2 Measure Theory

Measure Theory is the part of mathematical analysis that deals with the development of
a precise way to measure large classes of sets and how to integrate functions. It started
at the end of the 19th century with the works of Jordan, Borel, Young, and Lebesgue. By
that time it was evident that the Riemann integral had serious limitations and had to
be replaced by a new integral that was more general (that is, more functions could
be integrated) and more flexible (that is, it led to more efficient calculus rules and
in particular convergence theorems). The construction of Lebesgue turned out to be
extremely fruitful and launched “Measure Theory.” The idea of Lebesgue to partition
the f(x)-axis (instead of the x-axis as is done in the Riemann integral) was a remarkable
conceptual insight, which allowed the full power of measure theory to reveal itself. In
this chapter we present some basic aspects of this theory, which are needed to deal
with the topics that follow.

2.1 Basic Notions, Measures, and Outer Measures

We start by defining algebras and o-algebras. These are families of subsets of a given
set. On g-algebras, the theory exhibits its full strength.

Definition 2.1.1. Let X be a set and £ < 2% a nonempty family of subsets.

(a) We say that £ is an algebra (or a field) if A, B € £ implies AU B € £ and A€ =
X\ A € £.Thatis, £ is closed under finite unions and complementation.

(b) We say that £ is a o-algebra (or a o-field) if £ is an algebra and it is closed under
countable unions, that is, if {An}n>1 € £, then (51 An € £.

Remark 2.1.2. Note that if £ is an algebra, then 0, X € £. Indeed, let A € £. Then
A e Landso X = AUAC € £L.Hence 0 = X € L. Moreover, by de Morgan’s law, every
algebra (resp. g-algebra) is closed under finite (resp. countable) intersections. If E € X,
then the restriction (or trace) of £ on E is defined by Lgp = {ENA: A € L}.

Example 2.1.3. (a) There are two extreme cases: £1 = {0, X} and £, = 2%. Both are
o-algebras with £, being the smallest with respect to inclusion and £, being the
greatest one.

(b) Let X = [0, 1) and let £ be the finite union of intervals [a, b) < [0, 1). Then £ is an
algebra but not an o-algebra since E = (),5,[0, 1/n) = {0} ¢ L.

Evidently the intersection of o-algebras is again a o-algebra. This leads to the following
definitions.
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Definition 2.1.4. (a) Let X be a set and let ¥ ¢ 2X be nonempty. The o-algebra gener-
ated by F, denoted by 0(5), is defined by

a(F) = ﬂ {L c2X:5cL,Lisa o-algebra} )

(b) Let (X, 7) be a Hausdorff topological space. The Borel g-algebra is defined by
B(X) = o(1).

As we will see later in our discussion of measures it is often more convenient to start with
families that have less structure than o-algebras and eventually pass to the o-algebra
they generate.

Definition 2.1.5. Let X be a set and let £ ¢ 2% be a nonempty family of subsets.

(a) Wesaythat Lisaringif A, B ¢ £ impliesAUB € Land A\ B € £. Thatis, £ is
closed under finite unions and relative complementation.

(b) We say that £ is a o-ring if £ is a ring and it is closed under countable unions, that
is, if {An}n=1 € £, then |5 An € L.

(c) We say that £ is a semiring if the following hold:
(i) 0eL;
(ii) A,B € L impliesANB € L;
(iii) A, B € £ implies A \ B = |J;_, Ck for some n € N and disjoint {Ck}y, € L.

Remark 2.1.6. Note thatif Lisaringand A € £,then0 = A\ A € L. So, the empty set
is always an element of a ring. Hence if £ is aring and X € £, then £ is an algebra.
Thus we see that the collection of all finite subsets of X is a ring but not an algebra
unless X is a finite set. On the other hand the collection of all finite subsets of X and of
their complements is an algebra but not a g-algebra unless X is a finite set. If £ is a
ringand A,B e £L,thenAnB=A\ (A \B) € L. So, aring is also closed under finite
intersections. Similarly AAB = (A \ B) U (B \ A) € £ and so a ring is also closed under
symmetric differences.

We have the following relations among the notions introduced thus far:

[o-algebra H o-ring ]—»[ ring ]—»[ semiring]

Apart from trivial cases, a(£) (see Definition 2.1.4(a)) cannot be constructively obtained
from £. In order to overcome this difficulty, we introduce the following notions.

Definition 2.1.7. Let X be a set and D < 2%. We say that D is a Dynkin system (or a
A-system) if the following conditions hold:
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i) XeD;
(i) A, B € D with B ¢ A implies A\ B € D;
(iii) {An}n=1 € D increasing implies A = J,,»1 An € D.

Remark 2.1.8. Evidently (ii) implies that 0 is in every Dynkin system and {0, X} as well
as 2% are both Dynkin systems. Consider also the following conditions on the family
D c 2X:

(iv) A € D implies A€ € D;

(v) for every disjoint sequence {An}n>1 € D we have | J,5; An € D.

It is easy to show that D is a Dynkin system if and only if (i), (iv), and (v) hold if and
only if (i), (ii), and (v) hold.

Definition 2.1.9. Let X be a set and £ < 2* a nonempty family of subsets of X. We say
that £ is a monotone class if {4,},>1 € £ is increasing or decreasing, then

A=|JAnel or A=()Anel.
n>1 n>1
Remark 2.1.10. Any o-algebra is a monotone class but a topology is not in general. Of
course 2% is always a monotone class and the intersection of a family of monotone
classes is a monotone class. So, there is a smallest monotone class containing a
nonempty family £ < 2%. A monotone class that is also an algebra is also a o-algebra.

The next result is known as the “Dynkin System Theorem.” The name “Dynkin’s 7-1
Theorem” can be also found in the literature.

Theorem 2.1.11 (Dynkin System Theorem). If X is a set, £ < 2% is a nonempty family of
subsets that is closed under finite intersections, and D is a Dynkin system such that
D2 L, thenD 2 o(L).

Proof. Let Dy be the smallest Dynkin system containing £. Evidently Dy < D. Moreover,
(L) is a Dynkin system. So, we also have Dy € 0(L). Let

R={AeDo: AnB e DyforeveryB e L}.

Since £ is closed under finite intersections we have £ € R and since Dy is a Dynkin
system, we have that R is a Dynkin system as well. Therefore

Do=R. (2.1.1)

Let R! = {E € Do: ENnD € Dgforall D € Dy}. Because of (2.1.1), it holds that
Do = R and so we have that £ ¢ R/, and R’ is a Dynkin system. Hence, Do = R/,
which means that Dy is closed under finite intersections. Thus, Dy is a o-algebra; see

Remark 2.1.8. Hence,
0(L)=DocD. O

Monotone classes are closely related to o-algebras and by Theorem 2.1.11 are also related
to Dynkin systems. The next result illustrates this and is known as the “Monotone Class
Theorem.”
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Theorem 2.1.12 (Monotone Class Theorem). If X is a set, £ < 2% is an algebra and
M < 2% is a nonempty, monotone class such that M 2 £, then M 2 o(£).

Proof. Let X = 0(£) and let My be the smallest monotone class containing £. Evidently
Mo € M. If we show that X = My, then we are done.
To this end, we fix A € My and let

M4 ={BeMo: AnB,B\ A € Mo} .

Then M‘é is a monotone class. If A € £, then since £ is an algebra, we have Mg € M‘g,
hence Mo = M%. So, for any B € M, we have

ANB,A\B,B\AeM, foranyA e (.

Thus, £ ¢ M5, which implies Mo = M5.

Then we see that My is an algebra and so it follows that My is a o-algebra; see Re-
mark 2.1.10. It follows that 2 € Mg and because 2 is also a monotone class containing £
we conclude that X = My € M. O

Remark 2.1.13. From the proof above we see that if £ ¢ 2% is an algebra, then ¢(£)
coincides with the smallest monotone class generated by £. Therefore, the algebra £ is
a monotone class if and only if £ is a g-algebra.

Since the Borel g-algebra (see Definition 2.1.4(b)) is an important o-algebra, we state
some easy but useful facts concerning its generation. The first result is an immediate
consequence of Theorem 2.1.11.

Proposition 2.1.14. If X is a Hausdorff topological space, then the Borel g-Algebra is the
smallest Dynkin system containing the open sets or the closed sets.

In the context of metric spaces we can state a little different characterization of the
Borel sets.

Proposition 2.1.15. If X is a metrizable space, then the Borel o-Algebra B(X) is the
smallest family of subsets of X that includes the open sets and it is closed under countable
intersections and under countable disjoint unions.

Proof. From Proposition 1.5.8 we know that every closed set is Gs. Hence, every family
of sets that contains the open sets and is also closed under countable intersections,
must contain the closed sets. Then the result follows from Problem 2.1. O

For a similar result for families containing the closed sets, we need to require that we
have closure under arbitrary unions, not just disjoint ones.

Proposition 2.1.16. If X is a metrizable space, then the Borel g-Algebra B(X) is the
smallest family of subsets of X that includes the closed sets and it is closed under
countable intersections and under countable unions.
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Proof. Recall again from Proposition 1.5.8 that every open set is F. Hence every family
of sets that contains the closed sets and is closed under countable unions, must contain
the open sets as well. Again an appeal to Problem 2.1 concludes the proof. O

Remark 2.1.17. In a Hausdorff topological space the closure of any set belongs to the
Borel o-algebra being closed. Similarly for the interior of any set being open and the
boundary of any set being closed. Recalling that singletons are closed sets, we infer
that countable sets are Borel. Finally, compact sets are also Borel being closed.

For the real line R we can choose among many different generators of the Borel g-algebra.
So let

L1 ={(a, b): a < b}, Lo ={[a, b): a < b}, L3 ={(a, b]: a < b},
L4 ={la, b]: a < b}, Ls={(a,00): aeR}, L¢={(-00,b): beR},
L7 ={[la,+00): ae R}, Lg={(-00,b]: beR}, Lg= opensetsofR,
L10 = closed setsof R .

Moreover, by L7, k € {1, ..., 8} we denote the collection of intervals in £ with
rational endpoints.
The next result is straightforward.

Proposition 2.1.18. B(R) = o(Ly) forall k € {1,...,10} and B(R) = o(Li) for all
kef{l,...,8}.

In many cases we will deal with the extended real line R* = R U {+oo}. In this case we
have the following.

Definition 2.1.19. It holds that B(R*) = G(B(IR) U {{+00}, {—oo}}).

Remark 2.1.20. Evidently B(R*) = {the B(RR)-sets or the B(IR)-sets with +co or —co or
both attached to them}.

From Proposition 2.1.18 and Definition 2.1.19 we obtain the following.

Proposition 2.1.21. It holds that card(B(R)) = card(B(IR*)) = ¢ being the cardinality of
the continuum.

Now we pass to set functions.

Definition 2.1.22. Let Xbeaset,0 € £ ¢ 2X and u: £ — R* is a set function.
(@) We say that y is monotone if

A c Bwith A, B € £ implies u(A) < u(B) .

(b) We say that u is additive (or finitely additive) if {Ax};_, < £ are pairwise disjoint

and | J;_; Ak € £ implies u((Uy_; Ax) = Y p_q H(AK).
(c) We say that u is o-additive (or countably additive) if {Ay}x>1 € £ are pairwise
disjoint and | J;»1 Ak € £ implies u(Uys1 Ax) = Y1 H(AK).
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We say that y is subadditive if {A;}}_, < £ and [J;_, Ax € £ imply p(Uy_; Ax) <
Y k=1 H(AK).

We say that p is o-subadditive if {A}x>1 € £ and | Ji.q Ak € £ imply u(Ups1 Ax) <
Y1 H(AK).

When £ = XY is a g-algebra, then we say that the set function u: ¥ - R* = RU{+o0}
is a signed-measure if it takes only one of the values +0o and —co, u(@) = 0, and it
is o-additive. If u takes only nonnegative values, then we say that u is a measure.
A pair (X, ) with X being a set and X < 2% being a o-algebra is said to be a measur-
able space. If y is a measure on (X, X), then (X, X, u) is said to be a measure space.
We say that y is finite (or that the measure space (X, X, p) is finite) if u(X) < co.
We say that y is o-finite if X = | J,., X, with X;, € ¥ and u(Xy) < +ooforalln € N.

Example 2.1.23. (a) Let X be a nonempty set and & = 2%, The set function u: £ —

(b)

[0, +00] defined by

card(A) if A is finite,
u(A) = )
+00 otherwise ,

is a measure known as the counting measure. If X is finite (resp. countable), then
u: X — [0, +oo] is finite (resp. o-finite). More generally, let f: X — [0, +c0) be a
function and define u: 2X — [0, +00] by setting

u(A) = Y f(x) = sup l Y f(x): F c Ais finite

xeA xeF

Then u: 2% — [0, +o0] is a measure that is o-finite if {x € X: f(x) > 0} is countable.
Evidently, if f(x) = 1 for all x € X, then we have the counting measure. If f(xg) = 1
and f(x) = 0if x # xo, then u: 2X — [0, +00] is called the Dirac measure at xg
and is denoted by 8y, .

Let X be an uncountable set and let

> ={A c X: Ais countable or A€ is countable} .

Then X is a g-algebra being the o-algebra of countable or co-countable sets. The
set function y: ¥ — [0, 1] defined by

) = 0 if A is countable,
s 1 if A¢is countable, that is, A is co-countable

is a finite measure.

The next proposition summarizes the main properties of measures.

Proposition 2.1.24. Let (X, X, u) be a measure space. Then the following hold:

(a)
(b)
(c)

UAUB)+u(AnB) =u(A)+u(B) forall A,B € X.
U(A) = u(B)+ u(A\ B) forall A, B € X with B C A.
U(B) < u(A) forall A, B € X with B < A (monotonicity).
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(d) u(Uis1 A1) < Y1 U(Ax) for all {A}is1 < 2 (0-subadditivity).

(e) If{Ai}ie1 < 2 is increasing, then u(Jysq Ak) = limi_co U(Ax) (continuity from
below).

() If{Ar}i=1 < 2 is decreasing and u(A1) < +oo, then pu((\is1 Ax) = limyg_eo u(Ax)
(continuity from above).

Proof. (a) By additivity we have
uA) =u(AnB)+u(A\B) and u(B)=u(AnB)+u(B\A).
Adding these two equations gives

W(A) + u(B) = W(AN B) + [U(A N B) + u(A \ B) + u(B\ 4)]
=u(AnB)+u(AuB)

again by the additivity.
(b) Let A = Bu (A \ B) and use the additivity we obtain u(A) = u(B) + u(A \ B).
(c) Since u is nonnegative, the assertion follows from (b).
(d) Let By = A1 and By = Ay \ Uf.‘z‘ll Aj; for k > 2. Then the sets {By}>1 are disjoint
and {Jgs1 Bk = Ujs1 Ak- Then, taking the o-additivity and part (c) into account it follows

H(UAk>=H<UBk)= Y uB) < Y ).

k>1 k>1 k>1 k>1

(e) Let Ag = 0. Then

n
T (U Ak> = ) M(Ak\ A1) = im Y p(Ak \ Ag-1) = lim p(Ap) .
k>1 k>1 k=1

(f) Let By = Ay \ Ak. Then {B}ik>1 € 2 is increasing, pu(A1) = u(Ax) + u(By) for all
k € N, see part (b), and (J;>1 Bk = A1 \ k=1 Ak- By parts (e) and (b) there holds

M(A1) = p <ﬂ Ak> + lim p(Bj) = p (ﬂ Ak> + lim [M(A1) - u(Ax)] -

k>1 k>1
Hence, subtracting u(A1) < co from both sides gives p (o1 Ak) = limi—co (Ar). O

Remark 2.1.25. Clearly, the condition u(A;) < +oco in Proposition 2.1.24(f) can be
replaced by the hypothesis that u(Ey,) < +co for some n € N since the first (n — 1) sets
do not affect the intersection.

It turns out that continuity from below (see Proposition 2.1.24(e)) for an additive set
function is equivalent to o-additivity.

Proposition 2.1.26. If X is a set, £ < 2X is an algebra of sets in X and u: L — [0, +00]
is an additive set function, then u is o-additive if and only if u is continuous from below,
that is, if {An}n=1 < £ is increasing, | J s An € £, then p({J,s1 An) = limp_00 U(An).
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Proof. =: This follows from the proof of Proposition 2.1.24(e).

<: Suppose we have continuity from below. Let {By}x>1 € £ be a sequence of
pairwise disjoint sets such that  J;, Bk € £. We set A, = | J;_, Bk. From the continuity
from below hypothesis, it follows

z <U Bk> = H (U Ak) = im p(An) = lim > u(Bi) = ) u(Bi).
k=1

k>1 k>1 k>1
This shows that u: £ — [0, +00] is o-additive. O
We get a similar result when we suppose continuity from above at the empty set.

Proposition 2.1.27. IfXisaset, L < 2% isan algebra of setsin X and u: £ — [0, +co] is
an additive set function with u(X) < +oo, then u is g-additive if and only if u is continuous
from above at the empty set, that is, if {Ax}>1 € £ is a decreasing sequence such that
Mis1 Ak = 0, then limg_,o u(Ag) = 0.

Proof. =: This implication follows again from the proof of Proposition 2.1.24(f).

=: Let {A}x=1 € £ be an increasing sequence such that | J;.; Ax € £.Let B, =
(Us1 Ak)\Ap foralln € N. Then {Bp}n>1 € £ isdecreasing and (),;5; Bn = 0. Therefore,
by hypothesis, we have

0= lim pu(By) = p (U Ak> - lim p(An).
k>1
Hence, p (| o1 4 k) = limy_, u(Ax) and so p is continuous from below. Then Proposi-
tion 2.1.26 implies that u is o-additive. O

The next result gives a necessary and sufficient condition for two finite measures to be
equal. It suffices to know that they coincide on a generating family that is closed under
finite intersections.

Proposition 2.1.28. If (X, ) is a measurable space, X = (L) with L closed under
finite intersections, u1, U, are two finite measures on X and p;(X) = pu>(X) as well as

M1l = M2| ., then pi = po.

Proof. LetD ={A € X: pu1(A) = u2(A)}. Applying Proposition 2.1.24(b) and (c), we see
that D is a Dynkin system; see Definition 2.1.7. Moreover, by hypothesis, £ < D. Then,
invoking Theorem 2.1.11, we infer that ¥ = (L) = D, which means that y; = y,. O

Corollary 2.1.29. If X is a Hausdorff topological space, B(X) is its Borel o-field and
U1, U2 are two finite measures on B(X), which coincide on the open or closed sets, then

M1 = Y.

In the next definition we introduce a notion that will lead us to a property reminiscent
of the intermediate value property.
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Definition 2.1.30. Let (X, X, u) be a measure space.

(a) We say that the measure u: ¥ — [0, +oo] is semifinite if for every A € X with
U(A) > 0, there exists B € X with B ¢ A such that 0 < u(B) < +oo.

(b) We say that A € X is an atom of y if O < u(A) < +oo and for every B < AwithB € ¥
either u(B) = 0 or u(B) = u(A). A measure without any atoms is called nonatomic.

Remark 2.1.31. The measure u on X' is nonatomic if for every set A € ¥ with u(A) > 0,
there exists B € X with B ¢ A such that O < u(B) < u(A). For the Dirac measure

1 ifXO €A, .
0x,(A) = withxg e X,A e X,
0 otherwise,

we see that {xo} is an atom. The main examples of atoms are singletons {x} with positive
measure.

Here is the result that recalls the intermediate value property.

Proposition 2.1.32. If (X, X, u) is a nonatomic measure space, then the range of u is the
interval [0, u(X)].

Proof. We fix A € (0, u(X)) and define £ = {A € X: 0 < u(A) < A}. First we show that
L + 0. The nonatomicity of u implies the existence of B € X such that 0 < u(B) < u(X).
The same argument (nonatomicity of u) implies that we can find E1, E, € X such that
B =EjUE,,E1nE; = 0and u(Ey), u(Ez) € (0, u(B)). It follows that at least one of
the sets E1, E; satisfies u(E;) € (0, 1/2u(B)]. Proceeding inductively, suppose that we
produced E4, ..., E, € X such that

U(Ey) € (o, %y(B)] . 2.1.2)

Applying again the nonatomicity of u there exists E 1 € ¥ with E,,1 € E, such that
U(Ens1) € (0, 1/2u(Ey)]. Evidently, because of (2.1.2) we have p(Eni1) < 1/2" 1 u(B).
Therefore, (2.1.2) holds for all n € IN. Moreover, for a large enough n € IN, we have
U(En) < A. Hence, E,, € £ for a large enough n € N, thus yielding £ + 0.

Next we show that there exists a 2-set with measure equal to A. To this end, let
Dy = 0 and suppose that D, € X'is given. Let

Ap=sup[u(C): Ce X,Dp, c C,u(C) <A] .
Choose D,,,1 € X such that

1
Dn - Cn+]_ al’ld An - H < H(Dn+1) < An . (2.1.3)

Itholds 0 < Apy1 < Ap < dand solimy_o0 Ap = A exists and A < A. We define

D= U D, . (2.1.4)

n>1
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This implies, due to (2.1.3) and Proposition 2.1.24(e), that
u(D) = nll)rgo uDy) =A. (2.1.5)

We need to show that A = A. If A < A, then u(X \ D) = u(X) - u(D) > A— A > 0; see
Proposition 2.1.24(b). Reasoning as in the first part of the proof with X replaced by X \ D
and A replaced by A — A > 0, we produce

Cex, CcX\D and 0<u(C)<A-A. (2.1.6)

Then, the subadditivity yields A = u(D) < u(C u D) < A, which gives, because of (2.1.5)
and (2.1.6), that A, < u(C u D) for all sufficiently large n € N. But D, < C u D for all
n € N; see (2.1.4). This contradicts the definition of A, for large enough n € IN. We
conclude that A = A and the proof is finished. O

The notion of outer measure is an abstract generalization of the “outer area” when we
apply the exhaustion method of Archimedes to calculate the area of a bounded region
in R?.

Definition 2.1.33. Let X be a nonempty set and u*: 2X — [0, +oo] be a set function.
We say that u* is an outer measure if it satisfies the following conditions:

(@) u*(0)=0;

(b) u* is monotone, thatis, A € B implies u*(A) < u*(B);

(c) u*is o-subadditive, thatis, u*({U,s1 An) < Y ps1 B (An).

We say that the outer measure u* is finite (resp. o-finite) if u*(X) < +oo (resp. X =
Uns1 Xn and p*(Xp) < +oo forall n € N).

A way to produce an outer measure is to start with a family of elementary sets on which
a measure is naturally defined (for example intervals in R and rectangles in R?) and
approximate any set from above by countable unions of such elementary sets. This
process is formalized in the proposition that follows.

Proposition 2.1.34. If X is anonemptyset, £ < 2X issuchthat®,X € £,9: £ — [0, +00]
satisfies 9(0) = 0 and for any A € L we set

p*(A)=inf| Y 9(En): Ene L,Ac| JEn|, (2.1.7)

nx>1 n>1
then u* is an outer measure.

Proof. First note that in (2.1.7) the infimum is taken over by a nonempty set since A € X
and by hypothesis, X € £. Moreover, u*(0) = 0 and it is clear from (2.1.7) that A ¢ B
implies u*(A) < u*(B). Finally we show the ¢-additivity of u*. So, let {Ax} ¢ 2¥ and
€ > 0. For each k € IN we can find {E’f,}nzl ¢ £ such that

Axc|JES and Y 9(EK) < p(A0+ o7

n>1 nx1
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Let A = ;1 Ak. Then we have

Ac |J Ef and ) 9(Ef)< ) pr(An)+e.

k,n>1 k,n>1 k=1

This gives, due to (2.1.7), u*(A) < Y -1 U (Ax) + €. Letting € \, 0, we conclude that u*
is o-subadditive. Therefore u* is an outer measure. O

Example 2.1.35. Let f: R — R be an increasing function. Let £ be the family of all
intervals (a, b] with a, b € R and set 9((a, b]) = f(b) — f(a). Then the conditions in
Proposition 2.1.34 are satisfied and by applying (2.1.7) we can define an outer measure
u*. This outer measure is called the Lebesgue-Stieltjes outer measure and if f(x) = x
for all x € Rt is called the Lebesgue outer measure. Note that

W ((a, b)) = f(b) - lim f(x) < f(b) - f(a) = 9((a, b]) .

Thus, the inequality is strict at those points where f is not continuous from the right.

Now we will pass from outer measures to measures. Outer measures, although defined
on the entire power set 2% have the disadvantage that they are not o-additive. However,
when restricted to a particular subset of 2%, they become o-additive. In this direction
we need the following remarkable definition due to Carathéodory.

Definition 2.1.36. Let X be a nonempty set and u* is an outer measure on 2%, We say
that A ¢ X is u*-measurable, if y*(B) = p*(Bn A) + u*(Bn A€) for all B ¢ X, thatis,
A splits additively all sets in X.

Remark 2.1.37. From Definition 2.1.33 we know that it holds that
u*(B) < u*(BNnA)+u*(BnA¢ forallBcX,

due to the subadditivity property of the outer measure. In order to check the y*-mea-
surability of a set A ¢ X it suffices to show that

u*(B) > u*(BNnA)+u*(BnA° forall B < X with u*(B) < +co .

This definition of Carathéodory essentially says that the outer measure pu*(A) of A is
equal to its inner measure yu* (X) — u* (A°). For this reason Definition 2.1.36 is the right
one and leads to a g-algebra on which p* is g-additive, hence a measure. This is shown
in the next theorem known as the “Carathéodory Theorem.”

Theorem 2.1.38 (Carathéodory Theorem). If X is a nonempty set and u*: 2X —
[0, +00] is an outer measure, then the family X* of all u*-measurable sets is a 0-algebra
and p = p*|s. is a measure.

Proof. The symmetric character of Definition 2.1.36 implies that X* is closed under
complementation.
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Nextlet A, E € X* and let B ¢ X. We have

U (B)=p"(BnA)+u*(BnA°
=u*BNANE)+u* (BNANE)+u* (BNA“NE)+u*(BNA°NE°).

Notethat AUE = (ANE)U(AAE)=(ANnE)U(AnE°U(AnE). Hence, by the
subadditivity,

UW'BNAUE) <u*BNANE)+u*(BNANES)+u*(BNA“NE).

This implies
U BN(AUE)+u*(BN(AUE)°) <u*(B).

Hence, see Remark 2.1.37, A U E € X* and thus, X2* is an algebra.
In addition, if A, E € X* and A n E = @, then
W (AUE)=p"(AUE)NA) + u (AU E) N A®) = pu*(A) + p*(E)

where we recall that u*(A n E) = 0. This means that pu* is additive on 2*.
Now we show that X* is a o-algebra. Let {An},>1 € 2* and let D = [ J,,.; Ay. Since
from the first part of the proof, we have

k k-1
Dk=UAn62* and Dk\UAneZ* forallk e N,
n=1 n=1

without any loss of generality we may assume that the sets {A,},>1 € 2* are mutually
disjoint. For any B ¢ X, since Dy, A, € 2*, we have forall n ¢ N

u*(B) = u*(BNnDy)+pu*(BNDy)
=u*(BNnAy) +u* <Bn < U Ai>> +u"(BNDY).
i<n-1
Then, by induction on n € N, we show that
n n
p*(B) =Y u*(BnA;j)+u*(BnDy) > Y u*(BnA;) +u*(Bn D)
i=1 i=1
since pu* is additive and since D,, < D for all n € N. We let n — co and obtain
p*(B)= Y u*(BnA;)+u*(BnD) 2 u*(BN D)+ u*(Bn D)
i>1

by the g-subadditivity; see Definition 2.1.36. This implies that D € X* (see Remark 2.1.37)
and p*(B) = Y51 (BN A;) + u(Bn D).

Let B=D c X. Then u*(D) = };»; u*(4;) and so we conclude that 2 is a o-algebra
and u = u*|,. is a measure. O
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Definition 2.1.39. Let (X, X, u) be a measure space.
(@) AsetA € XYissaid to be y-null (or simply null if u is clearly understood) if u(A) = 0.
(b) We say that u is complete if X contains all subsets of null sets.

