m times in r and n times in s, then, it occurs:
! m + n times in r union all s
! min(m,n) times in r intersect all s
! max(0, m – n) times in r except all s



©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 6th Edition

Null Values

! It is possible for tuples to have a null value, denoted by null, for 
some of their attributes

! null signifies an unknown value or that a value does not exist.
! The result of any arithmetic expression involving null is null

! Example:  5 + null returns null
! The predicate  is null can be used to check for null values.

! Example: Find all instructors whose salary is null.
select name
from instructor
where salary is null



©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 6th Edition

Null Values and Three Valued Logic

! Three values – true, false, unknown
! Any comparison with null returns unknown

! Example: 5 < null   or   null <> null    or    null = null
! Three-valued logic using the value unknown:

! OR: (unknown or true)   = true,
(unknown or false)  = unknown
(unknown or unknown) = unknown

! AND: (true and unknown)  = unknown,    
(false and unknown) = false,
(unknown and unknown) = unknown

! NOT:  (not unknown) = unknown
! “P is unknown” evaluates to true if predicate P evaluates to 

unknown
! Result of where clause predicate is treated as false if it evaluates to 

unknown



©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 6th Edition

Nested Subqueries
! SQL provides a mechanism for the nesting of subqueries. A subquery

is a select-from-where expression that is nested within another query.
! The nesting can be done in the following SQL query

select A1, A2, ..., An
from r1, r2, ..., rm
where P

as follows:
! Ai   can be replaced be a subquery that generates a single value.
! ri can be replaced by any valid subquery
! P can be replaced with an expression of the form:

B <operation> (subquery)
Where B is an attribute and <operation> to be defined later.



©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 6th Edition

Subqueries in the Where Clause



©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 6th Edition

Subqueries in the Where Clause

! A common use of subqueries is to perform tests:
! For set membership
! For set comparisons
! For set cardinality.



©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 6th Edition

Set Membership 

! Find courses offered in Fall 2009 and in Spring 2010

! Find courses offered in Fall 2009 but not in Spring 2010

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and 

course_id in (select course_id
from section
where semester = ’Spring’ and year= 2010);

select distinct course_id
from section
where semester = ’Fall’ and year= 2009 and 

course_id  not in (select course_id
from section
where semester = ’Spring’ and year= 2010);



©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 6th Edition

Set Membership (Cont.)

! Find the total number of (distinct) students who have taken course 
sections taught by the instructor with ID 10101

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in 

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);



©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 6th Edition

Set Comparison – “some” Clause

! Find names of instructors with salary greater than that of some (at 
least one) instructor in the Biology department.

! Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept name = ’Biology’);

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = ’Biology’;



©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 6th Edition

Definition of  “some” Clause

! F <comp> some r Û $ t Î r such that (F <comp> t )
Where <comp> can be:  <, £, >, =, ¹

0
5
6

(5 < some ) = true

0
5
0

) = false

5

0
5(5 ¹ some ) = true (since 0 ¹ 5)

(read:  5 < some tuple in the relation) 

(5 < some

) = true(5 = some

(= some) º in
However, (¹ some) º not in



©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 6th Edition

Set Comparison – “all” Clause

! Find the names of all instructors whose salary is greater than the 
salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary

from instructor
where dept name = ’Biology’);



©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 6th Edition

Definition of “all” Clause

! F <comp> all r Û" t Î r (F <comp> t)

0
5
6

(5 < all ) = false

6
10
4

) = true

5

4
6(5 ¹ all ) = true (since 5 ¹ 4 and 5 ¹ 6)

(5 < all

) = false(5 = all

(¹ all) º not in
However, (= all) º in



©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 6th Edition

Test for Empty Relations

! The exists construct returns the value true if the argument 
subquery is nonempty.