Remark 2.1.40. If A is y-null and B < A, then u(B) = 0, provided B € X. But in general
it need not be the case that B € X. For example this is the case with the Borel g-algebra
B(R). However, completeness can always be achieved by simply extending the domain
of the measure. This is done in the next proposition whose proof is straightforward and
so it is omitted.

Proposition 2.1.41. If (X, X, u) is a measure space, N = {D € X: u(D) = 0}, X, =
{AUE: AeX,EcDeN}yand u(AUE) = u(A) forall AUE € Xy, then X, is a o-algebra
and u is a complete measure on X,.

Let (X, 2™, u) be the measure space produced in Theorem 2.1.38.
Proposition 2.1.42. (X, X*, u) is a complete measure space.

Proof. Assume that u*(A) = 0. Then, by the subadditivity, the monotonicity, and since
u*(A) =0, for any B ¢ X, we have

u*B) <u*(BNA)+u*(BNA®) <u*(BNA°) < u*(B).
This gives A € £* and so u = p*|. is complete. O

Now let X be a set and let £ ¢ 2X be a semiring. We consider a o-additive set func-
tion u: £ — [0, +00]. Applying Proposition 2.1.34, we can define the outer measure
u*: 2% — [0, +00] corresponding to u. It holds that u*(A) = u(A) forall A € £. We
have the following result.

Proposition 2.1.43. If D is a semiring satisfying L ¢ D < X*, then u* is the unique
extension of u to a g-additive set function on D.

Proof. Let A: D — [0, +00] be a g-additive extension of y on D and let A* be the
corresponding outer measure; see Proposition 2.1.34. If A ¢ X and {E},>1 € £ are such
that A < 51 En, then

A*(A) < Y X(En) = Y A(En) = Y u(En).

n>1 n>1 n>1
This implies

A*(A) < u*(A) foreveryAcX. (2.1.8)
In order to show that A = u* on D, it suffices to show that y*(A) < A(A) forall A € D

with u*(A) < +oo. Recall that y is o-additive. Fix A € D with u*(4) < +co and € > 0.
Consider {E,}n>1 € £ such that

Ac U E, and Z U(Ep) <u*(A) +€; (2.1.9)

n>1 n>1
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see Proposition 2.1.34. Taking Problem 2.2 into account we find pairwise disjoint
{Cn}n>1 € £ such that

EzUE,,:UCneo(D).

nx>1 nx>1

We know that p*| o(py andA* | o(1) are both measures that coincide with s on £. Therefore

WE) =Y p (Cn) = Y u(Cn) = ) ACn) = A" (E). (2.1.10)
n>1 n>1 n>1
Moreover, because of (2.1.8) and (2.1.9) as well as the o-subadditivity of u* and since
u*|, = u, we have

NENA) <p(ENA) =p (E)-p*(A) < Y u(En) - p*(A) <e. (2.1.11)

n>1
Hence p*(A) < p*(E) = A*(E) = A(A) + A*(E \ A) < A(A) + ¢; see (2.1.10) and (2.1.11).
Letting £ \s 0, we obtain y*(A) < A(A). Therefore, A(A) = u*(A) forall A € D. O

The Lebesgue measure on R was the starting point of “Measure Theory.” So, let us look
in some detail at how we can produce it using the previous abstract theory. To this end,
we introduce

L={(a,b]l:a<bh,a,beR}

with (a, a] = 0. This is a semiring of subsets of R. Let A: L — [0, +oo] be the set
function defined by A((a, b]) = b — a. This set function is o-additive and o-finite. Using
Proposition 2.1.43, we know that A has a unique extension to 2* = X being the o-field
of 1*-measurable sets; see Definition 2.1.36. We continue to denote this extension by A.
Then

— Aisthe Lebesgue measure on R.

— X* =X, is the o-algebra of the Lebesgue measurable subsets of IR.

Note that A is translation invariant, that is A(A) = A(A + x) forall A € X, and for all
x € RR. Moreover, we have A(6A) = |8|A(A) forall A € ¥} and for all 8 € R.

From the previous discussion it is not clear if X; = 2R, In fact the next theorem
shows that this is not the case. Indeed there are subsets of R that are not Lebesgue
measurable.

Theorem 2.1.44. There is no translation invariant measure defined on all of 2®, which
assigns to every interval its length.

Proof. We will define a subset of R, which is not Lebesgue measurable. On R we
consider the following equivalence relation

x~u ifandonlyif x-ueQ.

Choose a single element x € [0, 1] from every equivalence class formed by ~. Here
we assume that the Axiom of Choice holds. Let A < [0, 1] be the set formed by these
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representatives. Suppose that A € X). Then by translation invariance we have that
{A + r}req is a countable, Lebesgue measurable partition of R with A(A + 1) = 1
independent of r € Q. If n = O, then we have a contradiction to the fact that A(R) = +co.
If n > 0O, then, with D = Qn [0, 1], we obtain 2 = A([O, 2]) = ) ,.p A(A + 1) = +00, again
a contradiction. Hence, A ¢ X). O

In general the measure theoretic and topological properties of sets in R differ.

Example 2.1.45. Singletons have a Lebesgue measure of zero. Hence, A(Q) = 0. Let
{rn}n>1 € [0, 1] be an enumeration of the rationalsin [0, 1].Let I, = (r,—&/2", rp+&/2")
andlet U = (0, 1) N ({Uys1 In). Evidently, U < [0, 1] is open and dense, so topologically
“large.” On the other hand we have A(U) < ) ,.;€/2" = €. Hence, U is measure
theoretically “small.” Similarly, C = [0, 1] \ U is nowhere dense and closed, thus
topologically small, but A(C) > 1 — g, thus it is measure theoretically “large.”

The Cantor set will help us to get an idea on what the relation is between B(IR) and X;.

Example 2.1.46. The Cantor set is constructed as follows. Let Cyp = [0, 1]. We tri-
sect [0, 1] and remove the open middle third (1/3, 2/3). We set C; = [0, 1/3]U[2/3, 1].
Then we trisect each of the two intervals of C; and remove the open middle thirds. We
obtain C, = [0,1/9]U[2/9,1/3]uU[2/3,7/9] U [8/9, 1]. We proceed inductively. So,
suppose we have C,. This consists of 2™ closed intervals. We trisect each one of them
and remove the open middle thirds. The remaining part of C, is the set C,,;1, which
is the union of 2"*! disjoint closed intervals. Evidently {Cy}.>1 is decreasing. Then
the Cantor set C of [0, 1] is defined by C = [, Cn. This set consists of those points
x € [0, 1], which in base -3 have an expansion x = )., ax1/3k with ay # 1 for all
k € N.

Proposition 2.1.47. The Cantor set C has the following properties:
(a) Cis compact and nowhere dense.

(b) A(C)=0.

(c) card(C) = ¢ = the cardinality of the continuum.

Proof. (a) Clearly C is closed since it is the intersection of closed sets. Hence C is
compact. Moreover, int C = 0 as it contains no interval since at each stage, each interval
has length 1/3". Therefore, C is nowhere dense.

(b) At each stage we remove 21 open intervals each one of length 1/3". Therefore
the total measure of the removed set at the nth step is 2"~1/3™. Hence, we have

2t 1 2\"
Mo, 1NO = Y S =5 Y (2) =1
rg'l 3n 2 rg'l 3
Thus, A(C) = 0.

(c)Let x € C. Then x = Y., ax/3% with ax = O or ax = 2 forall k € N. Let
fX) = Y1 cx/2X with ci = ay/2 for all k € N, the base —2 expansion of x € C. Hence,
f: C — [0, 1] is onto, thus card(C) = «. O
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Remark 2.1.48. The Cantor set is interesting because it is “large” from the cardinality
point of view but negligible from the measure theoretic point of view. We can generalize
the above construction and have “Cantor-like sets” that still satisfy (a) and (c) from
Proposition 2.1.47. So, let I be a bounded interval and 9 € (0, 1). We call the open
interval with the same midpoint as I and length 9A(I) the open middle 9. Now let
{9x}i=1 € (0, 1) and produce a decreasing sequence {Ci}ks1 of closed sets in [0, 1]
as follows: Co = [0, 1] and Cy is produced by removing the open middle 9 from
each component interval of Cr_1. Weset C = M1 Ck. We still have that C is compact
and nowhere dense and card(C) = ¢. Concerning the Lebesgue measure, note that
A(Ci) = (1 = 91A(Ci-1) for all k > 2. S0, A(C) = [Tko1 (1 = i) = limnsoo [Ty (1 = )
If 9 = 9 € (0, 1) for all k € N, then A(C) = 0. Note that the Cantor set corresponds
to the particular case of 9 = 1/3. If 95 — O sufficiently fast as k — oo, then A(C) > 0.
In particular, [];-,(1 — 9%) > Oifand only if } ;.; 9k < +0o. We point out that part
(c) of the proposition above implies that there are 2° Lebesgue measurable subsets
of R. On the other hand card(B(R)) = c¢. So, there are many more Lebesgue mea-
surable sets than Borel sets in R although it is not easy to produce a set that is
Lebesgue measurable but not a Borel set. For such a concrete set we refer to Fed-
erer [109, p. 68].

2.2 Measurable Functions — Integration

The Lebesgue integral is defined for measurable functions. For this reason we start this
section with a discussion of measurable functions.

Definition 2.2.1. Let (X, %) and (Y, £) be two measurable spaces and f: X — Y be
a map. We say that f is (X, £)-measurable if f~1(A) ¢ Sforall A ¢ £.If X, Y are
Hausdorff topological spaces, then they become measurable spaces by consider-
ing their Borel o-algebras B(X), B(Y) and then f is said to be Borel measurable (or
simply a Borel function). When Y = R or Y = R* we always use the Borel o-field
of Y.

Remark 2.2.2. The reason that we use the Borel o-algebra on R as range space is
that the Lebesgue o-algebra X, as the completion of B(IR), is in general too large for
the Lebesgue measure; see Remark 2.1.48. In particular, there exists a continuous,
nondecreasing function h: [0, 1] — [0, 1] and a Lebesgue measurable set C ¢ [0, 1]
such that h~1(C) is not Lebesgue measurable (assuming the Axiom of Choice). In fact
h(x) = 1/2[f(x) + x] with f being the function from the proof of Proposition 2.1.47(c)
extended to all of [0, 1] by declaring it to be constant on each interval missing from C.
Then f is nondecreasing and continuous and is known as the Cantor function.

Proposition 2.2.3. If (X, 2) and (Y, L) are measurable spaces, L = o(a)andf: X - Y,
then f is (X, £)-measurable if and only if f 1 (A) € X forall A < a.
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Proof. =: This is immediate from Definition 2.2.1.
=:LetD ={AcY:f1(A) € 2}. Evidently D 2 a and D is a o-algebra. Therefore,
D 2 o(a) = £ and this proves the (¥, £)-measurability of f. O

Combining Propositions 2.1.18 and 2.2.3 we have the following result.

Proposition 2.2.4. If (X, X) is a measurable space and f: X — R, then the following
statements are equivalent:

(a) fisX-measurable;

(b) f1((a,+00)) € Zforalla € R;

(©) fY(a,+00)) € Zforalla € R;

(d) fY((~co,a]) e Zforalla € R;

(e) f1((~00,a)) e XZforalla € R.

Remark 2.2.5. In case f is R*-valued, we need to add the requirement that f =1 (+c0) € X
in the statements (b)-(e). Evidently we can take a € Q in (b)—(e).

Immediately from Definition 2.2.1, we have that the composition preserves measurability.

Proposition 2.2.6. If (X, 2), (Y, L), (Z, D) are measurable spaces and f: X — Y,
g: Y — Z are measurable maps, then h = g o f: X — Z is measurable as well.

Moreover, we have the following as a consequence of Proposition 2.2.3.

Proposition 2.2.7. If X, Y are Hausdor{f topological spaces and f : X — Y is continuous,
then f is Borel measurable.

Proposition 2.2.8. If (X, ) is a measurable space and f, g: X — R are X-measurable
functions, then f + g and fg are both X-measurable.

Proof. If f(x) + g(x) < a, then f(x) < a — g(x). Let ¢ € Q be such that f(x) < ¢ < a - g(x).
So, we have that

{x eX: f(x)+gx) < a}

= U [{xeX:f(x)<c}ﬂ{xeX:g(x)<a—c}] €.
ceQ
Hence f + g is 2-measurable.
Since —g is X-measurable, if g is, it follows that f — g is X-measurable as well.
Forany h: X — R being X-measurable and a > 0, we have

{xeX:h(x)2>a}={xeX: h(x)>a%}U{xeX:h(x)<—a%}62.

Therefore h? is Z-measurable.
Since fg = 1/2 [(f + 8)% - f? - g?] using the fact above and the X-measurability of
f + g, we conclude that fg is X-measurable. O

Remark 2.2.9. The result above is also valid for R*-valued functions, provided we
always take the same value for f + g at the points where it is undefined, that is, of the
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form co - co. In addition, recalling that we always define 0(+00) = 0, the function fg is
X-measurable for R*-valued f and g.

Proposition 2.2.10. If (X, ) is a measurable space and f,: ¥ — R* withn € N are
X-measurable, then

sup{faln, , inf{fulye,, supfn, inff,, liminff,, limsupf;,
n>1 n=1 n—00 n—oo

are all X-measurable.

Proof. Let g(x) = sup;<p<m fn(x). Then for all a € R, we have
m
{xeX:g(x)>a} = U{xeX:fn(X)>a}eZ.
n=1

Thus g is X-measurable. Similarly, if g(x) = sup,,»1 fn(x), then for all a € R, we have

{xeX:g(x)>a}=U{xeX:fn(x)>a}GZ.

n>1

In a similar fashion we also show that inf,<,<;; fn and inf,,>; f,, are both X-measurable.
Finally, recall that liminf, ,cofn = Supjs;infuskfn and limsup, o fn =
infy>1 sup,sx fn, to conclude that both are >-measurable. O

When a sequence of measurable functions does not converge pointwise, we can still
have the measurability of the set of points where pointwise convergence occurs.

Proposition 2.2.11. If (X, ) is a measurable space and f,: X — Rwithn > 1isa
sequence of X-measurable functions, then the set C = {x € X: lim,_,, fn(x) exists} € Z.

Proof. Given x € C, we have that {f,(x)}»>1 € R is a Cauchy sequence. So, for € = 1/n
with n € N we can find m = m(g) € IN such that

Ifmarc(X) = frm(X)] < % forallk e N.
Therefore it follows

C= {x € X: Vn € N3m € N such that |fi,x(x) — fin(X)| < %Vk € ]N}

N U N Prex: tnaw-fai< 2} e,

n>1 m>1 k>1 0

In Proposition 2.2.10 we saw that the pointwise limit of X-measurable, R*-valued
functions is X-measurable as well. This result can be extended to maps with values in a
metric space.

Proposition 2.2.12. If (X, 2) is a measurable space, Y is a metrizable space and
fn: X - Y withn € N is a sequence of X-measurable functions such that f,(x) — f(x)
inY for all x € X, then f is X-measurable as well.



2.2 Measurable Functions - Integration =— 101

Proof. Let C € Y be a closed set. According to Proposition 2.2.3 it suffices to show that
f~1(C) € X. Let d be a compatible metricon Y. Let U, = {y € Y: d(y, C) < 1/n} with
n € N. These sets are open and C = ()5, Un; see Proposition 1.5.8. Let x € f~1(C). Then
f(x) € Cand f,(x) — f(x) in Y. Since for each n € IN, U, is a neighborhood of f(x) there
exists m € N such that fx(x) € U, for all k > m, which implies

xe () U () fi ' (Un) .

n>1m>1k>m

This yields
Fro< U MNAHU. (2.2.0)

n>1m>1k>m

Next suppose that x € (Vo1 Ums1 Niom fi (Un). So for every n € N, fi(x) is
eventually in Uy, hence f(x) = limy_,c fk(x) € Up. Therefore f(x) € (51 Un. But
Uns1 € Up. Hence f(x) € N1 Un = C, which gives x € f~(C). Hence

N U Ny, 2.2.2)

n>1m>1k>m

From (2.2.1) and (2.2.2) it follows that

Fro=U Nl es.

n>1 m>1k>m

Thus, f is X-measurable. O

Remark 2.2.13. The result above fails if Y is not metrizable. To see this let Y = I with
I = [0, 1] furnished with the product topology. Then Y is compact by Tychonoff’s
Theorem (see Theorem 1.4.56), but it is not metrizable. Let f,: I — Y with n € N be the
sequence of maps defined by

fa)(®) =[1-nlx-t]]* forallx,tel.

Note that each f,: I — Y is continuous, thus Borel measurable. In addition, f,(x)(t) —

X (t) forall t € I. Here
© 1 ift=x,
X =
w 0 ift+x

is the indicator function of the singleton {x}.

For each x € I there exists an open set U, < Y such that f~1(Uy) = {x} (for example,
let U, = {f € Y = I': f(x) > 0}). Let D c I be a non-Borel set and let V = Uxep Ux-
Evidently V < I is open and f~1(V) = D. This shows that f is not measurable.

Definition 2.2.14. Let (X, X, u) be a measure space. A statement about x € X is said to
hold almost everywhere or a.e. (for almost all x or a.a. x € X) if it holds forall x ¢ D
with u(D) = 0. Note that the set of all x € X for which the statement holds will be in X,
but not necessarily in X.
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Measurability is not affected by changing the function on a p-null set.

Proposition 2.2.15. If (X, X, u) is a complete measure space, (Y, L) is a measurable
space,f: X — Yis (X, £L)-measurableand g: X — Y satisfies f(x) = g(x) for y-a.a. x € X,
then g is (X, £)-measurable as well.

Next we will introduce the functions, which are the building blocks for the theory of
integration.

Definition 2.2.16. Let (X, X) be a measurable space.
(@) Given A c X, the characteristic function y, of A is defined by

%0 1 ifxeA,
X) =
xa 0 ifx¢A.

(b) A simple function is a measurable function s: X — IR, which has finite range. So,
ifaq, ..., a, are the distinct values of s, then we can write s(x) = Z,’Zzl aixa,(x)
with Ay = {x € X: s(x) = ax} € 2. We call this the standard representation of s.

Remark 2.2.17. Since in probability theory a characteristic function is a Fourier trans-
form, probabilists use the name indicator function and denote it by i4. On the other
hand, in nonsmooth analysis and optimization, this name and symbol are reserved for
another function, namely

. {O ifxeAd,

ia(x) =

+oo ifx¢A.

A simple function is a linear combination with distinct coefficients of characteristic
functions of disjoint sets whose union is X. One of the coefficients a; may well be zero,
but still the term ayy 4, is implicitly understood in the standard representation so as to
have X = | J;_; Ax. If s and 7 are simple functions, then so are s + 7 and sT.

Simple functions approximate measurable functions.

Proposition 2.2.18. If(X, 2)is ameasurable spaceandf: — [0, +00]isaX-measurable
function, then there exists a sequence {s,}n>1 0f simple functions on X such that

0<si(x)<s(x)<...<s,(x) > f(x) forallxe Xasn — co.
Moreover the convergence is uniform on any set on which f is bounded from above.

Proof. Given n € IN we partition the interval [0, n) into n2™ half-open intervals of
length 1/2". Then for each 1 < k < n2" with k € IN we define

Dn,kz{xeX:kz;nlsf(x)<2—kn} , Dp={xeX:f(x)=n}.

The X-measurability of f implies that D, x, D,, € X. We set

2l k-1

Sn = Z on XDn,k + nXDn *
k=1
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Evidently this is a simple function for every n € N. Let x € Dy, x. Then

2k -2 2k
on+l Sf(X) < on+l

which implies that s,.1(x) = (2k — 2)/2™* or s,,1(x) = (2k — 1)/2"*1. Hence s, (x) <
Sn+1(X).

Now let x € D,. Then f(x) > nand we have f(x) > n+1orn < f(x) < n+ 1.
If the first case holds, then s,;1(x) > n+1 > n = sy(x). In the second case, let
kefl,...,(n+1)2"1} such that (k—1)/2"*! < f(x) < k/2™*1, Since f(x) > n it follows
that k/2™*1 > n, hence k = (n+ 1)2"*1, Therefore, s,,1(x) = n+1-1/2"1 > n = s,(x).
This proves that s, < Spy1.

Now we prove the pointwise convergence. So, fix x € X such that f(x) € [0, +00)
and let n > f(x). Then

0 < flx) - fanlx) < 2—1n , (2.2.3)

which gives f,,(x) — f(x) asn — oo.

On the other hand, if f(x) = +00, then f,(x) = n — +oco. Finally if 0 < f(x) < M
for some M > 0 and for all x € X, then (2.2.3) holds for every x € X provided n > M.
Therefore f,, — f uniformly. O

If ft = max{f,0}and f~ = {-f,0},thenf = f* — f~aswellas |f] = f* + f~ and if
f: X - Ris X-measurable, then so are f* and f~; see Proposition 2.2.10. So using
Proposition 2.2.18 on each of the functions f* and f~ we have the following.

Corollary 2.2.19. If (X, %) is a measurable space and f : X — R is X-measurable, then
there exists a sequence {s,}n>1 of simple functions on X such that

sil<Isal€...<spl €. fl..., sa(x) > fix) forallxeX.
Moreover if f is bounded, then the convergence is uniform.

We can extend these results to maps with values in a separable metric space. This is
useful when studying integration of Banach space-valued maps; see the Lebesgue—
Bochner integral in Section 4.2.

Proposition 2.2.20. If (X, ) is a measurable space, (Y, d) is a separable metric space

and f: X — Y, then the following hold:

(@) If(Y,d) is in addition totally bounded, then f is X-measurable if and only if it is the
d-uniform limit of a sequence of simple functions with values in Y.

(b) fis X-measurable if and only if f is the d-pointwise limit of a sequence of simple
functions with valuesin Y.

Proof. (a) =: Suppose that f: X — Y is X-measurable and let € > 0. Since Y is by
hypothesis totally bounded, there exists y1, ..., ym € Y suchthat ¥ = | J;'; B¢(yx) with

Be(yi) = {y € Y: d(y, yi) < €. We set Ay = Be(y1) and Ajs1 = Be(ier) \ U, Be(yi)
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forall k € {1,...,m - 1}. Then {A4};; are mutually disjoint Borel sets in Y whose
union is Y. We have

X= Uf—l(Ak) and flANfYAn) =0 ifk+n.
k=1

We define s: X — Y by s(x) = yxif x € f~1(Ay). Evidently s is a simple function and
d(s(x), f(x)) < € for all x € X. Therefore f is the d-uniform limit of a sequence of simple
functions with valuesin Y.

«: This is a consequence of Proposition 2.2.12.

(b) By Theorem 1.5.21 there is a homeomorphism (embedding) ¢: Y — H onto
a subset of the Hilbert cube H = [0, 1]N. Let e(u, y) = du(&(u), &(y)) forallu,y € Y.
Then e is a metric on Y, compatible with d and (Y, e) is totally bounded. By part (a) we
know that f is the e-uniform limit of a sequence of simple functions. Since e and d are
topologically equivalent, we have that the sequence of simple functions is d-pointwise
convergent to f. O

Definition 2.2.21. Let {(Yy, £4)}acr be a family of measurable spaces and f,: X — Y,
be a map for each a € I. There is a unique o-algebra on X with respect to which the
fa’s are all measurable and this is the o-algebra generated by the sets f;(4,) for all
Ay € Lyand all a € 1. It is called the o-algebra generated by {f,}q4c; and is denoted by

o({fa}).

Proposition 2.2.22. If (Y, L) is a measurable space, f: X — Y and g: X — R are given
maps, then g is o(f)-measurable if and only if there exists a L-measurable h: Y — R
suchthatg=hof.

Proof. =: First we assume that g is a o(f)-simple function. Then g = ¥'}_, aixa, with
ar € Rand Ay € o(f). Fork € {1, ..., n}let Cx € £ be such that Ay = f~1(Ci). We set
h=Y}_, aiXc,- Then his a £-simple functionon Y and clearly g = h o f.

Now suppose that g is a general o(f)-measurable function. Then by Corollary 2.2.19
there exists a sequence {s,}»>1 of o(f)-simple functions such that s, (x) — g(x)forall x €
X. From the first part of the proof we can find h,,: Y — Rwithn € Nbeing £-measurable
functions such that s, = h, o f withn € N. Let E = {y € Y: lim,_ hn(y) exists in R}.
Since h,(f(x)) = sn(x) — g(x) it follows that f(X) ¢ E. Define

h(y) = nli_)rg() h,(y) ifyeE and h(y)=0 ify¢E.

From the inclusion f(X) ¢ E it follows that g = h o f. Moreover, from Proposition 2.2.11
we know that E € £. Hence h,xg is £L-measurable and since h,xg — hxg it follows that
h is £L-measurable.

«: This follows from Proposition 2.2.6. O

Definition 2.2.23. Let {(X4, 24)}acr be a family of measurable spaces. Set X = [],<; Xa
andlet p,: X — X, with a € I be the corresponding projection (coordinate) maps. Then
the product o-algebra on X denoted by X),.; 2« is defined by &) ,c; 2o = 0({pa})-
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Remark 2.2.24. Let (X, 2), (Y, £) be two measurable spaces. A set of the form A x B
with A € X, B € £ is said to be a measurable rectangle . By R we denote the family of
measurable rectangles in X x Y. It is easy to see that R is an algebra. Then X' (X) £ = o(R).
More generally if the index set I is countable, then

®za = a(nAa: Ag € 2a> )
ael ael

Proposition 2.2.25. If {(Xy, X4)}acs are measurable spaces and each X, is generated by
ag, then R, Za is generated by a = {pz'(Ba): By € aq, a € I}. Moreover, if the index
set I is countable, then Q) ,c; 2« is generated by a = {[ | 4c; Ba: Ba € aqa}.

Proof. From Definition 2.2.23 it is clear that 0(a) € Q) s Za- Let
Dy = {B < Xq: pi(B) € a(a)},a el.

It is easy to see that D, is a o-algebra and a, € D,. Therefore 2, ¢ D, forall a € I.
Hence Q) ¢; 2« <€ 0(a) and so equality holds.
The second assertion follows from Remark 2.2.24. O

Proposition 2.2.26. If {Xy};_, are Hausdorff topological spaces, then the following hold:
(@) Q1 BXi) € B([Tgoq X1);
(b) If {Xi}}_, are second countable, then Qy_, B(Xx) = B([Tr_; Xx)-

Proof. (a) By Proposition 2.2.25, ®Z:1 B(Xy) is generated by the sets p;l (Uy) with open

Ur € Xy forall k € {1,...,n}. These sets are openin X = ]'[Z=1 Xy and so, we infer that
Q-1 BXr) € BX).
(b) Let Dy be a countable basis of Xy, k € {1,...,n}. Recall that every open

set in Xj is a countable union of elements in Dy. Therefore B(X) is generated by
Dy and B(X) is generated by D = {]'[,'(’:1 By : By € Dy}. Hence, we conclude that
Qpoq BXy) = BX). 0O

Definition 2.2.27. Let X, Y be nonempty sets and A ¢ X x Y. For each x € X and each
y € Y, the x-section of A (resp. the y-section of A) are defined by

Ay={yeY:(x,y) e A} (resp.A” ={x e X: (x,y) € A}).
Clearly for every x € X and every y € Y we have 0, =@ =@ and (X x Y), = Y as well as
XxYyY=X.
Remark 2.2.28. If {As}qcr € X x Y, then for all x € X and for all y € Y we have

(UAa>X = Ja)x (ﬂh)x - NAwx s

ael ael ael ael

<UAa>y - @y, (ﬂAa>y - NAw .

ael ael ael ael
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So, it follows that if £ is a g-algebraon Xand D = {A c XxY: AY € Lforally € Y},
then D is a g-algebra on X x Y. Similarly for F being a ¢-algebra on Y. Finally, if (X, X)
and (Y, £) are measurable spaces and A ¢ X x Y, then we say that A has measurable
sections if forall x e Xand forally € Y, Ay € L and AY € 2.

Proposition 2.2.29. If (X, X) and (Y, £) are measurable spaces and A € X () L, then A
has measurable sections.

Proof. Let
D={AcXxY:Ac e Land A’ e Zforallx ¢ Xand forally € Y}.