! exists r Û r ¹ Ø
! not exists r Û r = Ø



©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 6th Edition

Use of “exists” Clause

! Yet another way of specifying the query “Find all courses taught in 
both the Fall 2009 semester and in the Spring 2010 semester”

select course_id
from section as S
where semester = ’Fall’ and year = 2009 and 

exists (select *
from section as T
where semester = ’Spring’ and year= 2010 

and S.course_id = T.course_id);

! Correlation name – variable S  in the outer query
! Correlated subquery – the inner query



©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 6th Edition

Use of “not exists” Clause

! Find all students who have taken all courses offered in the Biology 
department.

select distinct S.ID, S.name
from student as S
where not exists ( (select course_id

from course
where dept_name = ’Biology’)

except
(select T.course_id

from takes as T
where S.ID = T.ID));

• First nested query lists all courses offered in Biology
• Second nested query lists all courses a particular student took

! Note that X – Y = Ø   Û X Í Y

! Note: Cannot write this query using = all and its variants



©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 6th Edition

Test for Absence of Duplicate Tuples

! The unique construct tests whether a subquery has any 
duplicate tuples in its result.

! The unique construct evaluates to “true” if a given subquery 
contains no duplicates.

! Find all courses that were offered at most once in 2009
select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id 

and R.year = 2009);



©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 6th Edition

Modification of the Database

! Deletion of tuples from a given relation.
! Insertion of new tuples into a given relation
! Updating of values in some tuples in a given relation



©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 6th Edition

Deletion

! Delete all instructors
delete from instructor

! Delete all instructors from the Finance department
delete from instructor
where dept_name= ’Finance’;

! Delete all tuples in the instructor relation for those instructors 
associated with a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = ’Watson’);



©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 6th Edition

Deletion (Cont.)

! Delete all instructors whose salary is less than the average salary of 
instructors

delete from instructor
where salary < (select avg (salary) 

from instructor);

l Problem:  as we delete tuples from deposit, the average salary 
changes

l Solution used in SQL:
1.   First, compute avg (salary) and find all tuples to delete

2.   Next, delete all tuples found above (without 
recomputing  avg or retesting the tuples) 



©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 6th Edition

Insertion

! Add a new tuple to course
insert into course

values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

! or equivalently

insert into course (course_id, title, dept_name, credits)
values (’CS-437’, ’Database Systems’, ’Comp. Sci.’, 4);

! Add a new tuple to student  with tot_creds set to null
insert into student

values (’3003’, ’Green’, ’Finance’, null);



©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 6th Edition

Insertion (Cont.)

! Add all instructors to the student relation with tot_creds set to 0
insert into student

select ID, name, dept_name, 0
from instructor

! The select from where statement is evaluated fully before any of its 
results are inserted into the relation.  
Otherwise queries like

insert into table1 select * from table1
would cause problem



©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 6th Edition

Updates

! Increase salaries of instructors whose salary is over $100,000 
by 3%, and all others by a 5% 
! Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

! The order is important
! Can be done better using the case statement (next slide)



©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 6th Edition

Case Statement for Conditional Updates

! Same query as before but with case statement
update instructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03

end



©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 6th Edition

Updates with Scalar Subqueries

! Recompute and update tot_creds value for all students
update student S 

set tot_cred = (select sum(credits)
from takes, course
where takes.course_id = course.course_id and 

S.ID= takes.ID.and                             
takes.grade <> ’F’ and
takes.grade is not null);

! Sets tot_creds to null for students who have not taken any course
! Instead of sum(credits), use:

case 
when sum(credits) is not null then sum(credits)
else 0

end



©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 6th Edition

Joined Relations

! Join operations take two relations and return as a result 
another relation.

! A join operation is a Cartesian product which requires that 
tuples in the two relations match (under some condition).  
It also specifies the attributes that are present in the result 
of the join

! The join operations are typically used as subquery 
expressions in the from clause



©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 6th Edition

Equivalent expressions

select *
from student join takes on student.ID= takes.ID

select *
from student, takes
where student.ID= takes.ID



©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 6th Edition

Almost equivalent expressions

select *
from student join takes on student.ID= takes.ID

select student.ID as ID, name, dept name, tot cred,
course id, sec id, semester, year, grade

from student join takes on student.ID= takes.ID

select *
from student natural join takes



©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 6th Edition

Join operations – Example

! Relation course

! Relation prereq

! Observe that 
prereq information is missing for CS-315 and
course information is missing  for  CS-437



©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 6th Edition

Outer Join

! An extension of the join operation that avoids loss of 
information.

! Computes the join and then adds tuples form one relation 
that does not match tuples in the other relation to the result 
of the join. 

! Uses null values.



©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 6th Edition

Left Outer Join

! course natural left outer join prereq



©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 6th Edition

Right Outer Join

! course natural right outer join prereq



©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 6th Edition

Full Outer Join

! course natural full outer join prereq



©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 6th Edition

Joined Relations

! Join operations take two relations and return as a result 
another relation.

! These additional operations are typically used as subquery 
expressions in the from clause

! Join condition – defines which tuples in the two relations 
match, and what attributes are present in the result of the join.

! Join type – defines how tuples in each relation that do not 
match any tuple in the other relation (based on the join 
condition) are treated.



©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 6th Edition

Joined Relations – Examples 

! course inner join prereq on
course.course_id = prereq.course_id

! What is the difference between the above, and a natural join? 
! course left outer join prereq on

course.course_id = prereq.course_id



©Silberschatz, Korth and Sudarshan3.61Database System Concepts - 6th Edition

Joined Relations – Examples

! course natural right outer join prereq



©Silberschatz, Korth and Sudarshan3.62Database System Concepts - 6th Edition

Joined Relations – Examples
! course full outer join prereq using (course_id)

The operation join ... using requires a list of attribute names to be
specified. Both relations being joined must have attributes with the
specified names. Consider the operation r1 join r2 using (A1, A2). The
operation is similar to r1natural join r2, except that a pair of tuples t1
from r1and t2 from r2match if t1.A1= t2.A1and t1.A2= t2.A2; even if r1and
r2both have an attribute named A3, it is not required that t1.A3= t2.A3.



©Silberschatz, Korth and Sudarshan3.63Database System Concepts - 6th Edition

Integrity Constraints

! Integrity constraints guard against accidental damage to the 
database, by ensuring that authorized changes to the 
database do not result in a loss of data consistency. 
" A checking account must have a balance greater than 

$10,000.00
" A salary of a bank employee must be at least $4.00 an 

hour
" A customer must have a (non-null) phone number



©Silberschatz, Korth and Sudarshan3.64Database System Concepts - 6th Edition

Integrity Constraints on a Single Relation

! not null
! primary key
! unique
! check (P), where P is a predicate



©Silberschatz, Korth and Sudarshan3.65Database System Concepts - 6th Edition

Not Null and Unique Constraints 

! not null
" Declare name and budget to be not null

name varchar(20) not null
budget numeric(12,2) not null

! unique ( A1, A2, …, Am)
" The unique specification states that the attributes 

A1, A2, … Am 
form a super key.

" Super keys are permitted to be null (in contrast to primary 
keys).Attributes declared as unique are permitted to be null 
unless they have explicitly been declared to be not null. 



©Silberschatz, Korth and Sudarshan3.66Database System Concepts - 6th Edition

Referential Integrity

! Ensures that a value that appears in one relation for a given 
set of attributes also appears for a certain set of attributes in 
another relation.
" Example:  If “Biology” is a department name appearing in 

one of the tuples in the instructor relation, then there exists 
a tuple in the department relation for “Biology”.

! Let A be a set of attributes.  Let R and S be two relations that 
contain attributes A and where A is the primary key of S. A is 
said to be a  foreign key of R if for any values of A appearing 
in R these values also appear in S.



©Silberschatz, Korth and Sudarshan3.67Database System Concepts - 6th Edition

Cascading Actions in Referential Integrity

! create table course (
course_id char(5) primary key,
title             varchar(20),
dept_name varchar(20) references department

)
! create table course (

…
dept_name varchar(20),
foreign key (dept_name) references department

on delete cascade
on update cascade,

. . . 
)

! alternative actions to cascade:  set null, set default, no 
action, restrict



©Silberschatz, Korth and Sudarshan3.68Database System Concepts - 6th Edition

Integrity Constraint Violation During 
Transactions

! E.g.
create table person (

ID char(10),
name char(40),
mother char(10),
father char(10),
primary key ID,
foreign key father references person,
foreign key mother references person)

! How to insert a tuple without causing constraint violation ?
" insert father and mother of a person before inserting person
" OR, set father and mother to null initially, update after 

inserting all persons (not possible if father and mother 
attributes declared to be not null) 