Then D is a o-algebra that contains measurable rectangles. Note that

B ifxeA A ifyeB
(AxB)y = and (AxB) =
0 ifxeA 0 ify¢B.
Therefore, we have that o(R) = 2 @) L ¢ D, see Remark 2.2.24. O

Definition 2.2.30. Let (X, X) be a measurable space, Y and V are two Hausdorff topo-
logical spaces and f: X x Y — V. We say that f is a Carathéodory function if the
following properties hold:

(@) x — f(x,y)is Z-measurable for every y € Y;

(b) y — f(x,y) is continuous for every x € X.

Proposition 2.2.31. If (X, Y) is a measurable space, Y is a separable metrizable space,
V is a metrizable space and f : X x Y — V is a Carathéodory function, then f is jointly
measurable, that is, f is (X Q) B(Y), B(V))-measurable.

Proof. Let d be a compatible metric for Y and e a compatible metric for V. Recall that Y
is separable. So, let D = {yx}x>1 be dense in Y. Moreover, let C < V be a closed set. Then
f(x, u) € Cif and only if for every n € IN there exists yy € D such that

dw,y) <+ and e(fz, i), €) < .

Therefore we have

fHO = (U {xeX: fz,yi0 € C2} x Bi ()

n>1k>1

with Ci/n = {v € V: e(v, C) < 1/n}. The measurability of f(:, yx) and the openness of
C1/n imply that {x € X: f(z, yx) € C1/n} € Zforall n, k € N. Thus f~1(C) € 2 B(Y).
O

The next theorem, known as “Egorov’s Theorem,” says that in a finite measure space,
pointwise convergence of a sequence of measurable functions is in fact “almost”
uniform.
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Theorem 2.2.32 (Egorov’s Theorem). If (X, X, u) is a finite measure space, (Y, d) is a
metric space and f,,: X — Y withn € N is a sequence of 2-measurable functions such that

fn(x) 4 f(x) for u-a.a. x € X, then for any given € > O there exists A, € X with u(A¢) < €
such that f, i f uniformly on X \ A¢. That is, lim sup,,_, ., [d(fn(x), f(x)): x € A] = 0.

Proof. From Proposition 2.2.12 we know that f is X-measurable. For m, k € N let
1
A = {x € X: d(fa(x), f(x)) < — foralln > k} .

For every m € IN we have u(X \ Am,k) N 0as k — +oo. We choose k(m) € N such
that u(X \ Am,km)) < €/2™ and D¢ = (,;;51 Am,km) € 2. Then for A, = X\ D, we have

U(Ag) < €and f, i f uniformlyon D, = X'\ A¢. O

From Chapter 1 we know that a continuous function for the subspace (relative) topology
on A ¢ X cannot always be extended in a continuous fashion to all of X. Think of
fi(x) = 1/x for x € (0, 1] and f>(x) = sin(1/x) for x € (0, 1] (being bounded as well),
which cannot be extended continuously to [0, 1]. In contrast, a measurable function
from A ¢ X with the trace o-algebra can be extended measurably to all of X. The point
that we want to emphasize is that A need not be measurable, otherwise the result is
obvious. We start with an easy observation that is useful in many circumstances.

Lemma 2.2.33. If (X, ) and (Y, £) are measurable spaces, {Ap}n>1 € 2 are mutually
disjoint sets such that X = | J,»1 An and fn: Ap — Y withn € N are (X,,, £)-measurable
functions, then f: X — Y defined by f| A, = fnforalln e Nis (X, £L)-measurable.

Proof. For every B € £ we have f;}(B) € £4, = {A,nD: D € %}; see Remark 2.1.2. So,

Theorem 2.2.34. If (X, 2) is a measurable space, A < X (not necessarily in %), and
f: A — Ris X4-measurable (see Remark 2.1.2), then there exists a X-measurable function
f: X > Rsuch thatf|A = f.

Proof. Let V be the set of all functions f: A — R that are X 4-measurable and admit a
2-measurable extension on X. Evidently V is a vector space and it contains the simple
functions. Recall that f = f* — f~, so we may assume that f > 0. Proposition 2.2.18
implies that there exist X 4 -simple functions {s,},>1 such that0 < s, .~ f.Let§,, be the X-
measurable extension of s,, and recall that s,, € V forall n € N. Let f (x) = limy_ o0 Sn(x)
when this limit exists and it is finite. Otherwise we set f (x) = 0. Evidently f | 2 =f.IfCis
the set of x € X where the sequence {5,(x)} converges, then from Proposition 2.2.11 we
have that C € . We define

ﬁnzﬁn onC and iqn=0 onX\C forallneN.

From Lemma 2.2.33 we know that for each n € N, fzn is Z-measurable and h,(x) — f (x)
for all x € X. Therefore by Proposition 2.2.11, f is Z-measurable. O
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Now we are ready to define the Lebesgue integral of a measurable function.

Definition 2.2.35. Let (X, X, u) be a measure space.
(@) Ifs: X — [0, +oo] is a simple function with standard representations = Y ;_; aixa,,
then the integral of s with respect to the measure y is defined by

n
Isdu =Y axu(Ap) .
X k=1

(b) If f: X — [0, +00] is Z-measurable, then the integral of f with respect to the
measure y is defined by

dey = sup [jsdu: Osssfandsissimple:| .
X X

(c) Iff: X —» R* is Z-measurable and at least one of IX f*du and Ix f~du is finite,
then the integral of f with respect to the measure u is defined by

| fdu= [ £ran- | £-an.

X X X

If both IX f*du and IX f~du are finite, then we say that f is (u)-integrable.

Remark 2.2.36. Since |f] = f* + f~ we see that f is integrable if and only if IX Ifldu < oco.
Moreover, we have | [, fdu| < [, IAdp.

Definition 2.2.37. Let (X, X, u) be a measure space and f: X — R* a u-integrable
function. The integral of f over A with respect to the measure y is defined by

deu = JfXAdV :

A X
Remark 2.2.38. Recalling that any set A € X defines in a natural way a measure space
with the trace o-algebra X4 = {ANnD: D € X} (see Remark 2.1.2), we see that it suffices
to define the integral over the whole space X and we have it automatically defined over
Aecl.

Some straightforward observations concerning the integral are listed below.

Proposition 2.2.39. If (X, X, u) is a measure space and V is the set of all u-integrable
functions, then V is a vector space, the integral is a linear functionalon Vand f < g

p-a.e.implies [, fdu < [, gdp.

Proposition 2.2.40. If (X, X, u) is a measure space and f, g: X — R* are y-integrable
functions, then the following hold:

(@) f>0and [, fdu=0implyf=0p-ae;

(b) theset A = {x € X: f(x) + 0} is o-finite;

(©) [.fdu= |.gduforall C e Zifand onlyiff = g p-a.e.ifand only if [, |f — gldu = 0.
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Proof. (a) Let A = {x € X: f(x) > 0} and A, = {x € X: f(x) > 1/n} with n € N. Then
A, » Aandso u(An) ~ u(A); see Proposition 2.1.26. If u(A) > 0, then there exists
n € N such that u(A4,) > 0. We have

O<%}1(An)sjfdy§jfdy=0,

An X

which is a contradiction. Therefore u(A) = 0 and so f(x) = O for p-a.a. x € X.
(b) As above, let A, = {x € X: |f(x)] > 1/n} withn € N. Then A, € X and
A =J,51 An. Moreover

1
HM&JSJm@stmm+m,
Ay X

which gives u(A,) < cn forall n € N and for some ¢ > 0. Hence A is o-finite.

(c) The second equivalence is obvious. Moreover, if f = g u-a.e., then Ic fdu =
| gdu forall C € Z. So, it remains to show that |.fdu = [.gdp for all C € X implies
that f = g pu-a.e. Tothisend let C = {x € X: (f — g)(x) # 0} € X. Suppose that u(C) > 0.
Setting C,, = {x € X: |(f - 2)(x)| = 1/n} € X. As above there exists n € IN such that
u(Cn) > 0. We have C, = C;; U C;, with

C;r:{XEX:(f—g)(X)Z%}GZ

and 1
ng{xeX:(f—g)(x)s—H}ez.

So, at least one of C};, C, has positive u-measure. To fix things, suppose that u(C;;) > 0.
Then 1
O:jU—gMyzzywp>O,
Cn
a contradiction. Therefore u(C) = 0 and so f = g pu-a.e. as in the assertion. O

The next result is known as “Markov inequality.”

Proposition 2.2.41 (Markov inequality). If (X, X, p) is a measure space and f : X — R*
is pu-integrable, then for any A € (0, +00) we have

1
(e € X 1001 > 2)) < [ d
X
Proof. Let Ay ={x € X: |f(x)| = A} € 2. Then
. . 1
00 > J Ifldu > j Ifldu = Au(Ap) implies p(Ay) < 1 J Ifldu . O

X A) X
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Proposition 2.2.42. If (X, X, u) is a measure space and f : X — R* is u-integrable, then
the following hold:

(@ p(x e X: |f(x)| = +o0}) = 0, that is, f is u-a.e. R-valued;

(b) if B € X and u(B) = 0, then fody =0.

Proof. (a) From Proposition 2.2.41 we see that forall A > 0, u({x € X: |f(x)| = A}) < +oc0
and limy_, ;00 u({x € X: |f(x)| = A}) = 0. Note that

{x e X: |f(X)]| 2n} N {x e X: |[f(x)| = +00} asn— 0.
This gives, due to Proposition 2.1.24(f),
u({x € X: |If(x)| = +o0}) = )}Ln(}oy({x eX:|fx)>n})=0.
(b) We may assume that f > O since f = f* —f. If f is a simple function, then clearly

from Definitions 2.2.35(a) and 2.2.37 we have [, fdu = 0. Then Definition 2.2.35(b)
implies that [, fdu = 0. O

2.3 Convergence Theorems and LP-Spaces

We start with certain convergence theorems that reveal the continuity properties of the
Lebesgue integral.
The first such result is the so-called “Beppo Levi Theorem.”

Theorem 2.3.1 (Beppo Levi Theorem). If (X, X, p) is a measure space and f,: X — R}
with n € IN is an increasing sequence of X-measurable functions such that f,, / f, then

limy oo [, fadp = [ fd.

Proof. From Proposition 2.2.10 we have that f is X-measurable. The monotonicity of the
integral function implies that

Jim j Fady < J fdu . (2.3.0)
X X

Claim: If s is a simple function and s < f, then jX sdy < limy,_e jX frdu.

For every x € X and every np € (0, 1) there exists nop = no(x,n) € N such that
ns(x) < fu(x) for all n > ny.

If we set B, = {x € X: ns(x) < fr(x)}, then {B,},>1 € ¥ and B, / X. We have
NXB,S < XB,Sn < fn-

Lets = Y ;_, aixa, be the standard representation of the simple function s. Then
one gets

m
n Y axu(AxnBy) =1 Jxandu < jfndﬂ < sup jfndu
k=1

n>1
X X X (2.3.2)
= nli_)rg() J fady .
X
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Note that for every k € {1, ..., m}, due to Proposition 2.1.24(e), it holds that u(AxnB,)
U(Ax) as n — oo. This implies, because of (2.3.2), that

m
n Z axu(Ax) =n jsdy < nlLrgo jfndy .

k=1 X X

Recall that n € (0, 1) is arbitrary. So, let  — 1~. Then jx sdu < limp_,q0 fX fndu. This
proves the claim.
From the claim and Definition 2.2.35(b), we derive

j fap < lim j Fady. (2.3.3)
X X
From (2.3.1) and (2.3.3) we conclude that [, fudu / [, fdp. O

Corollary 2.3.2. If (X, X, u) is a measure space and f : X — R} is X-measurable, then
IX fdu =1lim,_, IX sndp for every increasing sequence of simple functions s, / f.

Now we can prove the famous “Monotone Convergence Theorem.”

Theorem 2.3.3 (Monotone Convergence Theorem). If (X, X, u) is a measure space and
fn: X — R* with n € N is a sequence of X-measurable functions such that f, / f and

| frdp > —co, then [, fudu / [, fdu asn — co.
Proof. Justletg, = fu—f1 > Oforall n € N and apply Theorem 2.3.1to this sequence. []

Remark 2.3.4. The hypothesis that jX fidu > —oo cannot be removed. To see this,
consider the sequence f, = —X[n,c0) With n € N. Then f,, .~ 0 but IX fndu = —oo for all
n € IN. Moreover, there is a “decreasing” version of the theorem, namely f,, \, f and

ijldy < +oo imply that ijndy N ijdy.
We can also formulate Theorem 2.3.3 in a series form.

Theorem 2.3.5. If (X, X, u) is a measure space and f, : X — R} withn € N is a sequence
of X-measurable functions, then

j(an>du= Y | fudu

nx>1 nle

The next convergence theorem is known as “Fatou’s Lemma.”

Theorem 2.3.6 (Fatou’s Lemma). If (X, X, u) is a measure space and f,, h: X — R*
with n € IN are X-measurable functions, then the following hold:
(@) Ifh < fn p-a.e.foralln € N and —co < [, hdp, then

Jli%gggffndy < 1imgfjfndy .
X X
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(b) If fn < h p-a.e.foralln € N and jX hdu < +oo, then

lim sup jfndy < Jlim sup frdu .
n—oo n—oo
X X

Proof. (a) Let g, = infisn fx withn € N.Theng, > hforalln ¢ Nand g, /
liminf,,_,« fx. Invoking the Monotone Convergence Theorem (see Theorem 2.3.3) we
have

jg,,dy y ‘[ligllg)lffndy .

X X
It follows [, gndu < [, fodp for all n € N which implies

Jliﬂ}gf fady < liminf j fud .
X X
(b) Just apply (a) to the sequence {—f,}n>1- O

Remark 2.3.7. The bound by h cannot be removed. To see this, consider X = R
and u = A being the Lebesgue measure. Let f, = —1/nxjo,n) for all n € N. Then
liminf,_ e LR fandd=-1<0= fx lim inf, ., frdu and so Fatou’s Lemma fails.

Now we will present the main convergence theorem for the Lebesgue integral known as
the “Lebesgue Dominated Convergence Theorem.” It allows us to interchange limits and
integrals under general conditions and is the main reason why the Lebesgue integral is
more powerful than the Riemann integral.

Theorem 2.3.8 (Lebesgue Dominated Convergence Theorem). If (X, X, u) is a measure
space and f,: X — R* with n € N is a sequence of X-measurable functions such that
- fax) - f(x) for p-a.a. x € X;
- |fa()| < h(x) for p-a.a.x € X and for alln ¢ N
with h being a p-integrable function, then f is u-integrable and IX Ifn — fldu — 0.In
particular there holds

jfndy—> dey asn—oco.

b'¢ X
Proof. From Proposition 2.2.12 we know that f is X-measurable. Moreover, |f(x)| < h(x)
for y-a.a. x € X. Therefore, f is py-integrable.

Note that O < |f, — f] < 2h p-a.e. for all n € N. Applying Fatou’s Lemma, Theo-

rem 2.3.6, gives

0< lir{ninfj Ifn —fldu < limsupj Ifn—fldu <0,
—00 n—oo
b'¢ X

which implies [, |f, - fildu — 0 as n — co. Hence,

| ¢a =P

X

— 0 andso jfndyajfdy asn — oo. O
X X
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Remark 2.3.9. If the dominating function h is not u-integrable, then the theorem fails
in general. To see this, consider X = [0, 1] and u = A being the Lebesgue measure. Let
fa = NX(0,1/n) With 11 € N. Then liMy_co [ fudA =1 # 0 = [ limy_.c0 fudA.

We have already seen in Proposition 2.2.42(b) that integration is insensitive to
changes on null sets. Hence, we can integrate functions f that are only defined on a
measurable set A with a null complement by simply setting f| ac = 0. This also implies
that if f is R*-valued and it is a.e. R-valued, then for the purposes of integration we can
treat f as R-valued. With this in mind we are led to the introduction of the following
spaces of integrable functions.

Definition 2.3.10. Let (X, X, u) be a measure space and let 1 < p < oco. For any 2-
measurable function f: X — R* we define

1Al = (j Iﬂpdu> :
X

ZLP(X) ={f: X > R": f is Z-measurable, |fl, < +oo} .

Let

Evidently .#?(X) is a vector space. However in order to have a vector space on which
[ - Il is a norm, we need to take care of functions that differ only on a u-null set. So, we
consider the following equivalence relation on .#? (X)

f~h ifandonlyif f(x)=h(x) forp-a.a.xeX.

Then we define LP(X) = P (X)/ ~.
Next let f: X — R* be X-measurable and define the essential supremum ||f] , by

Ifloo = inf{ > 0: pu(fx € X: |f(x)| > 9}) = O}
with the convention that inf 0 = +co. We define
LX) ={f: X > R": fis X-measurable, ||fllc < +00}
and L®(X) = £ (X)/ ~.

Given 1 < p < co we say that 1 < p’ < co is the conjugate of p if 1/p + 1/p’ = 1. Note
thatp’ = p/(p - 1).

Recall the following elementary inequality known as “Young’s inequality.” It is a
very special case of the so-called “Young—-Fenchel inequality,” which we discuss in
Section 5.3.

Lemma 2.3.11 (Young’s inequality). If p,p’ € (1, 00) are conjugate exponents and
a,b >0, thenab < 1/paP + 1/p'b?" with equality if and only b = a?~.

Next we will present three inequalities that are very basic in the theory of LP-spaces.
The first inequality is known as “Hélder’s inequality.”
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Theorem 2.3.12 (Holder’s inequality). If (X, X, u) is a measure space, 1 < p < 00, 1 <
p' < oo are conjugate exponents and f € LP(X),h € LP'(X), then fh € LY(X) and
Ifhlly < IAlp ikl

Moreover, for 1 < p < 0o, equality holds if and only if
for _ |l
1Ay I,

forp-a.a.x e X.

Proof. First assume that p € (1, c0), hence p’ € (1, 00). Let a = |[f(x)|/Iflp and b =
|[h(x)|/lIAll,r. Then by applying Young’s inequality (see Lemma 2.3.11) it follows

fFOOR(Ol _ 1 If0P 1 |h() P’
Aplhly ~p 1A P ||h||§:

(2.3.4)

with equality if and only if |f()[P/IfI5 = |h(0)P' /||h||§ﬁ for y-a.a.x € X.
Integrating (2.3.4) it follows

1 1 1
L (ymap<iiton,
||ﬂ|p||h||p'i hidp < o+ 5

which implies |Ifhll1 < IfliplAlp .
If p = 1, then p’ = +0o and from the definition of the L°°-norm, we have

Ifhll; = j Fhldy < Moo j Ady = Ifil 1Rl - O

X X

When p = p’ = 2, the inequality is usually called the “Cauchy—Bunyakowsky-Schwarz
inequality.”

Corollary 2.3.13 (Cauchy-Bunyakowsky-Schwarz inequality). If (X, X, u) is a measure
space and f, h € L?(X), then fh € L*(X) and ||fhll1 < |fl2]|hl>. Moreover, equality holds if
and only if f(x)?/If13 = h(x)?/Ilh|5 for p-a.a.x € X.

The second inequality is known as the “Minkowski inequality.” In fact it is a consequence
of Hélder’s inequality.

Theorem 2.3.14 (Minkowski inequality). If (X, X, u) is ameasure space and f, h € LP(X)
with1 < p < oo, then ||f + hllp, < Iflp + lIkllp.

Proof. Via the triangle inequality the result is clearif p = 1 or p = +c0.
So, assume that 1 < p < oo and that f + h # 0, otherwise the result is clear. We
estimate

If(x) + RO < (IFCO)] + RGO If(x) + h(OIP 1,

which gives

If + hily < J IFOONIfC) + hOOP dp + J IhOOIIf(x) + RO PP~ dp
X X
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Recall that p — 1 = p/p’. So, let |f + h|P~! € LP'(X) and apply Hélder’s inequality (see
Theorem 2.3.12) to get

If + hiip < (1Al + NRlp) IF + R
This implies |If + hll, < Iflp + lIklp. O
The third inequality is the so-called “Jensen inequality.”

Theorem 2.3.15 (Jensen inequality). If (X, X, u) is a finite measure space, f € L'(X) and
¢: R — Ris a convex function, then

1 1
‘p(;ﬁjfd">su<X) J(‘p°f)d“°

X X

Moreover, if @ is strictly convex, then equality holds if and only if f is a constant function.

Proof. Itis well-known that ¢ is continuous. See Section 5.1 for more general continuity
results for convex functions. In what follows for notational economy we set

1

Dx =1

j fdu (2:35)

X

being the average of f over X.
The convexity of ¢ implies that there exists n € R such that

nit-Px) <pt)-e((Hx) forallteR. (2.3.6)

So, if t = f(x), then, due to (2.3.5),

n (de/u - (f)xu(X)) =0<
X

(@ o Hdu - p((Nx)uX) .

ST

This yields

1 1
—— | fd ofNdu .
"’<u(X)jf ”)Sy(X)J("’ hay

X X

Finally, if ¢ is strictly convex, then (2.3.6) is a strict inequality for all t # (f)x. If f
is not constant, then f(x) — (f)x takes on both positive and negative values on sets of
positive measure. Therefore, we cannot have equality. O

Now let us state some consequences of theses inequalities. The first is a consequence of
Holder’s inequality; see Theorem 2.3.12.

Proposition 2.3.16. If (X, 2, u) is a measure space, 1 < px < ocoforallk =1,...,n,
Yie11/pk = 1/r < 1and fi € LPx(X) forallk = 1,...,n, then []}_, fk € L"(X) and
ITTkzr fill, < TTkzq Wficllp-
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Proof. Let F={k € {1,...,n}: px < oo} and assume that F # @ or otherwise the result
is clear. Then

< [TVideo and Y =1

, keF ker Pk

ka
k=1

So we may assume that F = {1, ..., n}. First consider the case n = 2. By hypothesis one
obtains

[ 1f

keF

r

r r
—_— + —_—
b1 D2

Applying Hélder’s inequality for p = p1/r and p’ = p,/r to the functions |f1|", |f>|

leads to

=1.

Vol < IF 0, I, -

That shows the proof for n = 2. When n > 2, we argue by induction. So let 1/9 =
Zzzz 1/px. Hence 1/r = 1/p1 + 1/9. Assuming that the result holds for n — 1, we have,
by the induction assumptions and the validity of the case n = 2, that

l_[fk l_[fk
k=1

k=2
Another useful consequence of Holder’s inequality (see Theorem 2.3.12) is the so-called
“Interpolation inequality.”

n n

< Wfillp, [T Wllpe = T T Wfillp - O

9 k=2 k=1

< Ifillp,

r

Proposition 2.3.17 (Interpolation inequality). If (X, X, u) is a measure space, 1 < p <

g<ooandf e LP(X)nLI(X), thenf € L'(X) forall p < r < q and |fl, < IfI,IAl5* with

1-t¢
q

+

1 t
—=— witht € [0, 1] . (2.3.7)
r p

Proof. If g = 0o, then t = p/rand |fI" < |IfILF |f|P. Hence

1A < Ifleo " 1AL = IAISIAL -

So, suppose now that g < co. Consider the conjugate exponents p/(tr), q/((1 - t)r); see
(2.3.7). Then by applying Holder’s inequality (see Theorem 2.3.12), it follows

;= [ Wan= [ A de < g
X X
which gives [Ifllr < Il I/l .

In finite measure spaces, by using Holder’s inequality, we can show that the LP-spaces
decrease as p increases.

Proposition 2.3.18. If (X, X, p) is a finite measure space and 1 < p < q < oo, then
L9(X) < LP(X) and ||flly < Ifllgu(X)1/P1/4,
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Proof. First assume that g = co. Then for f € L*°(X) we have

1A% = j AP dy < 1A% R(X) .

X

Next assume that g < co. Consider the conjugate exponents q/p and g/(q — p) and
apply Holder’s inequality for them and f € L?(X) as well as 1. This gives

A5 = [ 107 dn < IAPNSILD s, = WA ROOT ™ < oo 0
X

Now we turn our attention to the Minkowski inequality; see Theorem 2.3.14. Evidently
this inequality implies that (L?(X), | - [l,) with 1 < p < co is a normed space. In fact, it
is a complete normed space, that is, a Banach space.

Theorem 2.3.19. If (X, X, u) is a measure space and 1 < p < oo, then (L?(X), || - llp) isa
Banach space.

Proof. First assume that p = oo. Let {f,}n>1 € L°°(X) be a Cauchy sequence. From
Definition 2.3.10 we obtain

lfn(x) = fmOO| < lIfn — fmlloo forp-a.a.x € Xand foralln,m e N .

This gives {f,(x)}n>1 € Ris a Cauchy sequence for all x € X \ A with u(A) = 0. Then, for
all x € X\ A, frn(x) — f(x). Let f(x) = 0 for x € A. From Proposition 2.2.12 we know that
f is X-measurable and

If0) = fn ()] < sup Ifn = finlleo < 1
n=m
for m € N large enough and for all x € X \ A. This yields ||flco < |fmllco + 1 for m € N
large enough. Hence, f € L*°(X) and so L*°(X) is a Banach space.
Next assume that 1 < p < co. Let {f,}n>1 € L?(X) be a Cauchy sequence. Recall that
a Cauchy sequence is convergent if it has a convergent subsequence. So we may assume
that

Ifm = fullp < 2—1'1 foralln e Nandforallm > nwithm € IN . (2.3.8)

Let A(n) = {x € X: |fn(X) — fus1(x)| = 1/n%}. Then yamy1/n? < |fn — fas1| foralln € N.
Thus, because of (2.3.8),

1

V(A("))nTp < J Ifn = fas1lPdu <27 foralln e N.
X

Therefore ,

p
Y uAm) < Y T < oo

n>1 n>1
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Let C(n) = Uysn A(m). Then {C(n)}n>1 is decreasing and p(C(n)) — O asn — oo.

Hence, if C = ()51 C(n), then u(C) = 0 and for x € X\ C we have
1
Ifn(X) = fn(x)] < 2 for all n € IN large enough .

Then for any m > n it holds that |fm(x) — fu(X)| < Yjs, 1/k* > 0asn — oo. So it
follows that, for p-a.a. x € X, {fn}n>1 is a Cauchy sequence and so it converges to some
f(x). On the exceptional y-null set, we put f(x) = 0. Clearly f is measurable and by
Fatou’s Lemma (see Theorem 2.3.6), one gets

| 1pran < timine [ 1fudp < oo
X X

since a Cauchy sequence is bounded. Hence, f € LP(X).
Similarly, we obtain

[ 1p =y < timint [ 1 - FuP e,
X X

which implies that f,;, — f in LP(X). O

A useful consequence of the result above is the following corollary.

Corollary 2.3.20. If (X, X, u) is a measure space, {fn}n>1 € L (X) with 1 < p < 0o, and
fn — fin LP(X), then there is a subsequence {fy, }k>1 Of {fn}n>1 such that fn, (x) — f(x)
u-a.e.

Example 2.3.21. We have to pass to a subsequence to get pointwise convergence. To
see this, consider the sequence fi = x[i-1)/n,i/n] for k = i+ (n(n - 1))/2 withn e N
andi = 1,...,n. Then jolf,fd)l = 1/n — 0, thatis, f, — 0 in L?[0, 1]. However,
liminfy_, fk(x) = 0 < 1 = lim sup;_,, fx(x) for all x € [0, 1] and so we do not have
pointwise convergence.

The next result provides a useful dense subset of the Banach space LP(X). It is a
straightforward consequence of Proposition 2.2.18.

Proposition 2.3.22. If (X, X, u) is a measure space, then the set of simple functions in
LP(X)isdensein LP(X) for 1 < p < oo.

We continue with the examination of the Banach spaces LP(X) for 1 < p < co. Next
we examine under what conditions we can have separability of L? (X). We start with a
definition.

Definition 2.3.23. Let (X, X2, u) be a measure space. On X we define the semimetric

dy(A,B)=u(AAB) forallA,BeX.
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According to Remark 1.5.2 if we introduce on X the equivalence relation ~ defined by
A ~ Bifand only if u(A A B) = 0, then, on 2(u) = 2/ ~, d, is a metric. Clearly we have

du(A,B) = lxa—xsl1 forallA,B e X(u).

Proposition 2.3.24. If (X, X, u) is a measure space, then (X(u), dy,) is a separable metric
space if and only if the Banach space L' (X) is separable.

Proof. =: Let {Ax}x=1 S 2(u) be a countable d,-dense subset. Then the set of all
functions that are finite linear combinations of {x 4, }x>1 with rational coefficients is a
countable dense subset of L1(X). Hence L (X) is separable.

<: By identifying an element of X with its characteristic function, we see that
X(u) can be viewed as a subset of L(X). Then the separability of L!(X) implies the
separability of X(u). O

The next proposition provides a condition for the separability of (X(u), dy,).

Proposition 2.3.25. If (X, X, u) is a finite measure space and X = o(L) with L being
countable, then (X(u), dy) is separable.

Proof. Note that the ring generated by £ is still countable. So we may assume that
L is aring. Then, using Problem 2.3, for every A € X(u) we can find B € £ such that
dy(A, B) = u(A A B) < €. Hence £ is dy-dense in 2(u) and so (X(p), dy) is separable.

O

Corollary 2.3.26. If X is a separable metric space, ¥ = B(X) and u is a finite measure on
X, then (X(u), dy) is separable.

In fact combining Propositions 2.3.18, 2.3.24, and 2.3.25, we can state the following
result.

Proposition 2.3.27. If (X, X, u) is a o-finite measure space, ¥ = o(L) with £ count-
able and a is the smallest algebra containing L, then the simple functions of the form
S = 22:1 aixa, withn € N,ax € Q,Ax € a,u(Ax) < oo,k = 1,...,n forma
countable dense subset of LP(X) for 1 < p < oo. In particular, LP(X) is separable
for1l < p < oo.

For the space L*°(X) we show that it is not separable. In order to show this first we
mention the following decomposition result, which can be found in Dudley [90, p. 82].

Proposition 2.3.28. If (X, X, u) is a o-finite measure space, then yu = pg + g with u,
purely atomic and p 4 nonatomic. Moreover the atoms on which u, is defined are at most
countable.

We can use this result to establish the nonseparability of L*°(X).

Proposition 2.3.29. If (X, X, u) is a o-finite measure space, then the Banach space
L*°(X) is not separable.
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Proof. Applying Proposition 2.3.28, we split X into its atomic part X, and its nonatomic
(diffuse) part X;. We consider two distinct cases: (a) X4 is not y-null. (b) X, is u-null.

Suppose that (a) holds. Then for each 17 € (0, u(Xy)) there exists A, € X such that
u(Ay) = n; see Proposition 2.1.32. Then {Ay}yc(0,u(x,)) is an uncountable set of distinct
X-sets, that is, u(Ay A Ay) > 0ifn # n'. Let

Uy = {f € L°00: I ~xa,loo < 3} » 7€ O, u(Xa) =1
Then {Uy};er is an uncountable family of nonempty, open, and mutually disjoint sets
in L°(X). This means that L*°(X) is not separable. Indeed, if L°°(X) were separable,
then there would be a countable dense set {f;},>1 € L*°(X). For each n € I we have
Uy N {fuln=1 # 0. So we can choose n(n7) € N such that fy) € Uy. The mapn —
n(n) is injective; recall that the sets are mutually disjoint. Therefore I is countable, a
contradiction. The case (b) follows from Proposition 2.3.28. O

The main convergence theorem in the theory of Lebesgue integration is the “Lebesgue

Dominated Convergence Theorem”; see Theorem 2.3.8. Two of the main ingredients in

that result are:

- fa(x) > f(x) p-a.e.as n — oo (the pointwise convergence of the sequence);

- |fa(¥)| < h(x) for p-a.a.x € X and for all n € N with h € L'(X) (existence of a
dominating integrable function).

Both can be weakened. To weaken the pointwise convergence requirement we introduce
the following convergence concept.

Definition 2.3.30. Let (X, X, u) be ameasure space. A sequence f,: X — R* withn ¢ N
of Z-measurable functions converges in measure to a >X-measurable function f if for
everye > 0

ufx e X: |Ifnx)-f(x)| = €}) >0 asn— 0.

We denote the convergence in measure by f, 5 f.

If u is a probability measure, that is, u(X) = 1, then we say that the sequence
{fn}n>1 converges in probability to f.

We say that the sequence {f;},>1 is a Cauchy sequence in measure if for every
>0,

lim p(fx € X: 1fn(0) - fn() 2 €}) = 0.

n

The following proposition is a straightforward consequence of the definition above.

Proposition 2.3.31. If (X, X, u) is a measure space, then the following hold:
@) fo D fandhy 2 himply nfa + Ohn 2> nf + Sk foralln, 9 € R;

(b) fu > f implies f£ 5 £* and |fa] 5> If1;

(b) fu 5 fandfy > gimply f = g p-ace.



2.3 Convergence Theorems and LP-Spaces =— 121

Proposition 2.3.32. If (X, 2, u) is a finite measure space and f, — f u-a.e., then f, 5 f.
Proof. Foreveryn € N, let

An ={x € X: |fa(x) - f(x)| = €}

o) -fOO1 e } (2.3.9)
L+1fn(0)-fOOl ~ 1+e]
This gives u(A,) < (1 + ¢)/¢ IX(Ifn - /(1 + |fn = fl)du by the Markov inequality;
see Proposition 2.2.41. But from the Lebesgue Dominated Convergence Theorem (see
Theorem 2.3.8), it follows

1+€J Ifn = fl
€ 1+1fn -1

={xeX:

duy—0 asn—oo.

X

Hence u(A,) — 0O and so f, LN f; see (2.3.9). O

In fact in finite measure spaces convergence in measure is strictly weaker than pointwise
convergence.

Example 2.3.33. Let X = [0, 1], X = B([0, 1]), u = A|[0’1] with A being the Lebesgue
measure on R. Consider the sequence of X-measurable functions

fn(x)z)([ : m](x) foralli e {0,1,...,2"-1},n=1+2k.

3 sy

P

Sk

It follows that

A(x € [0,1]: |fn(X)| = €}) = % — 0 asn=nk) - +00.

Hence, f, 5 0. But the pointwise limit of the f,,’s does not exist at any x € [0, 1].

The following is a variant of the Markov inequality (see Proposition 2.2.41) and is known
as the “Chebyshev inequality.”

Proposition 2.3.34 (Chebyshev inequality). If (X, X, p) is a measure space, f € LP(X),
1<p<oo,and A > 0, then

Hlix € X: 1001 = A < 1A
Proof. Let Ay = {x € X: |f(x)| > A}. Then |f]}, > jAﬁ IfIPdu = APu(Ay). O

Using the Chebyshev inequality we can compare convergence in LP(X) for 1 < p < oo
with convergence in measure.

Proposition 2.3.35. If (X, X, u) is a measure space, {fnin>1 € LP(X) with1 < p < oo,
and |fy ~ fl, — O, then f 5 .

Proof. Applying the Chebyshev inequality (see Proposition 2.3.34) yields the assertion
of the proposition. O
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Although convergence in measure is strictly weaker than pointwise convergence, we
can always extract from any convergent sequence in measure a pointwise convergent
subsequence.

Proposition 2.3.36. If (X, 2, u) is a measure space and f, L f, then there exists a
subsequence {fn, }k=1 < {fn}n>1 such that f,, — f p-a.e.

Proof. Since f, L f there is a strictly increasing sequence {k,},>1 € IN such that

y({x € X: Ife(x) - f0)] = %}) < 2—1,1 for all k > ky .

Foreachn e N,letA, = {x € X: |fi,(X)—f(x)| = 1/n} € X. Weset A = (o1 Upsik An € 2.
Then we have

y(A)sy(UAn> < Zy(A,,)s % forevery k e N.

n>k nxk
Hence, u(A) = 0.
If x ¢ A, then there exists ko € N such that x ¢ (54, An and so [fy,(x) - f(x)| < 1/n
for all n > ko. Thus fi, (x) — f(x) for all x ¢ A with u(A) = 0. O

Definition 2.3.37. Let (X, X, u) be a measure space and let M(X) = {f: X - R*: fis
2-measurable}. As before, we define f ~ h if and only if f = h p-a.e. Then we set
LO°(X) = M(X)/ ~. When u(X) < oo on L°(X) we introduce the translation invariant
metric

If - hl

_r-n 0
T+l hldy forallf,he L°(X). (2.3.10)

duf,) = |
b'¢
Remark 2.3.38. It is easy to check that d,, is a metric on LO(X). For the triangle inequal-
ity, use the elementary inequality that says that
b c
< + .

l1+a 1+b 1+c
In the next proposition we show that in finite measure spaces, convergence in measure
is in fact a metric convergence.

a,b,ceR,, a<b+c implies

Proposition 2.3.39. If (X, X, ) is a finite measure space and {fn}n>1 < L°(X), f € L°(X),
d
then f, 5 f if and only if fn = f in L°%(X); see (2.3.10).

Proof. In what follows for a given € > 0O let

Ap ={x e X: |fu(x) - f(X)| = €}
[fn(x) = f() N
1+ -fX)]  1+e¢

(2.3.11)

=<[xeX: },ne]N.

Suppose that f, Lt f. Then we can find ny € N such that
U(Ap) <e foralln=ng. (2.3.12)
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Then, because of (2.3.11) and (2.3.12), it follows

0 lfa-f -1
dutfusf) = | 1+|fn—ﬂd’”X£ T+ 111

n n

S u(X\ An) < (1+ p(X)e

for all n > no. This gives d(fy, f) » 0 asn — oo.

< u(Ap) +

d
Now assume that f, N f.Thene/(1+¢&)xa, < (fn—)/(1+|fn—f]) forall n € N; see
(2.3.11). This implies u(A,) < (1 + £)/(€)dy(fnr f) > Oasn — co. Hence f, 5 f. O

The next notion will allow us to relax the dominating function requirement in the
Lebesgue Dominated Convergence Theorem; see Theorem 2.3.8.

Definition 2.3.40. Let (X, %, u) be a measure space and F < L°(X). We say that J is
uniformly integrable if for every € > 0 there exists D, € ¥ with u(D,) < oo and

SUPfey IX\DS Ifldu < € as well as limc—, oo SUPfe .[{Iﬂzc} |fldu = 0.

Remark 2.3.41. In the literature one can find other definitions of uniform integrability
that are equivalent to the definition above when u(X) < co. Some of these alternative
definitions are examined in the exercises. In particular we mention the following
equivalent definition for a set ¥ ¢ L1(X) to be uniformly integrable:
(UIy(a) F < L'(X) is bounded, that is supsc [Ifl1 < 0o;

(b) for every € > O there exists D, € X with u(D,) < co such that SUDfey jX\ D, |fldu

<E&;
(c) forevery e > Othere exists § > O such that u(A) < 6 implies supy. s f L fldu <e.

The next result is a key property of the Lebesgue integral and will help us identify uni-
formly integrable subsets of L (X). The result is referred to as the absolute continuity
property of the integral.

Proposition 2.3.42. If (X, X, u) is a measure space and f € L'(X), then for any given
€ > 0 there exists 6 = 6(g) > 0 such that

AeX, u(A) <8 implies j Ifldu < €.
A
Proof. Since f = f* — f~, without any loss of generality, we may assume that f > 0. Let
fn = min{f, n} with n € N. Then f,, .~ f and so by the Monotone Convergence Theorem
(Theorem 2.3.3), we have IX fodu jX fdu. So, given € > 0 there exists ng = no(g) € N
such that

0< J(f —fa)du < ; foralln > ng . (2.3.13)
X
If § = €/(2np) and A € X satisfies u(A) < 6, then, due to (2.3.13),
| < [ Frod+ [ - fr)a <. O

A A X
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Corollary 2.3.43. If (X, X, p) is a measure space and F < L°(X) satisfies
If(x)| < h(x) for y-a.a.x € X and for all f € F with h € L*(X),

then JF is uniformly integrable. In particular, every finite set F ¢ L'(X) is uniformly
integrable.

Now we can state the generalization of the Lebesgue Dominated Convergence Theo-
rem; see Theorem 2.3.8. The result is known as the “Vitali Convergence Theorem” or
“Extended Dominated Convergence Theorem.”

Theorem 2.3.44 (Vitali Convergence Theorem). If(X, X, u) is a measure space, {fn}n>1 <
LY(X) is uniformly integrable and f, LA fasn — oo, then f € LY(X) and ||fn - fl1 — O.
In particular, we have [, fodu — |, fdu.

Proof. On account of Proposition 2.3.36, we may assume that f, — f u-a.e. Given € > 0,
let § > 0 and D, € X be as postulated by (UI)’; see Remark 2.3.41. Moreover, thanks to
Egorov’s Theorem, Theorem 2.2.32, we know that there exists A, € X with A, € D, and
U(A¢) < 8 such that

fn — f uniformlyon D, \ A . (2.3.14)

We have

| 1R = [ - Aaus | 1~ Adp

D, A De\A,
(2.3.15)
< [ aldp+ | i+ U = Ao a uD)
A, A
Note that according to (UI)’ (see also Definition 2.3.40), it holds that
j faldu <€, J fuldu<e forallneN. (2.3.6)
A X\D.
Moreover, by Fatou’s Lemma, one gets
J fdu <e, J fdu <e. (2.3.17)

A, X\D,
Taking (2.3.15), (2.3.16) and (2.3.17) into account it follows that

| t-fdus | faldu+ | 1Rans | 1f - Adp

X X\D, X\D, D,

<4e+ |fn — flrop\a,)U(De) foralln e N.

Hence, because of (2.3.14) and since u(D;) is finite and € > O is arbitrary, it follows that
fn — fin L1(X). O
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Now that once we have the convergence theorems for the Lebesgue integral, we can
establish the existence and uniqueness of the product measure.

So, let (X, X, u) and (Y, £, v) be two measure spaces. Suppose that X = o(a) and
L = o(b). We want to define a measure ¢ on rectangles of the form A x B with A € aand
B € b such that

§(AxB)=u(A)v(B) forallAca,Beb. (2.3.18)

If the generators a and b are rich enough, we can have the uniqueness of the measure ¢
satisfying (2.3.18).

Proposition 2.3.45. If(X, X, u)and (Y, £, v) are two measure spaces, X = a(a), L = a(b)

and

() aand b are closed under finite intersections;

(ii) there exists sequences {Ap}n>1 € a, {Bn}n>1 S bwithA, » X, B, /Y and u(A,) <
00, V(By) < oo foralln € N,

then there is at most on measure & on X ) L satisfying (2.3.18).

Proof. From Proposition 2.2.25 we know that ' (X) £ = o(a x b). Moreover we have
ApnxBy 7 XxY and &A, xBp) =u(An)v(B,) <oo foralln e N.
Proposition 2.1.28 implies the uniqueness of £. O

Now we examine the issue of the existence of the product measure.

Theorem 2.3.46. If (X, 2, u) and (X, £, v) are two o-finite measure spaces, then the set
function &: ¥ x L — [0, +00] defined by é&(A x B) = u(A)v(B) forall A € X,B € L,
extends uniquely to a o-finite measure on ¥ Q) L such that

&) = j JXC(X, y)dudv = J JXC(X, y)dvdu forall C € 2®L

Y X XY

and x — xc(6, y),y = xcx, ), x = [, xc(x,y)dvandy — [, xc(x,y)du are measur-
able.

Proof. Uniqueness follows from Proposition 2.3.45. Consider sequences {A,}n>1 €2
and {B}n>1 € £ such that

An X, By ~Y and u(Ap)<oco, Vv(Bp)<oo forallnelN.

Note that C,, = A, x B, /~ X x Y. For every n € N, let D,, be the family of all subsets
E c X x Y such that

- X > Xenc,(X,y) and y — Xgnc, (X, y) are measurable.

- X — [, XEnc, (X, y)dvand y — [, Xgnc, (X, y)du are measurable.

Iy [xXEnc, (6, y)dudv = [, [, Xenc, (x, y)dvdp.

It is a straightforward procedure to check that D, is a Dynkin system; see Definition 2.1.7,
which contains X x £. So, applying the Dynkin System Theorem (see Theorem 2.1.11)
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yields that ¥ (X) £ < D, forall n € N. Since C,, ~ X x Y, Proposition 2.2.10 implies the
measurability of x — y¢(x,y) and y — yc¢(x, y) and then the Monotone Convergence
Theorem (see Theorem 2.3.3) gives the measurability of x — IY Xc(x,y)dv and of
y = [y xctoy)du.

Finally, if E = X x Y, then we have that

C - &)= J ch(X, y)dudv = J JX(;(X, y)dvdu
Y X Xy
is indeed a measure on X () £ and é(A x B) = u(A)v(B) for all A € X and for all
BelL. O

Definition 2.3.47. Let (X, X, u) and (X, £, v) be two o-finite measure spaces. The
unique measure ¢ on X (X) £ produced in Theorem 2.3.46 is called the product mea-
sure of y and v and is denoted by u x v. The measure space (X x ¥, 2@ L, u xv) is
called the product measure space.

Remark 2.3.48. Now we can define the Lebesgue measure A" on (R", B(R")) such that

n n
A"(R) = [ [(bx - ax) for all rectangles R = [ [lax, bx) -
k=1 k=1
The next two theorems enable us to interchange the order of integration and to cal-
culate integrals with respect to product measures using iteration. Their proofs are
straightforward. Indeed, the results are true for characteristic functions, hence for
simple functions. Then exploit the density of the simple functions to pass to the general
case.
The first result is known as “Tonelli’s Theorem.”

Theorem 2.3.49 (Tonelli’s Theorem). If (X, X, u) and (X, £, v) are two o-finite measure

spaces and if f: X x Y — [0, co] is X (X) L-measurable, then the following hold:

@) forally € Y, x — f(x,y) is X-measurable and for all x € X,y — f(x,y) is L-
measurable;

(b) x — [, fix,y)dv is Z-measurable and y — [, f(x,y)dp is L-measurable;

© [y fduxv) = [, [y oo, y)dpav = f, [, fox, yydvdy.
The second is known as “Fubini’s Theorem.”

Theorem 2.3.50 (Fubini’s Theorem). If (X, X, u) and (X, £, v) are two o-finite measure
spaces, f: X x Y — R* is X Q) L-measurable and at least one of the following three
integrals is finite

| wagexw, [ [ipduav, [ |ipavan,

XxY Y X Xy
then all three integrals are finite, f € LY(X x Y) and

(@ x - f(x,y) e LY(X) forv-a.a.y € Y;

(b) y — fix,y) € LY(Y) for y-a.a.x € X;
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© y— [ fox,y)du € LX(Y);
d) x — [, fix,y)dv e LX(X);

© [y fduxv) = [, [, fox,y)dudv = [, [, fx, y)dvdp.

2.4 Signed Measures and Radon-Nikodym Theorem

In this section we examine the notion of differentiating a measure v with respect to
another measure u defined on the same ¢-algebra. This differentiation theory can
be developed more precisely if we extend the notion of measure and allow also neg-
ative values. This leads us to the concept of signed measure already introduced in
Definition 2.1.22(f). For convenience, let us recall the definition here.

Definition 2.4.1. Let (X, X) be a measurable space and y: ¥ — RR* is a set function. We

say that u is a signed measure if the following hold:

(@) u®) =0;

(b) p takes at most one of the values +co and —oo, that is, either y: ¥ — (—co, +00] or
U: 2 — [-00, +00);

(c) for every sequence {A,}n>1 € 2 of pairwise disjoint sets, we have

Z ( U An> = ) H(An). (24.1)

n>1 n>1

Remark 2.4.2. If p (|51 An) is finite in (2.4.1), then the sum on the right-hand side
must converge independently of any rearrangement since the left-hand side is indepen-
dent of the order of the terms. So the sum in (2.4.1) converges absolutely. Note that if
U1, U2 are two measures on X and at least one of them is finite, then yu = yy — ur isa
signed measure.

Straightforward modifications in the proofs of Propositions 2.1.26 and 2.1.27 lead to the
following characterization of signed measures.

Proposition 2.4.3. If (X, X) is a measurable space and pu: X — R is an additive set
function such that u(0) = 0O, then u is a signed measure if and only if one of the following
equivalent properties holds:

(a) {Antn=1 € X and Ay, /7 Aimply u(Ap) — u(A);

(b) {An}ns1 € Zand Ay N\ Aimply u(Ayn) — u(A);

(©) {Anptns1 €Xand A, \ 0 imply u(A,) — 0.

As we will see in the sequel, in order to study signed measures it is convenient to write
them as differences of measures. For this reason we state the following definition.

Definition 2.4.4. Let (X, 2) be a measurable space and u: ¥ — R* is a signed measure.
Aset A € X is said to be a positive (resp. negative) set for y, if u(B) > O (resp. u(B) < 0)
forallBe 2,B c A.
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Example 2.4.5. Suppose that (X, X, u) is a measure space and let f: X —» R* be a
2-measurable function such that at least one of Ix f*dyu and IX f~dp is finite. Then the
set function v: ¥ — R* defined by v(A) = jA fdu = f yfXadp is a signed measure and a
set A € X is positive (resp. negative, null) for vif f > 0 (resp.f < 0, f = 0) u-a.e.on A.

It can happen that a set has positive y-measure with u being a signed measure but the
set is not positive for u.

Example 2.4.6. Let X = Rand 2 = B(X). Consider f: R — R to be an odd function
that is A-integrable where A denotes the Lebesgue measure. Assume that f(x) > O for all
x > 0.Then v(4) = j A fdA is a signed measure (see Example 2.4.5), and any set of the
form [-a, b] with O < a < b has positive v-measure without being a positive set for v.

Next we will describe the structure of signed measures. We will show that X is the union
of two disjoint sets, one positive and the other one negative. We start with a proposition
for positive sets.

Proposition 2.4.7. If (X, X) is a measurable space, u: ¥ — R* is a signed measure and
A € Xis a positive set for u, then any B € X, B € A is also a positive set for u. Moreover,
the union of any countable family of positive sets for u is a positive set for u.

Proof. The first part of the conclusion is an immediate consequence from Defini-
tion 2.4.4.

Suppose that {A,},>1 € X are positive sets for u. Let C,, = Ay \ U,’Zj Ay.Then C,, €
X, Cp € Ap and so from the first part Cy, is positive for p. Note that | J,,1 An = Ups1 Cn
and the Cy’s are mutually disjoint. So, if B € X, B < | 51 4n, then, by the o-additivity
of u, u(B) = ) ,.»1 u(B n Cy). Hence, u(B) > 0. So, we conclude that | .1 An € Yisa
positive set for p. O

Now we can state the following important theorem for signed measures. The result is
known as the “Hahn Decomposition Theorem.”

Theorem 2.4.8 (Hahn Decomposition Theorem). If (X, ) is a measurable space and
u: X — R* is a signed measure, then there exists a positive set P € X and a negative set
N € X suchthat X = Pu N and P n N = 0. Moreover, if P', N' is another such positive-
negative decomposition of X, then P A P' = N A N' is p-null.

Proof. Without any loss of generality we may assume that u has values in [-00, +00);
see Definition 2.4.1. We define

n =sup [u(A): A € X, Ais a positive set for u] > 0. (2.4.2)

Let {An}n=1 € 2 be a sequence of positive sets such that p(A,) — n.Let P = (51 An.
Then Propositions 2.4.7 and 2.4.3 imply that

P is positive for y and u(P) = n < +0c0 . (2.4.3)
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Let N = X\ P. We claim that N is a negative set for u. Arguing by contradiction, suppose
that N is not negative for u.

First we show that N cannot contain a positive set that is not y-null. Indeed, if
A < N is positive and u(A) > 0, then A U P is positive (see Proposition 2.4.7), and
U(A U P) = u(A) + u(P) > n (see (2.4.3)), a contradiction to the definition of n > 0 (see
(2.4.2).

Second, if A € N and u(A) > 0, then there exists B € X, B ¢ A with u(B) > u(A).
Indeed, since A is not positive, we can find C € X, C ¢ A with u(C) < 0. Thenif B = A\C,
we have u(B) = u(A) - u(C) > u(A).

Since we have assumed that N is not a negative set for u, we can produce a sequence
{Antns1 € 2 with A, € N for all n € N and a sequence {k,},>1 € N as follows:

kq is the smallest natural number for which we can find B € ¥, B ¢ N with
U(B) > 1/k;. We set A; = B. Continuing inductively, let k, be the smallest natural
number for which we can find B € ¥, B € A,,_1 with u(B) > u(An-1) + 1/k,. We set
Ap = B.Let A = (), An. Then by Proposition 2.4.3, it follows that co > u(A) =
limy oo u(An) = Y 51 1/kn, which gives k, — co. But as before, there exists B € X, B €
A with u(B) > u(A) + 1/k for some k € IN. Then for large enough n € IN, we have k < kj
and B ¢ A,,_1, a contradiction to the construction of the sequences {A,},>1 € 2 and
{kn}n>1 € IN. It follows that N is negative for .

Finally suppose that P’, N’ is another such positive-negative pair. We have P\ P’ ¢ P
and P\ P’ ¢ N', which yields that P \ P’ is both positive and negative for y; see
Proposition 2.4.7. This gives u(P \ P’) = 0. Similarly we can show this for the set P’ \ P.
This completes the proof of the theorem. O

Remark 2.4.9. The pair (P, N) is called a Hahn decomposition for the signed mea-
sure U.

The Hahn decomposition will lead us to a canonical decomposition of a signed measure.
First we state a definition that is central in our considerations in this section.

Definition 2.4.10. Let (X, 2) be a measurable space and u,v: ¥ — [0, +0o] be two

measures.

(a) We say that u and v are mutually singular denoted by u_Lv if there exists two
disjoint sets X, X, € ¥ such that X = X;, U X, and for every A ¢ %, it holds that

uA)=u(AnX, and v(4)=v(AnX,).

(b) We say that v is absolutely continuous with respect to u denoted by v <« p if for
every A € X with u(A) = 0 it holds that v(A) = 0.

Proposition 2.4.11. If (X, X) is a measurable space and yu,v: X — [0, +oo] are two
measures with v being finite, then v < u if and only if for every € > O there exists § > 0
such that

AeXandu(A)<dimplyv(A)<e. (2.4.4)
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Proof. =: Arguing by contradiction suppose that the implication is not true. Then
there exist € > 0 and a sequence {A}n>1 € 2 such that

1
U(Ap) < > and v(4,) > cforalln e N. (2.4.5)

Set Bx = Upsk An € 2 and B = ()51 Bk € 2. Then

1 1

u(B) < u(Bi) < ) 77 =51 0 s k — +00.
n>k

Hence,

uB) =0. (2.4.6)

On the other hand since v is finite, Proposition 2.1.24(f) gives
v(B) = lim v(By) > lim v(4,) > ¢;
n—-oo n—.oo

see (2.4.5). This contradicts the hypothesis that v <« y; see (2.4.6).
«:If A € X with u(A) = 0, then v(4) < e for all € > 0 and so v(A) = 0. Therefore
V< U 0

Remark 2.4.12. From the proposition above, we infer that if v is finite, then v « p if
and only if limy,4)0 v(4) = 0.
If v is not finite, then only the implication “<=" is valid in Proposition 2.4.11.

Example 2.4.13. Let X = (0, 1), 2 = B((0, 1)) and u = A be the Lebesgue measure on
(0, 1). Define v(A) = IA 1/xdA(x) for all A € B((0, 1)). Then v < u, but (2.4.4) fails.

Now we will use the Hahn decomposition of X to produce a canonical representation of
a signed measure as the difference of two measures. The result is known as the “Jordan
Decomposition Theorem.”

Theorem 2.4.14 (Jordan Decomposition Theorem). If (X, ) is a measurable space and
u: 2 — R* is a signed measure, then there exist unique positive measures p., u_: X —
[0, +00] with at least one of them finite such that p = p, — u_and p Lju_.

Proof. Let (P, N) be a Hahn decomposition for u; see Theorem 2.4.8. We define
U+(A)=u(AnP) and pu_-(A)=-u(AnN) forallAeX.

Thenwehave y =y, —p_and p, Ly_.