" OR defer constraint checking 



©Silberschatz, Korth and Sudarshan3.69Database System Concepts - 6th Edition

The check clause

! check (P)
where P is a predicate

Example:  ensure that semester is one of fall, winter, spring or 
summer:
create table section (

course_id varchar (8),
sec_id varchar (8),
semester varchar (6),
year numeric (4,0),
building varchar (15),
room_number varchar (7),
time slot id varchar (4), 
primary key (course_id, sec_id, semester, year),
check (semester in (‘Fall’, ‘Winter’, ‘Spring’, ‘Summer’))

)



©Silberschatz, Korth and Sudarshan3.70Database System Concepts - 6th Edition

Database schema for the University



©Silberschatz, Korth and Sudarshan3.71Database System Concepts - 6th Edition

Complex Check Clauses

! check (time_slot_id in (select time_slot_id from time_slot))
" why not use a foreign key here?

! Every section has at least one instructor teaching the section
" how to write this?
! In an attempt to enforce this, we may try to declare that the attributes 

(course id, sec id, semester, year) of the section relation form a foreign 
key referencing the corresponding attributes of the teaches relation. 
Unfortunately, these attributes do not form a candidate key of the 
relation teaches.

! Unfortunately:  subquery in check clause not supported by pretty 
much any common DBMS
" Alternative: triggers (later)

! create assertion <assertion-name> check <predicate>;
" Also not supported by any common DBMS



©Silberschatz, Korth and Sudarshan3.72Database System Concepts - 6th Edition

Built-in Data Types in SQL 
! date: Dates, containing a (4 digit) year, month and date

" Example:  date ‘2005-7-27’
! time: Time of day, in hours, minutes and seconds.

" Example: time ‘09:00:30’ time ‘09:00:30.75’
! timestamp: date plus time of day

" Example:  timestamp ‘2005-7-27 09:00:30.75’
! interval: period of time

" Example:   interval  ‘1’ day
" Subtracting a date/time/timestamp value from another gives 

an interval value
" Interval values can be added to date/time/timestamp values



©Silberschatz, Korth and Sudarshan3.73Database System Concepts - 6th Edition

SQL 
Server 
casting



©Silberschatz, Korth and Sudarshan3.74Database System Concepts - 6th Edition

Index Creation

! create table student
(ID varchar (5),
name varchar (20) not null,
dept_name varchar (20),
tot_cred numeric (3,0) default 0,
primary key (ID))

! create index studentID_index on student(ID)
! Indices are data structures used to speed up access to records 

with specified values for index attributes
" e.g. select * 

from student
where ID = ‘12345’

can be executed by using the index to find the required 
record, without looking at all records of student

More on indices in Chapter 11



©Silberschatz, Korth and Sudarshan3.75Database System Concepts - 6th Edition

User-Defined Types

! create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final 

" create table department
(dept_name varchar (20),
building varchar (15),
budget Dollars);

Specify FINAL if no further subtypes can be created for this 
type. This is the default.
Specify NOT FINAL if further subtypes can be created 
under this type.



©Silberschatz, Korth and Sudarshan3.76Database System Concepts - 6th Edition

Domains

! create domain construct in SQL-92 creates user-defined 
domain types

create domain person_name char(20) not null

! Types and domains are similar.  Domains can have 
constraints, such as not null, specified on them.

! create domain degree_level varchar(10)
constraint degree_level_test
check (value in ( ‘Bachelors’, ‘Masters’, ‘Doctorate’));



©Silberschatz, Korth and Sudarshan3.77Database System Concepts - 6th Edition

Default values

create table student
(ID varchar (5),
name varchar (20) not null,
dept name varchar (20),
tot cred numeric (3,0) default 0,
primary key (ID))

The default value of the tot_cred attribute is declared to be 0. As a result, 
when a tuple is inserted into the student relation, if no value is provided 
for the tot_cred attribute, its value is set to 0. The following insert 
statement illustrates how an insertion can omit the value for the tot_cred 
attribute.

insert into student(ID, name, dept name)
values (’12789’, ’Newman’, ’Comp. Sci.’)



The picture can't be displayed.

Database System Concepts, 6th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

End of SQL

http://www.db-book.com/