Suppose that (£, £-) is another pair of measures such that y = &, - ¢_and &, L&_.
LetA,Be Xsuchthat AnNB=0,AUB=Xand &,(B)=¢.(A) =0.ThenX = AUBis
another Hahn decomposition for u and so u(P A A) = 0; see Theorem 2.4.8. Therefore
for any D € X it follows that

£.(D)=&(DNnA)=uDNA) = uDNP) = pu(D),

which gives &, = u,.
Similarly we show that £ = u_ and this proves the uniqueness of the difference
decomposition. O
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Definition 2.4.15. The measures y; and u_ from the proposition above are called
the positive and negative variations of y and y = p, — pu_ is called the Jordan
decomposition of u. The total variation of y is the measure |u| defined by |u| =

Ui+ U-.
Remark 2.4.16. For every A € X we have

U+(A) =sup [u(C): C e X, C c A, Cis positive] = sup[u(C): Ce X, C c A],
u-(A) = —inf [u(C): C € X, C c A, Cis negative] = —inf[u(C): C € ¥, C c A],

n n
|u|(A) = sup l Z [u(AK)|: n e N, {Ai}}_, X aredisjointand A = U Ax
k=1 k=1

Moreover, using the Jordan decomposition, we can define the Lebesgue integral
with respect to a signed measure. So, let (X, X) be a measurable spaceand lety: ¥ — R*
be a signed measure. Consider f: X — R* a 2-measurable function and A € X. Suppose
that at least one of the integrals I " dfu, and f " fdu_ is finite. Then the Lebesgue integral
of f over A is defined as

[ = [ e - [ san-.

A A A
If both integrals j L fdus, j , fdu- are finite, then we say that f is Lebesgue integrable
with respect to u over the set A € X.

The Jordan decomposition established in Theorem 2.4.14 is minimal in the following
sense.

Proposition 2.4.17. If (X, X) is a measurable space, u: ¥ — R* is a signed measure and
u=&-&withé&, &: ¥ — [0, +oo] measures, then &, > p, and & > p_.

Proof. We have u < &;. Hence, forall A € X,

p+(A) = p(ANP)<§1(ANP) <§1(4).
Therefore p, < &;. Similarly we show that u_ < &5. O
We extend the notions introduced in Definition 2.4.10 to signed measures.

Definition 2.4.18. Let (X, Y) be a measurable space and y, v: X — R* be two signed

measures.

(a) We say that u and v are mutually singular denoted by p Lv if || L|v|; see Defini-
tion 2.4.10(a).

(b) We say that v is absolutely continuous with respect to u denoted by v « p if
[v| < |ul; see Definition 2.4.10(b).

Remark 2.4.19. If u is a signed measure, then p, Lpy_.

The notion of mutual singularity is the antithesis of the notion of absolutely continuity.
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Proposition 2.4.20. If (X, X) is a measurable space and u,v: X — R* are signed mea-
sures, then uLv andv <« uimplyv = 0.

Proof. Since by hypothesis pLv, there exist A, B € YXwithAnB=0,X=AUB, and
|[u|(A) = |v|(B) = 0; see Definition 2.4.18(a). By hypothesis we also have that v « y and
so [V|(A) = 0; see Definition 2.4.18(b). For every C € 2, it holds that

[VI(C) = [VI(CNA) +|vI(CnB) >|v(Cn A)| +|v(Cn B)|
>|v(CNnA)+v(CnB)|=|v(C)],
by the additivity of v. Hence, |v(C)| = O forall C € X and so v = 0. O

Proposition 2.4.21. If (X, ) is a measurable space and p, v: ¥ — R* are signed mea-
sures, thenv <« pifandonly if v, < pandv_ < u.

Proof. =: Suppose that A € X satisfies |u|(A) = 0. Then for B € X, B ¢ A it follows
|ul(B) = 0 and so |v(B)| < |v|(B) = 0. From Remark 2.4.16 we have

Vi(A) =sup[v(B): Be 2, BC A]=0.

Hence v, « u. Similarly we show that v_ <« p.

«: Suppose that A € X satisfies |u|(A) = 0. By hypothesis one gets v.(A4) =
v_(A) = 0. Recall that |v| = v, + v_; see Definition 2.4.15. Therefore |v|(4) = 0 and we
have proved that v <« u. O

Remark 2.4.22. Evidently v < p if and only if A € X with |v|(A) = 0 imply v(A4) = 0.

In a similar fashion we also show the following facts about singular and absolutely
continuous signed measures.

Proposition 2.4.23. If (X, ) is a measurable space and p,v,¢: ¥ — R* are signed
measures, then the following hold:

(@ pu<é&andv < &imply |u| + |v] < &;

(b) uLéandviéimply |u| + |v|Lé;

(c) u<éandv < uimplyv < ¢&;

(d) uréandv < pimply vié.

Definition 2.4.24. Let (X, X) be a measurable space and y: ¥ — R* is a signed mea-

sure.

(@) We say that y is finite if u(A) € R for every A € .

(b) We say that u is o-finite if there exists a sequence {A,},>1 € X such that X =
Uns1 Anand u(A,) € Rforalln e N.

Remark 2.4.25. A signed measure y is finite if and only if |u(X)| < +co. Moreover, we
can assume in Definition 2.4.24(b) that the A,,’s are mutually disjoint.

Proposition 2.4.26. If (X, X)is ameasurable space,v: ¥ — R* is afinite signed measure
and u: ¥ — [0, +oo] is a measure, then v < u if and only if for every € > O there exists
0 >0suchthat A € X, u(A) < §imply |v(A)| < e.
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Proof. According to Definition 2.4.18(b), v < u if and only if |v| < y and recall that
[v(A)| < |v|(A) for all A € X. Then the conclusion follows from Proposition 2.4.11. [

Corollary 2.4.27. If (X, X, u) is a measure space and f € L*(X), then for a given € > 0
there exists 6 = 6(¢) > 0 such that A € X with u(A) < 6 imply ”A fdy| <Ee.

The technical result, which we prove next, will be used in the proof of the main structural
result concerning signed measures, the so-called “Radon-Nikodym Theorem.”

Lemma 2.4.28. If (X, Y) is a measurable space, u, v are measures on X with u being
o-finite, v # 0 and v < U, then there exist € > 0 and B € X with 0 < u(B) < +oo such that
eu(C) <v(C)forall C € X, C < B, that is, B is a positive set for u — €v.

Proof. Let {Ap}ns>1 € 2 be disjoint sets such that X = | J,,5; A and p(A,) < +oo for all
n € N. Since v # 0 we can find m € IN such that v(A,;) > 0. We choose € > 0 small such
that

V(Ap) - ep(Am) = (v —ep)(Am) > 0.

From Problem 2.53 we know that there exists B € X, B € A,, such that
(v—eu)(B) >0 and Bisa positive set forv—eu . (2.4.7)

Evidently (v — eu)(B) < +00. Moreover, if u(B) = 0, then from (2.4.7) we have v(B) > O,
which contradicts the hypothesis that v « u. Therefore u(B) > 0. In addition, (2.4.7)
implies that eu(C) < v(C) forall C € X, C ¢ B. O

We saw in Example 2.4.5 that for a given measure space (X, X, u) and f € L}(X), the set
functionZ > A > j A fdu is a signed measure. It is natural to ask whether the converse
is true as well. Namely, if v <« u, then can we find f € L1(X, ) such that dv = fdu?
The answer to this fundamental question is given by the so-called “Radon—Nikodym
Theorem.”

Theorem 2.4.29 (Radon-Nikodym Theorem). If (X, ) is a measurable space, p: ¥ —
[0, +00] is a o-finite measure, v: ¥ — R is a o-finite signed measure and v < u, then
there exists a unique up to equality u-a.e. X-measurable function f : X — R* such that
V(A) = [, fduforall A € &.

Proof. We know that v,, v_ are finite measures on 2 and from Proposition 2.4.21, we

know that v, « p and v_ < p. Moreover, one has v = v, — v_. Therefore without any

loss of generality we may assume that v is a o-finite measure. It holds that X' ¢ X}, ¢ %,,.
First assume that v is finite. We introduce the set

L= {h e LY(X): h > O p-a.e.and Jhdy <v(A)forall A e Zu]’ . (2.4.8)
A

Wehave 0 € £andso £ # 0. Let hy, h, € £and A € X, and let

B={xeA: hi(x)=2hy(x)}, C=A\B={xe€A: hy(x)>hi(x)}.
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Evidently B, C € £,,A=BuU Cand Bn C = 0. Hence

Jmax{hl, hody = Jmax{hl, haobdy + jmax{hl, ho}du

A B ¢
- Jhldy + j hydp < v(B) +v(C) = v(4) .
B c

Thus, max{hq, h,} € £. We define

<v(X) < +o0;

n:sup[Jhdy:heﬂ
X

see (2.4.8). Let {hy}n>1 € £ be such that lim,_, jX hndu = n. We set g, = max{hy}_;.
Then from the previous part of the proof we have {g,},>1 € £ is increasing and
IX gndyu ~ 1. From the Monotone Convergence Theorem (see Theorem 2.3.3) we know
that there exists g € L1(X, u) such that g,, .~ g and IX gdu = n. We have

0<gnxa 7 8xa and janAdy = Jgndy <v(A) forallnelN,
X A
which implies jA gdu <v(A)forallA e X, andsog e £.
Finally we show that v(A) = | ,gduforallA € 5. Let

£(A) = v(A) - Jgdy forall A € 5, . (2.4.9)
A

Then ¢ is a measure on X, and & < u. Suppose that £ # 0. Then Lemma 2.4.28 implies
that there exist € > 0 and B € X}, such that

O<uB)<oo and eu(C)<é(C) forallCeXy,C<cB. (2.4.10)

Let h = g+ exp. Then h > O p-a.e.and h € L'(X, u). We have n = [, gdu < |, hdy,
which gives

he¢t. (2.4.11)

On the other hand, for every A € X}, we derive, combining (2.4.8), (2.4.9), (2.4.10),

Jhdu = J[g"'EXB]dﬂ = Jgdweu(BﬂA) < Jgdwf(BﬂA)

A A A A
sjgdy+v(BnA)— j gdu = Jgdy+v(BnA)
A BnA A\B

<Vv(A\B)+v(BnA)=v(A).
This yields
heg. (2.4.12)
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Comparing (2.4.11) and (2.4.12), we reach a contradiction. Therefore

V(A) = Jgdy forallAe 2.
A
Proposition 2.2.40(c) implies that g € L1 (X, u) is unique.

Now suppose that v is o-finite. Then we find {A,},>1 € 2 of disjoint sets such
that X = (J,51 An With v(4,) < +oo foralln € N. Let v, = V|A,, for every n € NN,
that is, v,(B) = v(B n A,) for all n € IN. Evidently, v, is a finite measure on X and
Vn < M. So, from the first part of the proof there exists a unique g, € L' (X, u) such that
Vn(B) = IB gndp forall B € X. Recall that the A,’s are disjoint. We defineg = ) .., gnxa,
and we have that g: X — R is X-measurable as well as

VB) = Y VB0 A = Y | guxa,du = [ gdu,

n>1 n>1 B B

see Theorem 2.3.5. O

Definition 2.4.30. The unique (up to equality u-a.e.) function g: X — R* postulated
by Theorem 2.4.29 is called the Radon—-Nikodym derivative of v with respect to u and
is denoted by dv/du = g or by dv = gdu. If v is finite, then g € L*(X, u) and if vis a
measure then g > O p-a.e.

Theorem 2.4.29 leads to an interesting decomposition of v. This result is known as the
“Lebesgue Decomposition Theorem.”

Theorem 2.4.31 (Lebesgue Decomposition Theorem). If (X, X) is a measurable space,
u: 2 — [0, +00] a o-finite measure and v: ¥ — R* is a o-finite signed measure, then
V =Vg + Vs Withv, < U, vs Ly and this decomposition is unique.

Proof. Let & = pu+v. Then £ is a o-finite measure on X and y « ¢, v <« £. Applying
Theorem 2.4.29, we can find 2-measurable functions g, h: X — [0, +oo] such that

U(A) = J gdé and v(A) = Jhd{ forallA e 5. (2.4.13)
A A
LetB={xe X: g(x)>0}andC={x € X: g(x) =0}.ThenB,Ce 2,BNnC=0,X = BUuC
and u(C) = 0; see (2.4.13). Let V = v| ., thatis, V(E) = v(ENC) forall E € . Then ¥(B) = 0
and so it follows that V1 u. Let v = v|, that is, V(E) = v(E n B) for all E € X. We obtain
7(E) =v(ENB) = IEnB hd¢&; see 2.4.13)and v = ¥ + v.
We need to show that ¥ « . To this end, let E € X be such that u(E) = 0. Then
0 = u(E) = IE gd¢ (see (2.4.13)) and so, since g > 0 é-a.e., g(x) = O for é-a.a. x € E.
As g|EnB > 0, we must have {(E n B) = 0, hence v(E N B) = 0 since v <« {. Therefore
V(E) = v(E n B) and this shows that v « p.
Finally we show the uniqueness of this decomposition. So, suppose that (v, vs)
and (v/, v}) are two such decompositions. Then

Va =Vl =Vi—Vs. (2.4.14)
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From Proposition 2.4.23 we have
Va—V,<pu and (Vi-vs)lu. (2.4.15)

From (2.4.14), (2.4.15) and Proposition 2.4.20, we conclude that v, = v, and v = V..
Hence, the decomposition is unique. O

Definition 2.4.32. The decomposition v = v, + v, provided by the previous theorem
with v, < pu as well as vs Lu is called the Lebesgue decomposition of v with respect
to u.

We conclude this section with two useful results concerning setwise limits of sequences
of finite measures.
The first result is known as the “Vitali-Hahn—-Saks Theorem.”

Theorem 2.4.33 (Vitali-Hahn-Saks Theorem). If (X, X) is a measurable space, {vy}n>1
are finite signed measures, U is a finite measure, v, < U foralln € N and forall A € X,
the limit v(A) = limy,_,o, vn(A) exists, then v: ¥ — R is a signed measure such that
V<L U

Proof. On account of the Jordan Decomposition Theorem (see Theorem 2.4.14) we may
assume that the v,’s are measures. First we show that {v,},>1 is in fact uniformly
absolutely continuous with respect to y, that is, for given € > O there exists § = §(¢) > 0
such that u(A) < 6 implies v,(A) < ¢ for all n € N; see Proposition 2.4.11.

Let 2(u) and d,, be as in Definition 2.3.23. We claim that (X(u), d,) is a complete
metric space. Indeed, let S = {y4: A € 2;} € LY(X, ). Let {Xa,}n>1 € S and assume
that y4, — fin LY(X, u). Then according to Corollary 2.3.20, there exists a subsequence
{XAnk}kzl of {x4,}n>1 such that XAn, (x) — f(x) for p-a.a.x € X. Therefore, range(f) =
{0, 1} and since f is measurable, there exists A € X, such that f = y,. This implies that
Sis a closed subset of L' (X, u), hence a complete metric space in its own right. But
S is isometrically isomorphic to (X(u), dy). Therefore the latter is a complete metric
space.

Note that for every n € N

[Vn(A) = vp(B)| < vp(AAB) forallA,BeXandv, < u.

So, themap v,: £ — [0, +00) with n € N is well-defined and continuous. We introduce
the sets

Dy={AeX:|vh(A) —vm(A)| < eforalln,m>k}, ke N.

These sets are closed and X = ;< Dk. So, according to Theorem 1.5.68(b), we can find
k € N such that int Dy # 0. This means that there exists A € Dy and §; > 0 such that
A e Zand u(A A A) < 61 imply A € Di. By hypothesis, v; <« uforalli e {1,...,k}.
So using Proposition 2.4.11 thereis a 6 € (0, 61] such that A € ¥ with u(A) < § imply
vi(A) < eforallie{l,...,k}.
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IfA e Xand u(A) < 8, then u((AUA) A A) < u(A) < 8 < 8; and so

Va(A) = Vi(A)] = |(vn = VDA U A) = (va = vi)(A \ A))|
< (v = Vi)(A U A)| + |[(va - vi)(A\ A)| < 2¢

for all n > k. Therefore it follows that A € X with u(A) < 6§ imply v,(A) < 2e + vi(4) <
3¢ for all n € N, which is the uniform absolute continuity of {v,},>1 with respect
to u.

Now let {Ap}n>1 € 2 be mutually disjoint sets and € > 0. Weset A = | 1 An € 2.
Let 6 > 0 be as postulated by the uniform absolute continuity with respect to u
established in the first part of the proof. We choose k € IN such that u(A \ Uf-‘zl A;) < 6;
see Proposition 2.1.24(e). This implies

n (A \ L"in>
i=1

<g¢ foralln,m=>k.

va(A)- ) vn(Ai)‘ =
i=1

Hence
m

V(A) - Y v(4A))

i=1

<g forallm=>k.

Since € > 0 is arbitrary, it follows that v(4) = ). V(4i) and so v is a measure.
Moreover, from the first part of the proof and Proposition 2.4.11 we have v « L.
O

The next theorem, known as “Nikodym’s Theorem”, is an easy consequence of the
theorem above.

Theorem 2.4.34 (Nikodym’s Theorem). If (X, X) is a measurable space and let {v,}n>1
be a sequence of nonzero finite measures defined on X such that the limit lim,_,., v,(A)
exists forall A € X, then v(A) = lim,,_,o, Vn(A) with A € X is a finite measure.

Proof. Consider the set function u: ¥ — [0, +00) defined by

i vn(A)

2 v (X) forallA e X.

U(A) =
nelN
Evidently y is a finite measure on X and v, < u for all n € IN. So, invoking Theo-
rem 2.4.33, we conclude that v is a finite measure on 2. O

2.5 Regular and Radon Measures

In this section we investigate the connections between measure theory and topology.
When we combine the measure theoretic and topological structures, we obtain stronger
and more interesting results.

Throughout this section (X, 7) is a Hausdorff topological space. Additional condi-
tions on X will be introduced as needed. By C.(X) we denote the space of all continuous
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functions f: X — R with compact support. Recall that the support of f, denoted by
supp f, is defined to be the closure of the set {x € X: f(x) # 0}.

Definition 2.5.1. The Baire o-algebra of X, denoted by Ba(X), is defined to be the
smallest o-algebra on X, which makes all functions in C.(X) measurable. So, Ba(X) has
as generators the sets {x € X: f(x) > n} with f € C.(X) and p € R. These sets are known
as Baire sets.

This new ¢-algebra is most useful within the framework of locally compact spaces.

Lemma 2.5.2. If X is locally compact, K < X is compact and W < X is open such that
K ¢ W, then we can find U € TnBa(X) and a compact Gs-set C suchthat K c U< Cc W.

Proof. Proposition 1.4.66(c) says that there exists D € T being relatively compact such
that K ¢ D ¢ D ¢ W. Then Proposition 1.4.68 implies that there is f € C.(X) such
that f|;, = 1 and f|,. = 0.Let C = {x € X: f(x) > 1/2}. Then C ¢ X is compact,
Gs, U={xeX:f(x)>1/2} etandwehave KcUcCcW. O

Corollary 2.5.3. If X is locally compact, then T n Ba(X) is a basis for 7.

Proof. Let x € Xand U € N(x). Then Lemma 2.5.2 implies that there exists f € C.(X)
such that f(x) = 1 and f|UC = 0. Consider the set V = {x € X: f(x) > 1/2}. Then
VernBaX)and V c U. O

Now we can give an alternative characterization of Ba(X) when X is locally compact.

Theorem 2.5.4. If X is locally compact, then
Ba(X) = o({C ¢ X: Cis compact and a Gs-set}) .

Proof. Let £L = o({C < X: Cis compact and a Gs-set}). For every f € C.(X) and n > O,
the set {x € X: f(x) > n} is compact and Gs. Note that {f > n} = (,,;{f > n - 1/n}.
Therefore {x € X: f(x) > n} € L forall f € C.(X) and for all > 0. For n < 0, we have
0<-n+n/(2n) < -nand

{fz’”z{f<’l}c={—f>—n}cz<ﬂ{‘fz—n+ n}) €L,

n>1 2n

Moreover, note that {f > 0} = (51 {f = -1/n} € £. So, every set {x € X: f(x) > n} for
f € Cc(X) and n € R, belongs to £ and we have

Ba(X) c £ ; (2.5.1)

see Definition 2.5.1. Now suppose that K = (),-; W, with W, € 7 being compact.
Lemma 2.5.2 implies that we can find U,, € T n Ba(X) such that K ¢ U, ¢ W, forall
n € N.Then K =5, Un € Ba(X), which gives

L < Ba(X). (2.5.2)
From (2.5.1) and (2.5.2) we conclude that £ = Ba(X). O
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Next we compare the Baire and Borel o-algebras.

Theorem 2.5.5. (a) Ba(X) ¢ B(X)
(b) If X is locally compact, separable and metrizable, then Ba(X) = B(X).

Proof. (a) Just recall that every continuous function f: X — R is Borel measurable.
(b) From Proposition 1.4.78 (see also Proposition 1.5.40), we know that X is o-com-
pact. Therefore, every closed subset of X is likewise a-compact. It follows that it suffices
to show that every compact set belongs to Ba(X). But Proposition 1.5.8 says that every
compact set in X is Gg. So, according to Theorem 2.5.4, it belongs to Ba(X) and we
conclude that Ba(X) = B(X). O

Using Proposition 1.4.66(d) we have at once the following result.

Proposition 2.5.6. If X is locally compact and B is a basis for T, then Ba(X) < o(B) ¢
B(X).

The next theorem is the Baire counterpart of Proposition 2.2.26(b).

Theorem 2.5.7. If X and Y are second countable, locally compact spaces, then Ba(XxY) =

Ba(X) ® Ba(Y).
Proof. Note that X x Y is locally compact. We define

M(A)={BCY: AxBeBaXxY)}.

It is routine to check that M(A) is a o-ring for any A. Suppose that C ¢ X is compact
and a Gg-set. Then if E ¢ Y is compact and Gg, then sois C x E € X x Y and we
infer that M(C) contains every compact Gs-set in Y. Moreover, we have Y € M(C); see
Proposition 1.4.78 and Theorem 1.2.27. It follows that M(C) is a o-algebra containing

Ba(Y).

Let L = {A ¢ X: Ba(Y) € M(A)}. This familyis closed under countable intersections
and under complementation and we have seen above it contains every compact Gs.
Therefore

Ba(X) (X)Ba(Y) c Ba(X x Y). (2.5.3)
On the other hand, from Corollary 2.5.3, we know that the family
B ={Ux V: U < X Baire open, V ¢ Y Baire open}

is a basis for X x Y. Since U x V € Ba(X) (X Ba(Y) it follows that o(B) < Ba(X) & Ba(Y).
Then Proposition 2.5.6 gives

Ba(X x Y) ¢ Ba(X) ® Ba(Y). (2.5.4)

From (2.5.3) and (2.5.4), we conclude that Ba(X x Y) = Ba(X) X Ba(Y). O
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Definition 2.5.8. (a) A (signed) Borel measure is a (signed) measure defined on
B(X).
(b) We say that a Borel measure u is regular if for every A € B(X)

u(A) =inf [u(U): U c Xisopen, A c U] (outer regularity)
=sup [u(C): C c Xisclosed, C c A] (inner regularity) .

(c) We say that a Borel measure u is compact regular if for every A € B(X)
U(A) = sup [u(K): K < X is compact, K c A] .

(d) We say that a Borel measure is a Radon measure if the following hold:

- U(K) < +oo for every compact K < X;

- u(A) =inf[u(U): U c Xisopen, A c U] forall A € B(X);

- U(A) =sup[u(K): K < Xis compact, K ¢ A] for all A € B(X).
For a signed Borel measure u we say that y is regular (resp. compact regular, Radon) if
|u| is such a measure or equivalently if u; and u_ have the corresponding properties.

Remark 2.5.9. Evidently two regular Borel measures are equal if and only if they
coincide on the open or closed subsets. Similarly two compact regular measures are
equal if and only if they coincide on the compact sets.

Proposition 2.5.10. For finite Borel measures u, outer and inner regularity are equivalent
properties.

Proof. Suppose that for all A € B(X)
u(A) = inf[u(U): U < Xisopen, A c U] . (2.5.5)
Taking Proposition 2.1.24(b) and (2.5.5) into account yields

UX) — u(A) = u(A) = inf[u(U): U c X is open, A c U]
= u(X) —sup[u(C): C < Xisclosed, C c A].
Therefore, u(A) = sup[u(C): C ¢ Xisclosed, C ¢ A]. Hence, outer regularity implies
inner regularity.

In a similar way we show that the opposite implication holds as well. So, the two
notions are equivalent. g

Theorem 2.5.11. If u: B(X) — [0, +00) is a finite, compact regular Borel measure, then
U is a Radon measure.

Proof. Since every compact subset of X is closed, for every A € B(X) we derive

U(A) = sup[u(K): K < X is compact, K < A]
<sup[u(C): C < Xisclosed, C < A] < u(A).
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Hence,
U(A) = sup[u(C): C < Xisclosed, C c A] . (2.5.6)
From (2.5.6) and Proposition 2.5.10, we conclude that u is a Radon measure. O

Theorem 2.5.12. If X is metrizable and p: B(X) — [0, +00) is a finite Borel measure,
then p is regular.

Proof. Let M = {A € B(X): A is both outer and inner regular}; see Definition 2.5.8(a).
We are going to show that M is a g-algebra containing all the open sets. Therefore
M = BX).

Fact1: A € M implies A€ € M

This is immediate from the definition of M. Recall that y is finite and that u(X) -
U(A) = u(A°); see Proposition 2.1.24(b).

Fact2: {A;}p>1 € Mimplies A = J,51 An €M

For every n € N there exist an open U, € X and a closed C,, € X such that

€
ChncA,cU, and u(Uy) < u(Cp)+ > - (2.5.7)

Let U = | J,51 Un. Then U < X isopenand A < U. We know that U\ A <€ [J51(Un \ An).
Then, due to (2.5.7), this gives

0 < u(U) - u(A) = p(U\A) < ) u(Un \ An)

n>1
= Y (U -pAn)) < Y = =¢.
n>1 n>1 2

Hence,
U(A) = inf[u(U): U c Xisopen, A c U] (outer regularity of A) .
Let C = | J,>1 Cn. Arguing as above, we show that
U(A) <u(C) +¢. (2.5.8)

For every m € N, let C,y = |, Cy. Evidently C,, is closed and C,, .~ C. Invoking
Proposition 2.1.24(e), there exists m € N such that u(C) < u(Cy,) + € which gives, thanks
to (2.5.8), that u(A) < u(Cn) + 2¢. This finally yields

U(A) = sup[u(C): C c Xisclosed, C < A] (inner regularity of A) .

Hence, A € M.
Fact 3: M contains all open sets
Let U < X be open. Proposition 1.5.8 says that U is a F,-set. So, we can find closed
subsets {Cp}n>1 of X such that C, ~ X. Then u(C,) / u(X); see Proposition 2.1.24(e).
Hence
u(U) = sup[u(C): C ¢ Xisclosed, C c U],

which gives U € M since U is open.
Combining Facts 1-3 imply that M = B(X). O
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Proposition 2.5.13. If X is metrizable and pu: B(X) — [0, +00) is a finite Borel measure,
then u is compact regular if and only if for every € > O there exists a compact K. < X such
that u(X) - € < u(Ke).

Proof. =: This is immediate from Definition 2.5.8(c).
&=: From Theorem 2.5.12 we know that y is regular. So, it suffices to show that for
every closed C ¢ X, we have

u(C) = sup[u(K): K < X is compact, K < C] . (2.5.9)

Arguing by contradiction suppose that there exists a closed C < X such that (2.5.9) is
not true. So we can find € > 0 such that

sup[u(K): K < X is compact, K < C] < u(C) - ; . (2.5.10)
For K ¢ X compact we have that K n C ¢ C is compact and, because of (2.5.10),
MO = WK 0 C) + (K 01 CF) < H(C) = 5 + W(CE) = p(X) - = .
Since K ¢ X is arbitrary, we get a contradiction to our hypothesis. O
On Polish spaces all finite Borel measures are Radon measures.

Theorem 2.5.14. If X is a Polish space and p: B(X) — [0, +00) is a finite Borel measure,
then p is a Radon measure.

Proof. On account of Theorem 2.5.11 we only need to show that u is compact regular.
Suppose that D = {x;}i>1 € X is dense. We consider the closed balls B,(xy) = {x €
X: d(x, xx) < 1/n} with n, k € N. Obviously X = [ J;s1 B (xx) for every n € N. Given
€ > 0, for every n € N, we can find m, € N such that

u <X\ U En(xk)> < zin . 2.5.11)

k=1

Let K = (51 U,r("z"l Bn(xx). The set K is closed and totally bounded, hence K is compact;
see Theorem 1.5.36. Taking (2.5.11) into account it follows

(X) ~ u(K) = p(X\K) = [ U (X\ U Exm)l

n>1 k=1
My, e
sZy(X\UB,,(x;J)s o5 =€
n>1 k=1 n>1

Hence, u is compact regular (see Proposition 2.5.13), and so, y is a Radon measure. [
In the next proposition we produce another useful dense subset of L? (X) for 1 < p < co.

Proposition 2.5.15. If X is locally compact and p: B(X) — [0, +00] is a Radon measure,
then C.(X) is dense in LP(X) for 1 < p < oo where C.(X) is the space of all continuous
functions f: X — R that have a compact support.
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Proof. From Proposition 2.3.22, we know that simple functions are dense in L? (X). So,
it suffices to show that for every A € B(X) with u(4) < +oco we can approximate 4
in the L?-norm by C.(X)-functions. Given € > O there exist an open set U ¢ X and a
compact set K ¢ X such that

KcAcU and u(U\K)<é€P. (2.5.12)

Since X is locally compact, combining Urysohn’s Lemma (see Theorem 1.2.17) and
Proposition 1.4.66(c), we can find f € C.(X) such that yx < f < xy. Then, using (2.5.12),
Ixa = flp < u(U\ K)1P < &, which demonstrates that C.(X) is dense in L?(X) for
1<p<oo. ([

Remark 2.5.16. Since L°°(X) contains noncontinuous functions, the density result
above fails for p = +co.

The next theorem is another remarkable result in the spirit of Egorov’s Theorem; see
Theorem 2.2.32. It asserts that a Borel measurable map between certain metric spaces is
“almost” continuous. The result is known as “Lusin’s Theorem.”

Theorem 2.5.17 (Lusin’s Theorem). If X is a Polish space, Y is a separable metric space,
f: X — Y is Borel measurable, and u: B(X) — [0, +00) is a finite Borel measure, then
given any € > 0, there exists K. ¢ X being compact such that u(X \ K¢) < e and f | K. is
continuous.

Proof. We know that Y is second countable; see Proposition 1.5.5. So, let {V,,},>1 be a
countable basis for the metric topology of Y. We have f~1(V,) € B(X) forall n € N and
so using Theorem 2.5.12 there exists an open set U,, € X such that

(v, cU, and u (Un \f‘l(Vn)) < % forallne N. (2.5.13)

The set f~1(V,) is relatively open in (X \ U,) U f~1(Vy). Note that f~2(V,,) = [(X \ Uy) U
(V)] N Uy, see (2.5.13). Let

Ae =X\ [ (Un\fH (V) = (Y((X\ Un) UF (V)

n>1 n>1

Thanks to (2.5.13), one gets

HX\ Ag) < (2.5.14)

N| ™M

Using Theorem 2.5.14 there exists K, < A, being compact such that u(A. \ K;) < €/2,
which gives u(X \ K;) < €; see (2.5.14).

For every n € N, f~1(V,,) is relatively open in K,. Since {V,,}>1 is a basis for the
metric topology of Y, it follows that for all open V ¢ Y, f~1(V) is relatively open in K.
Hence f| k, 1s continuous. O

In addition there is also a second version of Lusin’s Theorem.
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Theorem 2.5.18 (Lusin’s Theorem, Second Version). If X is locally compact, u is a
Radon measure and f : X — R is a Borel measurable function that vanishes outside a set
of finite u-measure, then for given € > 0, there exist A € B(X) and h € C.(X) such that
uld)<e andf|X\A = h|X\A. Moreover if f is bounded, then it holds that |h|leo < lIfllco-

Proof. First assume that f is bounded. Let A = {x € X: f(x) # 0} € B(X). By hypothesis,
U(A) < +00. So, we can use Proposition 2.5.15 and find {h,}n>1 € Cc(X) suchthat h, — f
in L1(X). So, by passing to a suitable subsequence, if necessary we may assume that
hn(x) — f(x) for y-a.a. x € X; see Corollary 2.3.20. Invoking Egorov’s Theorem (see
Theorem 2.2.32), there exists B ¢ A such that

WA\ B) < g and h, % fonB. (2.5.15)

Exploiting the fact that p is a Radon measure, we find a compact set K € B and an open
set U 2 B such that

U(B\K) < and u(U\A)<-. (2.5.16)

W M
W m

Since hy, 5 f on K, it follows that f | k is continuous. Invoking the locally compact
version of the Tietze Extension Theorem (see Theorem 1.4.88), there exists h € Cc(X)
such that fl|K = f|, and supph c U. Hence, D = {x € X: h(x) # f(x)} c U\ K, which
demonstrates, due to (2.5.15) and (2.5.16), that u(D) < u(U\ K) < ¢.

Now let £: R — R be defined by

t if 1t < Iflleo »
§(0) =
{Ilﬂloo sgnt if [t] > |flco -

Evidently £(0) = 0, and so £ is continuous. So, if we define h = & o f, then h € C.(X),
h = f on the set {h = f} and [|A]lco < Ifllco-

Finally we consider the general case in which f is unbounded. In this case we
define A, = {x € X: 0 < |[f(x)| < n} € B(X). Then A, / A and for large enoughn > 1,
we have that u(A \ A,) < €/2. Then from the first part of the proof there exists h € C(X)
such that h = fy,, outside a set D € B(X) with u(D) < £/2. Then finally we have h = f
outside a set Dy € B(X) with u(Dy) < €. O

There is a parametric variant of Lusin’s Theorem concerning Carathéodory functions;
see Definition 2.2.30. The result is known as “Scorza—Dragoni Theorem.”

Theorem 2.5.19 (Scorza—Dragoni Theorem). If T and X are Polish spaces, Y is a sepa-
rable metric space, u: B(T) — [0, +00) is a finite compact regular Borel measure, and
f: T x X — Y is a Carathéodory function, then for every € > O there exists a compact set
K. < T with u(T \ K;) < € such thatf|K£Xx is continuous.

Proof. From Theorem 1.5.21 we know that Y is homeomorphic to a subset of the Hilbert
cube H = [0, 1]N. Let h = (hp)nen: Y — H be this homeomorphism. Then f is a
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Carathéodory function if and only if for everyn € N, h, o f: Tx X — [0,1] is a
Carathéodory function. Therefore without any loss of generality we may assume that
Y =[0,1].

Let {U,}n>1 be a basis for the topology of X and let {x,,};n>1 € X be dense. For every
g €[0,1]nQleté,,;: X — [0, 1] be defined by &,4(x) = gxv,(x). Since U, is open,
Xu, is lower semicontinuous (see Definition 1.7.1), and if ¢ : X — Y = [0, 1] is lower
semicontinuous, then @(x) = sup[&nq(x): &g < @] with x € X. So, we define

Apgm ={teT: ‘fnq(xm) < f(t, xm)} € B(T) .

Let Ang = (nen Angm € B(T). The density of {x;}m>1 in X, the continuity of f(t, -), and
the lower semicontinuity of &, imply that

Apg ={t e T: &ng(x) < f(t, x) forall x € X} .

We set 1nq(t, X) = xa,,(6)éng(x). Then nn, < f and for all (¢,x) € T x X we have
f(t, x) = sup,, 4 Nng(t, x). Note that N x ([0, 1] n Q) is countable. So we can write that

f =supyxp, hx with By € B(T), hy is lower semicontinuous on X .
keN
Since by hypothesis u is a finite, compact regular measure on T, there exist an open set
Vi € T and a compact set Kx ¢ T such that

Ke<Brc Vi and u(Vi\Ko < % forallk e N. (2.5.17)

Let Ex = K U (X \ Vi) for all k € N. Then x3,| g, is continuous (see (2.5.17)), and this
implies that yp, hi is lower semicontinuous. Let E = [, Ex < T be compact. We
see that u(T\ E) < eg/2 and f | Exx 1S lower semicontinuous as the upper envelope of
lower semicontinuous functions; see Proposition 1.74(a). The same argument applied
to 1 - f produces another compact set E ¢ T with u(T \ E) < €/2 and (1 - f)|, x is
lower semicontinuous. We set T, = En E ¢ T, which is compact. Then we see that
U(T\T,) <¢ andf|T€Xx continuous. O

Next we introduce an extension of the notion of a Carathéodory function (see Defini-
tion 2.2.30), which is important in calculus of variation, optimal control, and optimiza-
tion.

Definition 2.5.20. Let (X, 2) be a measurable space, Y a Hausdorff topological space,
andf: X x Y - R = RU {+00}. We say that f is a normal integrand if the following
hold:

(@) fis X B(Y)-measurable;

(b) y — f(x,y) is lower semicontinuous for all x € X.

Proposition 2.5.21. If (X, X, u) is a complete measure space, Y is a Polish space, and
f: XxY = R = RU {+00} is a normal integrand such that there is a Carathéodory
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function &: X x Y — R satisfying é(x, y) < f(x,y) forall (x,y) € X x Y, then there is a
sequence of Carathéodory functions f,: X x Y — R such that é(x, y) < fa(x,y) < f(x,y)
forall(x,y) e XxYandf, ~fasn — co.

Proof. We reason as in the proof of Proposition 1.7.6. So, we define
fax,y) =inf[f(x,y) + nd(y,z): ze€ Y] forallne N
with d being the metricon Y. If {z;;}m>1 € Y is dense in Y, then

fan(x,y) = inf [f(x,y) + nd(y, zm)] forallne N.
melN

This shows that f, is X' (X) B(X)-measurable; see Proposition 2.2.31. Clearly we have
&(x,y) < falx,y)forall (x,y) € XxY, forall n € N and as in the proof of Proposition 1.7.6,
we show that f, / f. O

Using this proposition we can have the following extension of the Scorza—Dragoni
Theorem; see Theorem 2.5.19.

Theorem 2.5.22. If T and Y are Polish spaces, u is a finite, compact regular Borel measure
onTandf: TxX — R = R U {+oo} is a normal integrand bounded below by a
Carathéodory function &, then for given € > O there is a compact set T < T such that
U(T\Te) <eandf |T£X « is lower semicontinuous.

Proof. Using Proposition 2.5.21, there exist Carathéodory functions f, such that ¢ < f;, <
fforalln € Nand f, ~ f. We apply the Scorza—Dragoni Theorem (see Theorem 2.5.19),
and for each n € N there is a compact set T, ¢ T with u(T\ T,) < €/(2") andf,,|Tnxx is
continuous. Let T¢ = ()51 Tn < T being compact. Then, of course, u(T \ T;) < € and
f|7,xx is lower semicontinuous. O

Definition 2.5.23. Let (X, 2, u) be a measure space, (Y, £) a measurable space, and
f: X — Ya(Z, £)-measurable map. Then y induces an image measure o f~! on Y
by (uof1)(A) = u(f~1(4)) forall A € L.

Since f~1 preserves all the set theoretic operations, we see that indeed yoflisa
measure on (Y, £).

Proposition 2.5.24. If(X, X, u) is a measure space, (Y, L) is a measurable space, f: X —
Yisa (X, £L)-measurable map, and h: Y — R is a L-measurable function, then

jhd (nof™)= j(h o f)du
Y X
whenever either side exists.

Proof. If h = x4 with A € L, then the result follows from Definition 2.5.23. So, the result
is also true for simple functions that are linear combinations of characteristic functions.
Finally we use Proposition 2.2.18 to pass to the general case. O
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Image measures via continuous maps preserve the property of being a Radon measure

Proposition 2.5.25. If X, Y are Hausdor(f topological spaces, X is compact, f: X — Y is
continuous, and i : B(X) — [0, +oo] is a Radon measure, then po f~1: B(Y) — [0, +c0]
is a Radon measure as well.

Proof. According to Theorem 2.5.11, it suffices to show that u o f~! is compact regular.
Since y is a Radon measure, for every A € B(Y) one gets

(uof)(A) = sup[u(K): K < X is compact, K < f1(A)] ; (2.5.18)

see Definition 2.5.23. For a compact K ¢ f~1(A) it follows f(K) ¢ Aandso K < f~1(f(K)) ¢
f~1(A). Hence

uK) < u(fFHFEK)) < (uef1) (A). (2.5.19)

The continuity of f implies that K = f(K) < Y is compact. Then from (2.5.18) and (2.5.19)
it follows that

(uof™)(A) =sup[(uof")(K): KcYiscompact, K cA],

which shows that u o f~1 is compact regular, hence a Radon measure. O

2.6 Analytic (Souslin) Sets

In Definition 1.5.51 we introduced the notion of a Souslin space. Souslin spaces are of
fundamental importance in measure theory since they give to the theory of Borel sets
and Borel functions depth and power.

Let us start by recalling the definition of Souslin space.

Definition 2.6.1. A Hausdorff topological space X is said to be a Souslin space if it
is the continuous image of a Polish space, that is, there exists a Polish space Y and
a continuous surjection f: Y — X. A subset of a Hausdorff topological space that is
a Souslin space is called a Souslin set. A Souslin subset of a Polish space is called
analytic set as well. The complement of a Souslin set is called co-Souslin set (or
coanalytic set).

Remark 2.6.2. We have that a Souslin space is always separable but need not to be
metrizable; see Remark 1.5.52. Moreover, using Remark 1.5.50, we see that a nonempty
subset of a Hausdorff space is a Souslin set if it is the image of the Polish space N*®
under a continuous map.

Given a set B, by B/ we denote the set of all finite sequences with terms in the set B.
That is, B = Uns1 B{l with B’:, being the set of n-sequences.

Of special interest to us is the set IN/. Note that IN/ is countable in contrast to N,
which is uncountable. Using N/ we introduce the following definition.
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Definition 2.6.3. Let X be a nonempty set and £ < 2%, An £-Souslin scheme is a map
A: N — L. Let D be the family of all £-Souslin schemes. The Souslin operation (or
A-operation) over the class £ isamap a: D — £ such that

a(A) = U ﬂ A(p1,...,pr) forallAeD. (2.6.1)
PEN® kelN

The collection of all sets of this form is denoted by S(£). The elements of S(£) are
called £-Souslin (or £-analytic) sets. A Souslin scheme A is said to be regular (or
monotone) if A(p1, ..., prs1) CAP1, ..., px) Withp € N,

Remark 2.6.4. If ¢ € £ (orif £ contains disjoint sets), then @ € S(£). Note that in (2.6.1)
the union is uncountable. So, if £ is a o-algebra and A is an £-Souslin scheme, then
a(A) may be outside of £. In what follows we will use the following notation. Given
S =(SK)p.q € N/ and p € N, we write s < p ifand only if s; = p1, ..., Sn = Pn.

In the next proposition we collect some basic properties of the operator S.

Proposition 2.6.5. If X is a nonempty set and £, L' ¢ 2%, then the following hold:
(@) S(L)cSLNif L c L', thatis, S is monotone;

(b) S(L)s = S(L), that is, S is closed under countable intersections;

(c) S(L)y = S(L), thatis, S is closed under countable unions;

(d) £ cS(L).

Proof. (a) This is an immediate consequence of Definition 2.6.3.

(b) Clearly we have S(£) < S(£)s. Suppose that (-1 a(4k) € S(£)s. We need to
produce an £-Souslin scheme A: N/ — £ such that a(4) = (Ni=1 9(Ax). To this end
for every k € N, let Ty = {(2m — 1)2X"1: m € N}. Then {Tx}i>1 is a partition of N into
infinitely many infinite sets. For each k € IN, let & : IN® — IN® be defined by

&k((Pn)) = (Pok-1, P3.2k1, Psgk1, .0 0)

that is, & picks from the sequence (p,)nen those elements with index in T. We will
produce an £-Souslin scheme A such that

ﬂ A(s) = ﬂ ﬂ Ax(s) forallp e N®, (2.6.2)

s<p k>1 s<&i(p)

We rewrite (2.6.1) as

(A®1, ... p0) =) [ AkPar1, D3ty s Pamo1)21) (2.6.3)

n>1 k>1m=>1

forallp € N®.If (p1,...,pn) € N, thenn = 2m - 1)2k1 for exactly one pair
(m, k) € N x N. Let

A(pl’pZ: oo ,pn) = Ak(pzk—l,p3.2k—1, e ,p(Zm_l).zk—l) . (264)
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Then (2.6.4) defines an £-Souslin scheme, which satisfies (2.6.3) and consequently
(2.6.2) as well.
Let x € a(4) = Upene ﬂs<p A(s); see (2.6.1). So, for some pg € N® we have

xe (VA =) [) As);

S$<po k>1 s<&x(po)

see (2.6.2). Hence

xe [ As)< [J [A(s)=a4) forallkeN,
s<&k(po) PEN® s<p

which implies that x € ()5, a(Ax). Hence

a(4) < () a(Ax) . (2.6.5)
k>1
Next suppose that x € [,; a(Ax). Then, from (2.6.1), one gets x € ,ene [s<p
Ag(s) for all k € N, which implies x € ﬂs<pk Ag(s) for some pjy € IN® and for all k € IN.
Let p € N® such that &x(p) = pi forall k € N. Then x € (4 ﬂs<5k(ﬁ) Ax(s), which
implies, due to (2.6.2),

xe (A < | [Al)=ad).

s<p PEN® s<p

Hence,

[ a(4x) € a(4) . (2.6.6)
k=1
From (2.6.5) and (2.6.6) we conclude that a(A) = [ a(4x).
(c) Clearly we have S(£) < S(L). Consider | J;.; a(Ak) € S(£)s. We need to generate
an £-Souslin scheme A such that a(A4) = [ J;s1 a(Ax).
Ifs = (sk)Z:1 e N/, then p; = (2m - 1)2%1 for exactly one pair (m, k) € N x IN.
We define

A(S1,...,87) =A((2m - 1)2"_1, S2,...,8n) =Ar(m,s2,...,Sn).
This is an £-Souslin scheme for which we have

ﬂ A ((Zm —1)2kt sy, sn) = ﬂ A(m, s, ..., Sn) (2.6.7)
n>1 n>1
for all k € N and for all (m, s, S7,...) € N®.Let x € a(4) = UpelNoo ﬂs<pA(s);
see (2.6.1). Then x € (1,51 A(P1,...,pn) for some p € IN® which gives, choosing
(m,k) € N x N such that p; = 2m - 1)2K, x € 51 Ak(M, P2, .. ., Pn) € a(Ag).
Hence

a(4) < [ J a(4n). (2.6.8)
k>1
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Nextlet x € U1 a(Ak) = Ukz1 Upene (Ns<p Ak(S). Then for some k € N and some

(m,s,S3,...) € N®, one gets x € [),5; Ax(m, s, ..., sp). Then, because of (2.6.7), it
follows that
X € ﬂ A(@2m- 12kt s, .. .+ Sn) S a(A).
n>1
This finally gives
| a(4i) c a4). (2.6.9)
k>1

From (2.6.8) and (2.6.9) we conclude that a(A) = | J;>1 a(Ax).
(d) For B € £ we set A(s) = Bforall s € N/. Then a(A) = B. O

In fact S is an idempotent operator. For a proof of this result we refer to Klein-Thompson
[178, Theorem 12.2.3, p. 143].

Proposition 2.6.6. If X is a nonempty set and £ < 2%, then S(S(£L)) = S(L).

Concerning complementation, it is not true in general that S(£) is closed under comple-
mentation. Hence, we cannot say in general that S(£) is a g-algebra. In order for S(£)
to contain o(£), we need additional hypotheses.

Proposition 2.6.7. If X is a nonempty set, L < 2% and for every B € £ we have that
X\ B e S(L), then a(L) € S(L).

Proof. We know that the smallest algebra containing £ is produced by taking finite
intersections of finite unions of elements of £ and of complements of elements of £.
Then Propositions 2.6.5 and 2.6.6 and the hypothesis imply that S(S(S(£))) = S(£). But
S(L) is a monotone class; see Proposition 2.6.5. So, using Theorem 2.1.12, we conclude
that o(£) < S(L). O

In Definition 2.6.1 we mentioned that a Souslin space that is a subset of a Polish space
is called analytic. Next we give an alternative definition of analytic sets in terms of the
Souslin operation and subsequently we show that the two notions of analyticity are in
fact equivalent.

Definition 2.6.8. Let X be a Polish space and let Fx denote the family of closed subsets
of X. The analytic sets of X are the elements of S(Fy).

Therefore we have two definitions of analytic sets; see Definition 2.6.1 and Defini-
tion 2.6.8. Next we show that they are equivalent and we also provide some other useful
characterizations of analytic sets.

Proposition 2.6.9. If X is a Polish space and E < X is nonempty, then the following
statements are equivalent:

(a) there exists a continuous function f : N® — X such that E = f(N®°);

(b) there exists a closed set C < N* x X such that E = projy C;
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(c) Eis a Souslin space; see Definition 1.5.51;
(d) Eisan analytic set and more precisely there is a regular Souslin scheme A consisting
of closed subsets of X with a vanishing diameter such that a(A) = E.

Proof. (a) = (b): Since f: N® — X is continuous, Grf = C € N x X is closed and
projy C = E.

(b) = (c): We know that IN® x X is Polish; see Remark 1.5.50 and Proposition 1.5.46.
The set C € N x X being closed is itself Polish; see Proposition 1.5.45. The projection
map projy: C — E is a continuous open surjection. Therefore, by Definition 1.5.51, we
conclude that E is a Souslin space.

(c) = (a): According to Definition 1.5.51, there is a Polish space Y and a continuous
surjection h: Y — E. Moreover, from Remark 1.5.50 we know that there is a continuous
surjection g: N®° — Y. Letf = ho g: N®° — E. Then f is a continuous surjection.

(a) = (d): By hypothesis there is a continuous surjection f: N® — E. Consider
the Souslin scheme defined by

AP1,...,0n) = fUp,,...p,) = fP1} X ... x{Pn} x NXNx...).

Clearly this Souslin scheme is regular (see Definition 2.6.3), and consists of closed
sets. Moreover, the scheme {Us: s € N/} has a vanishing diameter for the tree
metric t; see Remark 1.5.50. Note that if B ¢ X is an Fs-set and € > 0, then we
can write B = |J,»; By, with {B}} pairwise disjoint F,-sets each having diame-
ter less than € > 0. Using this fact and an induction argument, we show that
E=qa(A).

(d) = (a): By hypothesis we have E = Upeneo Mi=1 A1, .- ., Pr)- Since X is com-
plete, in order for (-1 A(p1, . . ., i) to be empty is that for some k € N, A(p1, ..., pr)
= 0. We define

£={peN®: A(p1,...,px) #+ 0forall k e N}.

Using the definition of the tree metric (see Remark 1.5.50), we can easily see that
£ ¢ N is closed. Hence Example 1.7.13(c) implies that £ is a retract of N®°. We

have
E={J[)A®1--..p0).
pel k=1

For each p € £ let g(p) be the unique element of ();.; A(p1, ..., pr). Recall that
a Souslin scheme has a vanishing diameter, and apply Theorem 1.5.15. The map
g: £ — E is bijective and continuous. Let r: N®° — £ be a retraction map. Then
f =gor: N® — Eisacontinuous surjection. O

From Proposition 2.6.5, we have the following.

Proposition 2.6.10. If X is a Polish space, then countable intersections and countable
unions of analytic sets are analytic.
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Next we are going to show that the analytic sets contain the Borel sets.
Proposition 2.6.11. If X is a Polish space and B € B(X), then B is analytic.

Proof. From Proposition 1.5.8, we know that every open set of X is F;. Hence, every open
set is analytic; see Definition 2.6.8. Then Proposition 2.6.7 implies that B(X) ¢ S(Fx).
Using Propositions 2.6.5 and 2.6.6 it follows that

S(Fx) € S(B(X)) < S(5(Fx)) = S(Fx) . O

Remark 2.6.12. From the proof above we see that S(Fx) = S(B(X)). If X is countable,
then B(X) = S(Fy), that is, Borel and analytic sets coincide. If X is uncountable, then
the class of analytic sets S(Fx) is strictly larger than the Borel o-algebra B(X). In fact
we can have an analytic set whose complement is not analytic.

We want to have a closer look at the relation between Borel and analytic sets. We start
with a definition.

Definition 2.6.13. Let X be a Polish space and let A, A, € X be nonempty. We say that
A1 and A, can be separated by Borel sets if there are disjoint Borel sets B;, B, € X
such that A; < By and 4, < B».

Lemma 2.6.14. Let X be a Polish space.

(@) If{An}n>1 and C are nonempty subsets of X such that for every n € N the sets A, and
C can be separated by Borel sets, then | J,.», An and C can be separated by Borel sets.

(b) If{An}ns1 and {Cyp}n>1 are nonempty subsets of X such that for each (n, m) € N x N
the sets A and Cy, can be separated by Borel sets, then the sets | ;51 An and | J,s1 Cn
can be separated by Borel sets.

Proof. (a) By hypothesis, for each n € N there exist disjoint Borel sets B, and Dy
such that A, < B, and C < Dy,. Then | J,,; Br and ()51 Dy, are disjoint Borel sets and
Unzl Ap C Unzl Byand C ¢ ﬂnzl D,.

(b) From part (a) above for each n € N, the sets A, and | J,,,; C» can be separated
by Borel sets. A second application of part (a) implies that | J,5; An and [ J,,»1 Cm can
be separated by Borel sets. O

Now we show that disjoint analytical sets can be separated by Borel sets. The result is
known as the “Separation Theorem” and has important consequences, some of which
we explore here.

Theorem 2.6.15 (Separation Theorem). If X is a Polish space and A1,A, < X are
nonempty disjoint analytical sets, then A, and A, can separated by Borel sets.

Proof. Invoking Proposition 2.6.9, there exist continuous surjections
fi:N® -A; and f,: N® - A,.

Foranys e Nf, weset Us = {s1} x...x {si} x Nx N x ... and then define A} = f1(Us)
as well as A3 = f,(Us).
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Arguing indirectly, suppose that A; and A, cannot be separated by Borel sets.
Since it holds that A1 = |J,»; A} and 4, = | J,,»; A%, using Lemma 2.6.14, there exist
ni, mp € N such that the sets A'l11 and AZ“ cannot be separated by Borel sets. Note that

AT = (AT and AT" =AD"
n>1 n>1
Hence, a new application of Lemma 2.6.14 gives ny, m, € N such that A7""" and A5
cannot be separated by Borel sets. Continuing this way, we produce p(1) = (nx) and
p(2) = (my) € N* such that

AT and AT keN

cannot be separated by Borel sets. Let x = f1(p(1)) € A; and u = f>(p(2)) € A,. We
have x # u since the sets A1 and A, are disjoint. Let U; € N(x) and U, € N(u) such that
U, n U, = 0. The continuity of f; and f, implies that for k € IN large enough we have

AZ“ ’’’’ " zfl(Unl ..... n) € Up and Azml """ e =f2(Um1 ..... m) € Uz .
Therefore the open sets U; and U,, which are Borel as well, separate A'l'1 """ " and
AT g contradiction. O

Corollary 2.6.16. If X is a Polish space and {A,}n>1 are pairwise disjoint analytic sets,
then there exists a sequence {By}n>1 of pairwise disjoint Borel sets such that A,, < By, for
everyn € IN.

Corollary 2.6.17. If X is a Polish space and A < X is both analytic and coanalytic, that
is, X \ A is analytic as well, then A € B(X).

Proof. Using Theorem 2.6.15 there are disjoint Borel sets B, B, such that A ¢ B; and
X\ A ¢ B,.Evidently A = B; and X \ A = B,. Therefore A € B(X). O

Remark 2.6.18. Clearly the converse of the corollary above is true as well. Namely,
every Borel set in X is both analytic and coanalytic.

Applying Corollary 2.6.17 we obtain the following characterizations of Borel measurable
maps between Polish spaces.

Proposition 2.6.19. If X, Y are Polish spaces and f: X — Y, then the following state-
ments are equivalent:

(a) fis Borel measurable;

(b) Grf e BXxY)=B(X)QB(Y);

(c) Grf < X x Y isanalytic.

Proof. () = (b): Let ¢: X x Y — Y x Y be defined by ¢(x,y) = (f(x), y). Since
by hypothesis f is Borel measurable, for every B, C € B(X) we have ¢ (B x C) €
B(X) R B(Y) = B(X x Y); see Proposition 2.2.26(b). Therefore ¢ is Borel measurable.
LetD ={(y,z) e YxY:y=2z}.ThenD c YxYisclosedand Grf = ¢~1(D) € B(XxY) =
B(X) @ B(Y).
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(b) = (c): This implication is a consequence of Proposition 2.6.11.
(c) = (a): Let B € B(Y). Then X x B € B(X x Y) and so it is analytic. It follows that
Grf n (X x B) € X x Y is analytic. Note that

f1(B) = projx(Grf n (X x B)) (2.6.10)

with projy: X x Y — X being the projection map defined by projy(x, y) = x for all
(x,y) € X x Y. We know that projy is continuous. Since Gr f n (X x B) is analytic, we
find a continuous surjection h: N*° — Grf n (X x B); see Proposition 2.6.9. Then
projy oh: N® — f~1(B) (see (2.6.10)) is a continuous surjection. Hence f~1(B) ¢ X
is analytic; see Proposition 2.6.9. In a similar way we show that f~1(Y \ B) ¢ X
is analytic. But f~1(Y \ B) = X \ f~1(B). Therefore f~1(B) < X is coanalytic. In-
voking Corollary 2.6.17, we conclude that f~1(B) ¢ B(X) and so f is Borel measur-
able. O

Definition 2.6.20. Let (X, 2) and (Y, £) be two measurable spaces. A bijection f: X —
Y is said to be an isomorphism if f is (X, £)-measurable and f~! is (£, X)-measurable.
Then the measurable spaces (X, 2) and (Y, £) are said to be isomorphic. If X, Y are
Hausdorff topological spaces and X' = B(X), £L = B(Y), then we use the term Borel
isomorphism.

Proposition 2.6.21. If X, Y are Polish spaces and f: X — Y is a Borel isomorphism, then
E < Xis analytic if and only if f(E) < Y is analytic.

Proof. =: Since E ¢ X is analytic, we have E = a(A) with A being a Fx-Souslin
scheme. Then f(E) = S(f - A) with f o A being the B(Y)-Souslin scheme defined by
(f - A)(x) = f(A(x)). Hence, f(E) is analytic; see Remark 2.6.12.

&=: This is proven in a similar way. O

Corollary 2.6.22. If X, Y are Polish spaces, f: X — Y is Borel measurable, E € B(X)
andf|E is one-to-one, then f(E) € B(Y).

Now we examine the measurability of analytic sets. Although analytic sets need not
be Borel, it turns out that they will always be measurable for the completion of any
probability measure defined on the Borel sets.

Definition 2.6.23. Let X be a Polish space and let M7 (X) be the set of probability
measures on X. Given u € M7 (X) let B(X), be the completion of the Borel o-algebra
B(X). Recall that B(X), can be described as the family of all sets of the form B U N with
B € B(X) and N is a subset of a y-null set. The universal o-algebra %y is defined by

Sx= ) BXu.
HeM; (X)

The elements of 5 are said to be universally measurable sets.

Next we will see that analytic sets are universally measurable.
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Theorem 2.6.24. If X is a Polish space and E < X is analytic, then E € 5x, that is, E is
universally measurable.

Proof. According to Proposition 2.6.9 there exists f: IN® — X being a continuous map
such that f(IN®°) = E. Let y € M (X) and for any k, m € N let

N(k,m) = {p = (px) € N*: py <m} .

We see that f(N(k, m)) ~ f(N®°) = Eas m — +00. So, for a given £ > O there exists
mi € N such that u*(f(N(1, m1))) > u*(E) — €/2 with u* being the outer measure
corresponding to u; see Proposition 2.1.34.

Similarly, for all k € IN, we can find my € IN such that

k
u((CO) = 1 ((C) = W (B) = Y, = = " (B) — ¢

i=1
with Cx = X, N(i, m;). Letting k — co we see that Cx \ C = ;»; N(i, m;). Note that
each Cy is closed and C is compact. Let U 2 C be open. Then U is a union of basic
open sets and the compactness of C implies that this union is finite. Each basic open
set depends on only finitely many coordinates. Let j € IN be the largest index of any
coordinate in the definition of the sets of this finite subcover. We have C; ¢ U and
according to Problem 1.51 it holds that u(f(C)) > u*(E) — €. The set f(X) < X is compact.
Taking € = 1/n with n € IN we have a countable union of compact sets that is a Borel set
B ¢ E with u(B) = u* (E). Therefore u*(E\ B) = 0 and E € B(X),; see Proposition 2.1.41.
We conclude that E € 3. O

The following characterization of the universal o-algebra 2y is immediate from Defini-
tion 2.6.23 and the proof of Theorem 2.6.24.

Proposition 2.6.25. If X is a Polish space and E < X, then E € Xx if and only if for any
U € M7 (X) there exists B € B(X) such that u(E A B) = 0.

There is a third o-algebra that we can define for a Polish space X.

Definition 2.6.26. Let X be a Polish space. The analytic o-algebra ay is the smallest
o-algebra containing the analytic subsets of X, that is, ax = 0(S(Fx)).
If E € ax, then we say that E is analytically measurable. Therefore on any Polish
space X we can define three important o-algebras:
—  B(X) = the Borel g-algebra.
— ax =the analytic o-algebra.
— 3y =the universal o-algebra.
These o-algebras are related as follows

B(X) < S(Fx) cax cix. (2.6.11)

If X is countable, then all classes in (2.6.11) are equal to 2%. If X is uncountable,
then all inclusions in (2.6.11) are strict.
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Definition 2.6.27. Let X, Y be Polish spaces, C ¢ X be nonempty, and f: C —» Y. We
say that f is analytically (resp. universally) measurable if C € ax (resp. C € £x) and
fY(E) € ax (resp. f~1(E) € £x) forall E € B(Y).

The composition of functions preserves universal measurability.

Proposition 2.6.28. If X, Y, Z are Polish spaces, C € Sx,E€ Sy,f: C > Y,g: E - Y,
and f(C) C E, then g o f: C — Z is universally measurable.

Proof. Let B € B(Z). The universal measurability of g implies that g~ *(B) € Ly.
Since (g - /)"1(B) = f~1(g~1(B)) we need to show that for every D € £y, f~1(D) € 5x.
Given u € M7 (X) we consider the image measure y o f~1 on Y; see Definition 2.5.23.
Let F € B(Y) be such that (u o f~1)(F A D) = 0. The universal measurability of f
implies that f~1(F) € Zx. Hence, by applying Proposition 2.6.25, there exists G € B(X)
such that u(G A f~1(F)) = 0. Therefore u(G A f~1(D)) = 0 and this implies, due to
Proposition 2.6.25, that f~1(D) € £x. O

From the proof above, we deduce the following corollary.

Corollary 2.6.29. If X, Y are Polish spaces, C € Sx, and f: C — Y is universally mea-
surable, then for every E € 5y we have fUE) € Sy

Remark 2.6.30. Composition of functions does not preserve analytic measurability.
The composition of two analytically measurable functions is universally measurable.

2.7 Selection and Projection Theorems

In this section we prove some results, which in addition to being interesting from
a purely theoretical viewpoint, are used in many applied fields such as calculus of
variations, optimization, optimal control, and mathematical economics.

The mathematical setting is the following: We are given a measurable space (Q, ),
a separable metric space (X, d), and a multifunction (so-called set-valued map) F: Q —
2%, The first basic question we want to study is whether we can find a single-valued,
2-measurable map f: Q — X such that f(w) € F(w) for all w € Q. Such a map is called
a measurable selection of F. Its existence is not straightforward. First we need to
introduce and discuss some notions of measurability for the multifunction F.

In what follows, (Q, ) is a measurable space and (X, d) is a separable metric space.
Additional hypotheses will be introduced as needed.

Definition 2.7.1. Let F: Q — 2% be a multifunction.
(a) We say that F is measurable if for every open U < X,

FU=weQ:Fw)nU+0}eX.
(b) We say that F is graph measurable if
GrF = {(w,x) € @x X: x € Fw)} € Z(X)B(X) .
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Remark 2.7.2. Note that in the definitions above we do not require that F be nonempty
valued. By domain of F we mean the setdom F = {w € Q: F(w) # 0}.If Fis measurable,
then clearly dom F € 2 and so for measurable multifunctions, there is no loss of
generality in assuming that dom F = X. If F is single-valued, then measurability
coincides with X-measurability. Evidently both notions make sense even if X is a general
Hausdorff topological space. However, the most interesting properties and results can
be established for X being a Polish space in the case of measurable multifunctions and
for X being a Souslin space in the case of graph measurable multifunctions. Therefore,
we see that the theory of measurable multifunctions requires separability of the ambient
space. Without it we cannot go far. For economy in the presentation we have fixed X to
be a separable metric space.

Proposition 2.7.3. IfF: Q — 2% and forall closed C < X, F-(C) = {w € Q: Fw)n C +
0} € X, then F is measurable.

Proof. From Proposition 1.5.8 we know that every open set U € X is F;. S0, U = 51 Cn
with closed C,, ¢ X for all n € IN. Then, by hypothesis,

F(U)=F (U cn> = JF(Ces.
n>1 n>1
Hence, F is measurable. O
Remark 2.7.4. The converse of the proposition above is not true in general.
The measurability of F can be characterized functionally.

Proposition 2.7.5. The multifunction F: Q — 2% is measurable if and only if for all
x € X, the R, -valued function w — d(x, F(w)) is Z-measurable.

Proof. =:Givenx € Xandn > 0, let Ly(x) = {w € Q: d(x, F(w)) < n}. Then we see
that L, (x) = F~(By(x)) with By(x) = {u € X: d(u, x) < n}. Hence, L;(x) € X and this
implies the X-measurability of w — d(x, F(w)).

«: Given x € X and 11 > O, by hypothesis, it holds that

F~(By(x)) = Ly(x) € X (2.71)
Let U < X be open. The separability of X implies that U = | J,,5, By, (x»). Then

F(U) = | J F (By,(xn) € £;

n>1
see (2.7.1). Thus, F is measurable. O
Let us introduce some notation:

Ps(X) ={A < X: A is nonempty and closed} , Pf(X) = P¢(X) U {0},
Py = {A c X: A is nonempty and compact} .
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Proposition 2.7.6. IfF: Q — Pf(X) is measurable, then F is graph measurable.

Proof. Since F is closed valued, we have that
GrF ={(w,x) € QxX: d(x, Flw)) = 0}. (2.7.2)

But using Proposition 2.7.5 we see that (w, x) — d(x, F(w)) is a Carathéodory function;
see Definition 2.2.30. Then Proposition 2.2.3 implies that it is jointly measurable and so
from (2.7.2) it follows that Gr F € ¥ X) B(X), that is, F is graph measurable. O

Recall that if U < X is open, then An U # 0 if and only if A n U # @. This straightforward
observation leads to the following useful result.

Proposition 2.7.7. The multifunction F: Q — 2% is measurable if and only if w —
F(w) = F(w) is measurable.

For Py (X)-valued multifunctions we obtain the converse of Proposition 2.7.3.

Proposition 2.7.8. If F: Q — P(X) is measurable, then for all closed C < X, it holds
that F-(C)={we Q: Flw)nC # 0} € 2.

Proof. In what follows for every E ¢ X, we set
F*'(E)={we Q: F(w) CE}. (2.7.3)

Let C ¢ X be nonempty and closed and let U, = {x € X: d(x, C) > 1/n} withn € N.
Then Uy, is open for each n € N and {Uy}n>1 is increasing. We set D,, = U, with n € N.
Then

X\C:UUn=UDn. (2.7.4)

n>1 n>1

Letw € F*(X\ C). Then F(w) c X\ C; see (2.7.3). Due to (2.7.4) and recalling that {Up}n>1
is increasing as well as F is Py(X)-valued, we see that there exists n € IN such that
F(w) € Uy < Dy. Then, due to (2.7.3), it follows F*(X \ C) = [J,s; F*(Dn). Since F is
measurable we derive

F(C) =X\ (F'(X\C) =X\ JF'(Dn)=[|F(X\Dy) €Z. g

n>1 n>1

Proposition 2.7.9. If F: Q — P¢(X) is measurable, then F~(K) € X for all compact
K c X.

Proof. On account of Theorem 1.5.21 we may assume that X is dense in a compact metric

space (Y, dy). Consider the multifunction G: Q — Py(Y) defined by G(w) = F (w)dy.
Proposition 2.7.7 guarantees the measurability of G. Now let K ¢ X compact. We have

F(K)={weQ: Fw)nK+0={weQ: GWnK+0 =G (K)eZ

by Proposition 2.7.8. O
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When we introduce extra structure on the space, we can say more. To be more precise,
we have the following result.

Proposition 2.7.10. If X is o-compact and F: Q — P¢(X), then the following statements
are equivalent:

(@) F(C) € 2 for every closed C < X.

(b) Fis measurable.

(c) F(K) € X for every compact K < X.

Proof. (a) = (b): This implication follows from Proposition 2.7.3.
(b) = (c): This implication follows from Proposition 2.7.9.
(c) = (a): By hypothesis, X = | ;51 K with compact K;. Then for closed C ¢ X it
holds that
F(O)=JCnky)ex

n>1

since C N K,, < X is compact for every n € IN. O

The next theorem summarizes the measurability properties of closed valued multifunc-
tions.

Theorem 2.7.11. Let (Q, X) be a measurable space, (X, d) a separable metric space, and
F: Q — Pi(X) a multifunction. Consider the following statements:

(@) F(C) € 2 for every closed C < X.

(b) Fis measurable.

(c) Foreveryx € X, w — d(x, F(w)) is X-measurable.

(d) Fisgraph measurable.

Then (a) = (b) = (c) = (d) and if X is o-compact, then (a) — (b) = (c) = (d).

Now we are ready for the first existence theorem for measurable selections. The result is
known as the “Kuratowski—Ryll Nardzewski Selection Theorem.”

Theorem 2.7.12 (Kuratowski-Ryll Nardzewski Selection Theorem). If (Q, ) is a mea-
surable space, X is a Polish space, and F : Q — Pg(X) is a measurable multifunction, then
F admits a measurable selection, that is, there exists a X-measurable function f: Q — X
such that f(w) € F(w) forall w € Q.

Proof. Let d be a bounded compatible metric on X. We may assume that the d-diameter
of X is strictly less than 1. Let {x,},>1 be dense in X. We produce inductively a sequence
of X-measurable maps f,: Q — X with n € N, which satisfy

1
d(fn(w), F(w)) < > foralln €e Ngandforallw € Q, (2.7.5)

d(fa(w), fao1(w)) < foralln e Nandforallw € Q. (2.7.6)

zn—l

Let us start with fy. We define fo: Q — X by fo(w) = x; for all w € Q. Since by
hypothesis diam X < 1, inequality (2.7.5) holds for n = 0. For the induction hypothesis,
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we assume that we have already produced fo, f1, . .., fn—1, Which satisfy (2.7.5) as well
as (2.7.6). For every k € IN, we define

A} = {w € 0z don, Fw)) < 2—1,1} = {we 0 d faaw) < %}
and E; = A} n Cy. First we show that Q = (J.; E}. So, let w € Q. The induction
hypothesis says that there exists u € F(w) such that d(f,_1(w), u) < 1/(2"1); see (2.7.5).
The density of {x,,},>1 in X implies that there is k € IN such that d(x, u) < 1/2" and
d(xi, u) + d(u, fn_1(w)) < 1/2™1, By the triangle inequality we have d(x, fn_1(W)) <
1/2" 1. Hence, we see that w € E", thus Q = U1 Ej- The measurability of F and
Proposition 2.7.5 imply that A} € X. Taking the induction hypothesis into account, the
Z-measurability of f,,_; implies that C} € X. Therefore E} € X. We define a function
fn: Q — Xby setting fn(w) = xi forall w € E} \ Uffz‘ll E?. Hence fy is X-measurable and
satisfies (2.7.5) and (2.7.6). This completes the induction.

From (2.7.6) we infer that for every w € Q, {f,(W)}ns0 € X is a Cauchy sequence.
Therefore

fn(w) if(w) forallwe Qasn — co.

Proposition 2.2.12 implies that f is X-measurable and d(f(w), F(w)) = 0 forall w € Q.
Since F(w) € P¢(X) for all w € Q, we conclude that f(w) € F(w) for all w € Q. Therefore
f: Q — Xis aZ-measurable selection of F. O

In fact we can produce a whole sequence of dense X-measurable selections of F.

Theorem 2.7.13. If (Q, X) is a measurable space, X is a Polish space and F: Q — Ps(X),

then the following statements are equivalent:

(a) Fis measurable;

(b) there exists a sequence of X-measurable selections f,: Q — X of F such that F(w) =
{fn(W)}ps1 forallw € Q.

Proof. (a) = (b): Let {Uy}n>1 be a countable basis for the metric topology of X. For
every n € N, we define the multifunction

Fw)nU, ifFw)nU,+90,
Fu(w) = )
F(w) otherwise ,

forall w € Q. Let Q, = F~(U,) € ¥with n € N. Then for every open set V ¢ X we obtain

FF M) ={weQu: Fw)NUp #0}U{w € (Q\ Qp): FW)NV £ 0} € X,

which implies that F, is measurable for all n € IN. Then, thanks to Proposition 2.7.7, it
follows that F,, is measurable for all n € N.

Invoking Theorem 2.7.12 there exists a sequence f,,: Q — X with each f,, being a
S-measurable selection of F,,. Note that F,(w) € F(w) forall n € N and for all w € Q.
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Hence, f,, is a 2-measurable selection of F. Evidently, F(w) = {fn(W)},5; forall w € Q.
(b) = (a): For every x € X, it holds that

d(x, F(w)) = }lr>1{ d(x, fa(w)) forallwe Q,

which demonstrates, because of Proposition 2.2.10, that w — d(x, F(w)) is X-measur-
able. Hence, due to Proposition 2.7.5, we get that F is measurable. O

We can state another measurable selection theorem for graph measurable multifunc-
tions. First we start with a definition.

Definition 2.7.14. (a) A family £ of subsets of a set X is said to separate points in X
if for every two distinct points x, u € X thereis A € £ suchthatx € A,u ¢ A or
x¢A,ueA.

(b) A family D of R-valued functions on X is said to separate points in X if for every
two distinct points x, u € X there is f € D such that f(x) # f(w).

(c) A o-algebra £ of subsets of a set X is said to be countably generated if there is a
countable family {A,}n>1 € £ such that £ = 0({Ap}ns1).

(d) A o-algebra £ of subsets of a set X is said to be countably separated if there is a
countable family {A,},>1 <€ £ that separates points in X, see (a).

Example 2.7.15. Suppose X is a separable metric space and £ = B(X) being the Borel
o-algebra. Then B(X) is countably generated and countably separated. To see this
consider {U,},>1 being a countable basis for the metric topology. Then c({Up}n>1) =
B(X), that is, B(X) is countably generated and clearly, {U,},>1 separates points in X,
that is, B(X) is countably separated.

Proposition 2.7.16. If (Q, %) is a measurable space, Y is a Hausdorff topological space
and D € X Q) B(Y), then there exists Xy < X being a countably generated sub-o-algebra
of £ such that D € Xy Q) B(Y).

Proof. Let L = {C € ¥() B(X): the conclusion of the proposition holds}. Clearly £
includes all measurable rectangles; see Remark 2.2.24. Moreover £ is closed un-
der complementation. Let {Cy},>1 € £. Then C, € Xpn @ B(X) with Xy, € X be-
ing a countably generated sub-o-algebra. Then 51 Cn € 0(Ups1 Zon) @ B(X) and
0(Uns1 Zon) is countably generated. Therefore £ is a o-algebra and so we must have
L =2 BX). O

Extending the notion of universal o-algebra (see Definition 2.6.23) to arbitrary measur-
able spaces, we state the following definition.

Definition 2.7.17. Let (Q, X) be a measurable space. The universal o-algebra corre-
sponding to X is defined by & = Muenm: ) 2n Where M7 (Q) denotes the set of all
probability measures on Q and X, is the y-completion of . We say that the measurable
space (2, %) is complete if ¥ = .
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Using this definition and Corollary 2.6.29 (see also the proof of Proposition 2.6.28) we
have the following result.

Proposition 2.7.18. If (Q1,21) and (Q,, X,) are measurable spaces and f: Q1 — Q, is
a (21, £,)-measurable map, then f is (£1, £,)-measurable.

The next result is the original version of the so-called “Yankov-von Neumann Selection
Theorem.” For its proof we refer to Klein-Thompson [178, Theorem 14.3.2,p. 166].

Theorem 2.7.19 (Yankov-von Neumann Selection Theorem). If X, Y are Polish spaces,
F: X — 2Y\ {0}, and Gr F € axyy, then there exists an analytically measurable function
f: X — Ysuchthat f(x) € F(x) forall x € X.

Recalling that a Souslin space is the continuous image of a Polish space (see Defini-
tion 1.5.51), from Theorem 2.7.19 we easily deduce the following result.

Theorem 2.7.20. If X is a Borel subset of a Polish space, Y is a Souslin space, F: X —
2Y\ {0}, and Gr F ¢ X x Y is a Souslin subset, then there exists an analytically measurable
map f: X — Y such that f(x) € F(x) forall x € X.

Remark 2.7.21. Note that Borel sets of Polish spaces are usually called Borel spaces.

Proposition 2.7.22. If (Q, X) is a measurable space such that X is countably generated
and countably separated, then there is a subset E of {0, 1}N such that (Q, X) and (E, B(E))
are isomorphic; see Definition 2.6.20.

Proof. Let {A,}n>1 be the generators of 2. We are going to show that they separate
points in Q. Arguing by contradiction, suppose that for some w, w’ € Q, w # w' it holds
that ya,(w) = xa,(w') foralln € N. Let o = {A € Q: ya,(w) = xa,(w')}. Evidently X
isa o-algebraand A, € X foralln € N, thus ¥ ¢ X, which contradicts the fact that X'is
countably separated. Let f: Q — {0, 1}N be defined by f(w) = {ya,(W)}ns1. Clearly f is
one-to-one and X-measurable. We need to show that f~!: E = f(Q) — Q is measurable.
So, we want to show thatif A € X, then f(A) € B(E). Let X1 = {A € Q: f(A) € B(E)}.
This is a o-algebra and A, € X forall n € N since f(A,) = {(ex) € {0, 1}N: e, =1} nE.
Therefore, ¥ ¢ 1 and we have proven the measurability of f~1. Hence, we have that
(Q, 2) and (E, B(E)) are isomorphic. O

Remark 2.7.23. Recall that {0, 1}N and N are isometrically isomorphic. Hence,
{0, 1}N is Polish.

Proposition 2.7.24. If (Q, X) is a measurable space such that X is countably generated
and countably separated, X is a Souslin space and F: Q — 2%\ {@} is a graph measurable
multifunction, then F admits a £-measurable selection.

Proof. Invoking Proposition 2.7.22 we know that there exists E ¢ {0, 1}N such that (Q, %)
and (E, B(E)) are isomorphic. Let h: Q — E be this isomorphism. The measurable
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spaces (2 x X, 2@ B(X)) and (E x X, B(E) @ B(X)) are isomorphic. Moreover, from
Proposition 2.2.26(b) we know that B(E) ) B(X) = B(E x X).

We introduce the multifunction F1: E — 2%\ {8} defined by F; = Fo h™1. We
have Gr F;, = (h, idx)(Gr F) with idx being the identity map on X. Therefore Gr F; €
B(E) Q) B(X) = B(E x X).

Hence, there exists D; € B(P x X) with P = {0, 1}~ such that Gr F; = D1 n (E x X).
Then E = projp GrF; € E; = projp Dy. Let h': Q — E; be defined by h'(w) = h(w)
for all w € Q. Then I’ is injective and Z-measurable. Let F,: E; — 2%\ {0} be the
multifunction defined by Gr F, = D;. We claim that

Fy(h'(w)) = F1(h(w)) forallwe Q. (2.7.7)
To this end, note that for every u € E we have
Fi(u) = projx[Gr F1 N ({u} x X)] and F,(u) = projy[Gr F» n ({u} x X)] .
Recall that Gr F; = Gr F> n (E x X). So
GrFin({{u} xX)=GrF; n({ul x X),

which gives F1(u) = F»(u) for all u € E and this proves (2.7.7).

Since D; € B(E x X), D1 is a Souslin subset of E x X. Hence, we can apply The-
orem 2.7.20 and obtain f,: E; — X being an analytically measurable map such that
f>(u) € F(u) forall u € E;. Since h' is (2, B(E1))-measurable, using Proposition 2.7.18
we have that b’ is (2, B(E;))-measurable. Let f = fooh’. Thenf: Q — X is 2-measurable
and f(w) € F(w) forall w € Q. O

Now we are ready for the second measurable selection theorem which is graph condi-
tioned. The result is usually known as the “Yankov-von Neumann—-Aumann Selection
Theorem.”

Theorem 2.7.25 (Yankov-von Neumann-Aumann Selection Theorem). If (Q,%) is a
complete measurable space, X is a Souslin space, and F: Q — 2%\ {0} is graph
measurable, then F admits a X-measurable selection.

Proof. Using Proposition 2.7.16 there is a countably generated sub-c-algebra 2y ¢ X
such that Gr F € Xy X) B(X). On Q we define an equivalence relation ~ by

w~w' ifandonlyif ya(w)=yxa(w') foralld eZX,. (2.7.8)

Let Q. =Q/ ~andlet p: Q — Q, be the canonical projection on the quotient space,
that is, p(w) = w being the equivalence classof w € Q. Let X, = p(Zo) = {p(4): A € Zp}.
It is easy to see that X, is a o-algebra and if {4,},>1 are the generators of X, that is,
2o =0{An}tns1), then 2, = o({p(An)}n>1). Therefore X, is countably generated.
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Next suppose that w # w’. Then we can find A € Xy such that ya(w) # ya(w');
see (2.7.8). This is equivalent saying that yp(a)(W) = xpca)(W'). It follows that X, is also
countably separated. Moreover, note that p is a one-to-one correspondence between
2o and Z,. Let idx be the identity map on X and let: Q x X — Q. x X be defined by
n = (p, idx). Then Gr F € ¥ @) B(X) implies that n(Gr F) € X, K B(X). Let F1: Q, —
2%\ {0} defined by Gr F; = n(Gr F). We can now apply Proposition 2.7.24 and produce
a X ,-measurable selection f; : Q, — X of Fy, thatis, f1(w) € F1(w) forall w € Q. Let
f =f1opandforw e Qwedefine D(w) ={A € 2o Q B(X): Ay = Ay, forall w' e w}.
Recall that A,, is the w-section of A; see Definition 2.2.27. Note that D(w) is an algebra
and a monotone class. Hence, Theorem 2.1.12 implies that D(w) is a o-algebra. It follows
that D(w) = Xp ) B(X). Since Gr F,, = F(w), we see that F is constant on w and we
have F(w') = F1(w) for all w' € w. Because f(w') = f(w) we obtain that f(w) € F(w) for
all w € Q. Proposition 2.7.18 implies that f is X-measurable. This finishes the proof. [J

As for the Kuratowski—Ryll Nardzewski Selection Theorem (see Theorem 2.7.12), we
can improve the result above and produce a whole dense sequence of measurable
selections. To do this, we will need the following result due to Leese [194, p. 407].

Proposition 2.7.26. If (Q, X) is a complete measurable space, X is a Souslin space, and
F: Q — 2%\ {0} is graph measurable, then there exists a Polish space Y, a measurable
multifunction G: Q — P¢(Y), and a continuous map h: Y — X such that F(w) = h(G(w))
forallw e Q.

Remark 2.7.27. Using this proposition and the Kuratowski—Ryll Nardzewski Selection
Theorem (see Theorem 2.7.12), we have at once the Yankov-von Neumann-Aumann
Selection Theorem; see Theorem 2.7.25. The conclusion of this proposition looks similar
to the definition of Souslin spaces; see Definition 1.5.51. For this reason graph measurable
multifunctions into a Souslin space are also called multifunctions of Souslin-type.

Theorem 2.7.28. If (Q, Y) is a complete measurable space, X is a Souslin space, and
F: Q — 2%\ {0} is graph measurable, then there exists a sequence of X-measurable
selections fr: Q — X of F such that F(w) = {fn(W)},51 forallw € Q.

Proof. Applying Proposition 2.7.26 there is a Polish space Y, a measurable multifunction
G: Q — Ps(Y), and a continuous map h: Y — such that

F(w) = h(G(w)) forallwe Q. (2.79)

Invoking Theorem 2.7.13 there is a sequence of X-measurable selections g,: Q — Y of G
such that

G(w) = {gn(W)},s; forallwe Q. (2.710)

The continuity of h implies that f, = ho g,: Q — X with n € N is a sequence of
X-measurable selections of F (see (2.7.9)), and using Proposition 1.1.35(b) as well as
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(2.7.10) we derive that
Fw) < {fuw)},s1 forallwe Q. O

Given a Borel subset in a Cartesian product it is natural to ask whether its projection on
a factor is Borel as well. The next example shows that the answer to this question is
negative. This fact was the starting point for Souslin to develop the theory of analytic
sets; see Remarks 2.8.

Example 2.7.29. We show that the projection of a Borel set in R? need not be Borel.
So,let X =[0,1],Y = [0, 1] n (R \ Q) being the set of the irrationals in [0, 1]. From
Corollary 1.5.49 we know that Y is a Polish space. Let A € X be analytic but not Borel
and letf: Y — A be a continuous function. Then Gr f € B(X x Y) = B(X) K B(Y) but
projx Grf = A ¢ B(X).

Next we will show that the projection of a Borel set is universally measurable. We will
need two auxiliary lemmata.

Lemma 2.7.30. If

Ky = {z %:se{O,l}N,snzl} ,

k>1

then K,, € R is compact and for every s € {0, 1}, it holds that Z si/4* € Ky, if and only
k>1

ifSn = 1.

Proof. We know that {0, 1}~ is compact. Let C,, = {s € {0,1}N: s, = 1}. This set
is closed, hence compact. Consider the function f: {0, 1}N — R defined by f(s) =
Y o1 Sk/4¥. Then f is the uniform limit of continuous functions, hence it is continuous. It
follows that f(C,,) = K, is compact. Note that f is injective, hence it is a homeomorphism
(see Theorem 1.4.54), and f(s) € K, if and only if s € Cj,. O

Lemma 2.7.31. If (Q, X) is a measurable space, Y is a Hausdorff topological space, and
D e ¥ B(Y), then there exists C € B(R x Y) and a X-measurable functionf: Q — R
such that D = {(w,y) € Qx Y: (f(w),y) € C}.

Proof. Invoking Proposition 2.7.16 there exists a countably generated sub-o-algebra
2o € Ysuch that D € ¥y Q) B(Y). Suppose 2o = 0({An}n>1) and consider the function
f: Q — Rdefined by f(w) = Y4 1/4")(Ak(w). Lemma 2.7.31 says that for every n € N
and every w € Q we have f(w) € K, ifand only if y4,(w) = 1ifand only if w € A,.
Hence

YK = Ay . (2.7.11)

Evidently f is Z-measurable and we define &(w, y) = (fiw),y) and £ = {{ Y(E): E €
B(RxY)}. Clearly £ is a o-algebra and from (2.7.11) we see that £~} (K, xB) = f~}(K,)xB =
A, x Bwith B € B(Y). This implies A, x B € £ forall n € N and for all B € B(Y).
Therefore D € Xy x B(Y) < L. So, thereis a set C € B(R x Y) such that D = £~1(C) and
this proves the lemma. O
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Now we are ready for the measurable projection theorem known as the “Yankov-von
Neumann-Aumann Projection Theorem.”

Theorem 2.7.32 (Yankov-von Neumann—-Aumann Projection Theorem). If (Q,2) is a
complete measurable space, X is a Souslin space, and D € X (X) B(X), then projoD € X.

Proof. Lemma 2.7.31 says that there exist C € B(R x X) and a Z-measurable function
f: Q — Rsuchthat D = {(w, x) € Q x X: (f(w), x) € C}. Then proj, D = f~*(projg C).
The space X x R is Souslin (see Proposition 1.5.54(b)), and since C € B(R x X) it follows
that C is Souslin; see Proposition 2.6.11. The set projy C is the continuous image of a
Souslin space, therefore it is a Souslin space as well. As f is 2-measurable, invoking
Proposition 2.7.18, we conclude that D € p O

We mention two more measurable projection theorems. The first is due to Brown—
Purves [59].

Theorem 2.7.33. If X, Y are Polish spaces, D € B(X x Y) = B(X) @ B(Y) and for every
x € D, Dy € Y is o-compact, then projx D € B(X).

For the second projection theorem, we need to introduce a special class of spaces.

Definition 2.7.34. Let Y be a Hausdorff topological space. We say that Y is of class
oMK, if Y = (J,5; Kn with each K, with n € N large enough, being metrizable compact.

Remark 2.7.35. Recall that every metrizable compact space is the continuous image of
a Cantor set; see Kuratowski [183, p. 444]. Therefore X is 0 MK if and only if X is the
continuous image of a closed set in R. A separable, metrizable, locally compact space
belongs to the class o MK. But the space need not be metrizable. Again anticipating
some material from Chapter 3, let X be a separable Banach space and let X* be its
topological dual. We have X* = | J,5; nB; with B} = {x* € X*: |x*||. < 1} being the
closed unit ball in X*. We know that E: equipped with the relative w*-topology is
metrizable compact; see Section 3.3. So, Xy.., thatis, X* furnished with the w*-topology,
is a 0 MK-space.

The next measurable projection theorem is due to Levin [199].

Theorem 2.7.36. If X is a Borel subset of a Polish space, that is, a Borel space, Y is a
0 MK-space and D € B(X x Y) = B(X) @ B(Y) with Dy € Ps(Y) for every x € X, then
projx D € B(X).

Remark 2.7.37. Note that in this case the projection of a Borel set is Borel.
Comparable Souslin topologies on a set X generate the same Borel o-algebras.

Proposition 2.7.38. If 71 and 1, are two comparable Souslin topologies on X, then
B(XTl) = .B(sz)‘
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Proof. To fix things we assume that 7, € 71. Then B(X;,) € B(X+,). Let A € B(X,).
Then A is 71-Souslin; see Propositions 2.6.11 and 2.6.9. Hence, there exist a Polish
space Y and a continuous surjection f: Y — (A, 71(A)); see Definition 1.1.24. Then
f:Y—> (A, 1,(A))is continuous as well and so A is 7,-Souslin. The same argument
applied to A€ = X\ A shows that A€ is 7,-Souslin as well. Invoking Corollary 2.6.17
we conclude that A € B(X+,). Hence B(X+,) ¢ B(X+,) and so finally we conclude that
B(Xr,) = B(Xe,)- O

Remark 2.7.39. More generally if T, and 7, are two Souslin topologies on X and 71 N 15
is Hausdorff, then B(Xr,) = B(X+,) = B(X¢;nr,)-

Proposition 2.7.40. If (Q, Y) is a complete measurable space, X is a Polish space, and
F: Q — 2%\ {0} is graph measurable, then F~ (D) € X for all D € B(X).

Proof. Note that F~(D) = projo[Gr F n (Q x B)] € X; see Theorem 2.7.32. O

Therefore, we can state the following theorem, which summarizes the measurability
properties of closed valued multifunctions.

Theorem 2.7.41. Let (Q, X) be a measurable space, (X, d) is a separable metric space

and F: Q — P¢(X). Consider the following statements:

(a) F(D) € X forall D € B(X);

(b) F(C) € 2 forall closed C c X;

(c) Fis measurable;

(d) foreveryx € X, w — d(x, F(w)) is X-measurable;

(e) there exists a sequence of X-measurable selections f,: Q — X such that F(w) =
{fn(W)}ps1 forallw e Q;

(f) Fis graph measurable.

We have the following implications:

(1 (a) = (b) = (c) = (d) = (f).

(2) If X is complete, that is, X is a Polish space, then (c) = (d) < (e).

(3) IfXis o-compact, then (b) = (c).

(4) IfX = X, that is, the measurable space is complete, and X is complete, then (a) to (f)
are all equivalent.

2.8 Remarks

(2.1) Cantor [61] was one of the first to give a general definition of the measure of a
set. However, the definition he gave produced a nonadditive measure. Then came
the French mathematician Jordan [168] who defined a set to be measurable if its
topological boundary has zero measure. So, the set of rational numbers in an interval
is not measurable. Moreover, there are open sets that are not measurable. Finally,
the measure that Jordan defined is only finitely additive. Then came Borel [39] who
showed that the length of intervals can be extended to a og-additive set function on
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the o-algebra generated by intervals, the Borel g-algebra. The Borel measure is based
on the fact that any open set U ¢ R is the union of countably many disjoint intervals.
However, we should mention that Borel did not use the terminology of open sets. At
that time mathematicians focused on closed — even more specifically on perfect — sets.
The notion, together with the name of open set, was introduced by Baire [20] in his
thesis. Borel did not use his theory of measure to develop a corresponding theory of
integration. Borel sets are produced by infinite applications of certain set-theoretic
operations and so we cannot have a good insight concerning their structure. This
led to an axiomatic definition of measurable sets. An important contribution to this
came from Carathéodory [62] who introduced the notion of outer measure in the sense
of Definition 2.1.33. Carathéodory worked on RY. Moreover, Definition 2.1.36 about
u*-measurable sets is also due to Carathéodory [62]. It is a rather strange definition,
not that intuitive. It singles out as measurable those sets which split all sets in X in
two parts on which y is additive. It is not clear how Carathéodory came up with this
definition. Nevertheless, it turned out to be a very fruitful one. It gives a g-algebra — in
general not the largest possible — which contains the Borel sets and on which y is a
measure. Vitali [295] was the first to establish the existence of a nonmeasurable set in
R; see Theorem 2.1.44. A detailed account of the historical development of measurable
sets can be found in Chapter 4 of Hawkins [141]. Concerning the atoms of a measure
(see Definition 2.1.30(b)), we mention the following result known as “Saks Lemma,” see
Dunford-Schwartz [94, Lemma IV.9.7, p. 308].

Lemma 2.8.1 (Saks Lemma). If (X, X, u) is a finite measure space, then for every € > 0
there exists a finite partition of X into pairwise disjoint sets {Ax}};_, < X such that either
U(Ax) <eforallk e {1,...,k}or Ay is an atom with u(Ax) > e forall k € {1, ..., k}.

Proposition 2.1.32 is a particular case of a more general result due to Lyapunov [209]
known as the “Lyapunov Convexity Theorem.” The result has important applications
in many applied areas such as optimal control and mathematical economics; see
Hermes-LaSalle [144] and Klein-Thompson [178].

Theorem 2.8.2 (Lyapunov Convexity Theorem). If (X, X) is a measurable space and
U1, ..., Un: X — Rarenonatomic measures, then the set R = {(yk(A)),’::l: Ael}cR"
is compact and convex.

The Cantor set (see Example 2.1.46) plays an important role in foundational work and it
is also a useful tool in topology.

Further details on measure theory can be found in the books of Bogachev [36, 37],
Dudley [90], Folland [114], Halmos [139], Hewitt-Stromberg [145], Royden [258], and
Rudin [259].

(2.2) There is no doubt that Lebesgue’s theory of integration is one of the major
mathematical breakthroughs in the 20 til-century. Lebesgue was influenced by the ideas
of Borel, but his theory of measure is more general. His theory was first presented in his
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thesis [189]. Many of the questions left open in his thesis were resolved in his book [190]
published two years later. It was based on lectures he gave to the College de France in
the period 1902-1903. With his integral, Lebesgue was able to overcome a number of
difficulties that were associated with Riemann’s theory of integration. In particular the
limit theorems for the new integral are substantially more general and helped in the
dissemination of Lebesgue’s theory. Proposition 2.2.12 goes back to Hausdorff [140]
while the example produced in Remark 2.2.13 is due to Dudley [89]; see also Dudley
[90, Proposition 4.2.3, p. 96]. Theorem 2.2.32 was proven by Egorov [98]. Egorov was
the mathematical mentor of Lusin. We mention that Egorov’s Theorem as well as
Lusin’s Theorem (see Theorem 2.5.17) were stated without proof in Lebesgue [190].
Theorem 2.2.34 is due to von Alexits [299] and Sierpinski [271]. The use of simple
functions in the definition of the Lebesgue integral (see Definition 2.2.35) underlines
the main difference with Riemann’s method. More precisely, in contrast to Riemann,
Lebesgue does not consider partitions of the domain [a, b] of f. Instead he considers
partitions of the range of f. A detailed discussion of the development of Lebesgue’s
method can be found in Hawkins [141].

We conclude our remarks on this subsection with two useful observations. The first
concerns Egorov’s Theorem (see Theorem 2.2.32) and indicates when we can drop the
hypothesis that u(X) < co.

Proposition 2.8.3. If (X, X, u) is a measure space, f,: X — Rwithn € N is a sequence
of X-measurable functions such that

fn—f pae. and |fo(x)| <h(x) p-a.e.withheL'(X),
then given € > O there exists A, € X with u(A¢) < € such that f, — f uniformlyin X \ A..

The second observation shows how the Lebesgue measure changes under nonsingular
linear transformations.

Proposition 2.8.4. IfL: RY — RY is linear and nonsingular, then the following hold:
(@) L(A) € B(RN) forall A € B(RN);
(b) AN(L(A)) = | det(L)|AN(A) for all A € B(RN).

(2.3) Theorem 2.3.1 — and consequently Theorems 2.3.3 as well as 2.3.5 — are due to
Beppo Levi [197]. Theorem 2.3.6 is due to Fatou [108]. Theorem 2.3.8 is the “crown jewel”
of Lebesgue’s theory and was proved by Lebesgue [192]. The LP-spaces were defined by
Riesz [243] when p = 2, [244] when 1 < p < 2 and [245] when 2 < p < co. Riesz [244, 245]
proved the completeness of LP, p # 2 while the completeness of L? was proved by
Fischer [111]. The Cauchy-Bunyakowsky-Schwarz inequality (see Corollary 2.3.13) was
first proven by Cauchy (1821) for finite sums, then by Bunyakowsky (1859) for Riemann
integrals and finally by Schwarz (1885) for double integrals. Hélder’s inequality (see
Theorem 2.3.12) can be found in Rogers [254] and Holder [154]. Of course the inequalities
proven by Rogers and Hélder do not have the form of Theorem 2.3.12, but it can be
shown that they imply Theorem 2.3.12. Note that Holder acknowledges that he was
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inspired by the work of Rogers. For this reason Dudley [90] calls the result “Rogers-
Holder inequality.” Theorem 2.3.14 was proven by Minkowski [217] for finite sums and
by Riesz [245] for integrals. Jensen’s inequality (see Theorem 2.3.15) was obtained by
Jensen [166]. Convergence in measure, initially called also asymptotic convergence,
can be found in early works of Borel and Lebesgue but a systematic study of it can
be found in Riesz [244], who pointed out a gap in the book of Lebesgue concerning
this mode of convergence and in Fréchet [119, 120]. In fact Fréchet [119] showed that
convergence in measure is metrizable by the metric

dr(f, h) = infle + p{x € X: [f) — h(0) > €}] .

Another metric was introduced by Fan [107] who defined
dx(f, h) =inf[e > 0: pufx € X: |f(x) - h(x)| > €} < €] .

The metric in (2.3.10) was first introduced by Nikodym [230].

The notion of uniform integrability and the main results concerning it go back to the
works of Lebesgue, Vitali, and de la Vallee Poussin. Additional equivalent formulations
of this notion can be found in Gasifiski-Papageorgiou [125, see Problems 1.7, 1.15, 1.16,
1.17].

Lebesgue [190] was the first to establish for bounded measurable functions of two
variables the reduction of multiple integrals to repeated ones. Later Fubini [122] proved
Theorem 2.3.50 and the appearance of his result marked a real triumph for Lebesgue’s
method. As Fubini pointed out, the Lebesgue integral is necessary for this kind of study.
Theorem 2.3.49 is due to Tonelli [286].

We conclude the remarks of this subsection with a result on the existence of the
essential supremum for a family of functions. The result is useful in probability theory
and elliptic partial differential equations.

Proposition 2.8.5. If (X, X, u) is a o-finite measure space and ¥ is a family of X-
measurable, R-valued functions, then there exists a unique (up to u-a.e.equality)
2-measurable function h: X — R such that f(x) < h(x) for y-a.a.x € X and for all f € F.

If h' is another X-measurable function such that f(x) < h'(x) for p-a.a. x € X and for
allf € F, then h(x) < h'(x) for y-a.a. x € X.

We call h = esssup . In addition there is a sequence {fy}n>1 S F such that
ess sup F = sup,sq fn. Finally if J is upward directed, that is, if f1, f> € JF, then there
exists f € Fsuch that f; < f, f> < f, then {f,}n>1 can be chosen to be increasing.

(2.4) Signed measures were first considered by Lebesgue [192] who studied such mea-
sures of the form
u(A) = Jf(x)dv(x) with f e L1(v).
A
The Hahn Decomposition Theorem (see Theorem 2.4.8) was proven by Hahn [136].
Concerning the Jordan Decomposition Theorem (see Theorem 2.4.14), we mention that
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Jordan (1881) introduced functions of bounded variation on an interval [a, b] and
proved that such a function can be written as the difference of two nondecreasing
functions; see also Section 4.3.

The more general Theorem 2.4.14 was named after Jordan as a tribute of his impor-
tant contributions on the subject. Note that if y is a finite signed measure on [a, b],
then f(x) = u([a, x]) with x € [a, b] is a function of bounded variationand f = g - h
with g(x) = u+([a, x]) and h(x) = p_([a, x]) for all x € [a, b].

The Radon-Nikodym Theorem (see Theorem 2.4.29) started with Lebesgue who
obtained the special case of absolute continuity with respect to the Lebesgue measure.
The case of Borel measures on RN was proven by Radon [238] and a little later by
Daniell [72] as well. The general form of the theorem is due to Nikodym [230]. The
Lebesgue decomposition in the general abstract setting (see Theorem 2.4.31) can be
found in Saks [262]. There is a unifying short proof of Theorems 2.4.29 and 2.4.33 due
to von Neumann [304]; see also Dudley [90, p. 134] and Rudin [259, p. 130]. Although
Theorem 2.4.33 is called the Vitali-Hahn-Saks Theorem, others also contributed to
its formulation, like Lebesgue and Nikodym. It appears the general form was proven
by Saks [262]. Theorems 2.4.33 and 2.4.34 are very useful in general measure the-
ory.

(2.5) The definition of the Baire o-algebra (see Definition 2.5.1) is not the same in all
authors. For example, Dudley [90, p. 174] defines the Baire g-algebra to be the smallest
o-algebra for which all f € C,(X) are measurable. Recall that C,(X) is the space of all
R-valued, continuous, and bounded functions. Other definitions of Ba(X) are provided
by Bogachev [37, p. 12] and Halmos [139, p. 220]. Here we follow Royden [258, p. 301].
We should point out that for the Borel g-algebra, there are some different definitions.
More precisely, some of the older texts define the Borel o-algebra to be the o-algebra
generated by the compact sets. This in in general smaller than the Borel o-algebra of
Definition 2.1.4(b).

Similarly the terminology introduced in Definition 2.5.8 is not uniform. People use
other names for the same notions, see, for example Aliprantis—Border [6, pp. 434-435].
Topological measure theory started with the seminal paper of Radon [238] who worked
on RY. A classical reference on Radon measures is the book of Schwartz [268].

The topological structure of the ambient space leads to the definition of the support
of a measure.

Definition 2.8.6. Let X be a Hausdorff topological space and p: B(X) — [0, co] a Borel
measure. The support of y is the set

suppu = {x € X: u(U) >0 forall U e N(x)} .

Remark 2.8.7. Evidently supp u is closed and if A € B(X), A € X \ supp u, then u(A) =
0. Every Radon measure has a unique support.
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We have a regularity result for functions that are integrable with respect to a Radon
measure. The result is known as the “Vitali-Carathéodory Theorem;” see Rudin [259,
p.57].

Theorem 2.8.8 (Vitali—-Carathéodory Theorem). If X is a locally compact topological
space, j: B(X) — [0, co] is a Radon measure, f € L' (X, u) and € > 0, then there exist
g: X — R being upper semicontinuous, bounded above and h: X — R being lower
semicontinuous, bounded below such that g(x) < f(x) < h(x) for y-a.a.x € X and

IX(h -g)du<e.

Remark 2.8.9. There is an alternative approach to Lebesgue integration due to
Daniell [71] based on the extension of positive linear functionals. Within that theory,
the Vitali—Carathéodory Theorem is essentially the definition of the measurability and
integrability of f.

As was the case with Egorov’s Theorem (see Theorem 2.2.32), Lusin’s Theorem (see
Theorem 2.5.17) was first stated without proof by Lebesgue [190]. Lusin [206] proved the
result later. There is a category analog to Lusin’s Theorem.

Theorem 2.8.10. If X is a separable metric space and f : X — R is Borel measurable,
then there is a set D of first category such that f | X\D is continuous.

Theorem 2.5.19 is due to Scorza Dragoni [269]. Normal integrands (see Definition 2.5.20)
is a basic tool in many applied fields such as calculus of variations, optimization
and optimal control; see Buttazzo [60], Ekeland—-Temam [103], and Papageorgiou—
Kyritsi [232].

Finally we mention an important class of measures that allows us to measure the
size of lower dimensional sets in RY, for example, curves and surfaces in R3. So, let
(X, d) be a metric space, p > 0,6 > 0,and A < X. We set

Hps(A) = inf < Y (diam By)”: A < | J B, diam By < 5> : (2.8.1)
k>1 k>1

As usual we set inf @ := +00. Hp 5(A) increases as § — 0*. So, the following definition
makes sense.

Definition 2.8.11. For every A € B(X), the limit

Jlim Hp 5(A) = Hy(A)
is the p-dimensional Hausdorff measure of A. The measure H,: B(X) — [0, oo] is
regular.

Remark 2.8.12. Note that in (2.8.1) there is no loss of generality if By is closed or open
forall k € IN.

For more on Hausdorff measures we refer to Evans—Gariepy [105].
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(2.6) The theory of Souslin or analytic or A-sets started when Souslin, a student of
Lusin, discovered an error in Lebesgue [191]. Lebesgue claimed that the projection of
a Borel set in IR? onto the x-axis is again a Borel set. Souslin realized that this is not
true and went on to introduce analytic sets and started their study. Souslin [275] also
produced an analytic set in the real line whose complement is not analytic and so it is
not Borel; see Proposition 2.6.11 and Remark 2.6.12. Lusin [207] proved that analytic sets
in R are Lebesgue measurable. Unfortunately, Souslin died very young at the age of 25
in 1919. The work on analytic sets was continued initially by Lusin and subsequently
by many other mathematicians. Theorem 2.6.15 is due to Lusin [208] and is one of the
most important results in the theory of analytic sets with far-reaching consequences.
In addition to the g-algebras B(X), ax, 2x there is a fourth o-algebra known as the
limit o-algebra denoted by L x and it is between ax and 5x. For a discussion of this
o-algebra see Bertsekas—Shreve [31, Appendix B4]. Analytic (Souslin) sets are discussed
in the books of Aliprantis—Border [6], Bertsekas—Shreve [31], Bogachev [37], Cohn [69],
Dudley [90], Klein-Thompson [178], and Srivastava [276].

(2.7) Measurable multifunctions are an important tool in many applied areas.
Detailed studies of measurable multifunctions can be found in the books of Aliprantis-
Border [6], Aubin-Frankowska [17], Castaing-Valadier [64], Denkowski—Migorski-Papa-
georgiou [77], Hu-Papageorgiou [157], and Klein-Thompson [178]. Theorem 2.7.12 was
proven by Rohlin [255] and later by Kuratowski-Ryll Nardzewski [185]. There is a gap
in the proof of Rohlin and for this reason the result is attributed to Kuratowski-Ryll
Nardzewski. Theorem 2.7.25 as stated is due to Sainte-Beuve [261]. Earlier versions of it
were proven by Yankov [310], von Neumann [305] and Aumann [18]. The same can be
said for Theorem 2.7.32.

Problems

Problem 2.1. Let X be a set and let £ < 2X be nonempty. Show that ¢(£) is the smallest
family £ ¢ 2%, which contains £ and satisfies the following assertions:

(a) A e £implies A€ € £;

(b) g£is closed under countable intersections;

(c) £isclosed under countable disjoint unions.

Problem 2.2. Let X be a set and let £ ¢ 2% be a semiring. Show that:

(@) IfA,Aq,...,A,; € L, then there exist {B;}]!; < £ pairwise disjoint such that
A\Uk-1 Ak = UL, Bi

(b) If {An}ns1 € £, then there exist {Ci}r=1 < £ pairwise disjoint such that |51 An =
Uks1 Ck and for each k > 1 there exists n > 1 such that Cy < Aj.

Problem 2.3. Let (X, 2, u) be a finite measure space and {A;};c; € 2 are pairwise disjoint
with an arbitrary index set I. Show that u(A;) = O foralli € T\ Ip with I, is at most
countable.
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Problem 2.4. Let (X, 2, u) be a finite nonatomic measure space and let {n,}n>1 <
(0, +00) be such that } ,,.; nn < u(X). Show that there is {A,},>1 < 2 pairwise disjoint
such that u(A,) = n, foralln € N.

Problem 2.5. Let (X, X, u) be a measure space with y being semifinite (see Defini-
tion 2.1.30) and A € X, u(A) = +oo. Show that there exists C € X, C ¢ A with u(C) = +oo
and that C is o-finite.

Problem 2.6. Let (X, X, u) be a measure space. Show that y is semifinite (see Defini-
tion 2.1.30) if and only if for all A € X with u(A) > 0 there holds

U(A) =sup[u(C): Ce 2, C<A,0< u(C) < o0].

Problem 2.7. Let X be a o-compact metric space, B(X) is the Borel o-algebra of X, and
U1, U2 are two finite measures on B(X), which are equal on compact sets. Show that

M1 = H2.

Problem 2.8. Let (X, 2, u) be a measure space and u* the outer measure defined in
(2.1.7) with £ = ¥ and 9 = u. Show that:

(@ p*(A) =inf[u(B): BeX,A c B] forevery A ¢ X.

(b) For every A < X there exists B € X~ such that A ¢ Band u*(A) = u(B).

Problem 2.9. Let (Q, X, u) be a measure space, {Ap}n>1 € 2 with ) o1 u(A,) < 0o, and
liminf, o u(An) = 9 > 0. Let Dy, be the set of elements in Q that belong to an infinity
of sets A,,. Show that D, € ¥ and u(Dy,) > 9.

Problem 2.10. Let X be a nonempty set, £ ¢ 2% is an algebra, and u: £ — [0, co] is
an additive set function. Let u* be the outer measure defined in (2.1.7) with £ = ¥ and
9 = u. Show that every element in £ is u*-measurable; see Definition 2.1.36. Moreover,
show that if y is o-additive, then p*| . = p.

Problem 2.11. Let £ be a o-algebra of sets in R. Show that B(R) < £ if and only if any
continuous function f: R — R is £-measurable.

Problem 2.12. Let (X, X, u) be a measure space, f: X — [0, co] a Borel function, and
let df(t) = u({x € X: f(x) > t}). Show that:

(a) dyisright continuous.

(b) If u(X) < oo, then for every to > 0 it holds that limt_>t6 de(t) = u(fx € X: f(x) > to}).

Problem 2.13. Given £ > 0, produce a dense open set U < R such that A(U) < &, where
A is the Lebesgue measure on R.

Problem 2.14. Suppose that 1 < p < co and let f € LP(RN) for the Lebesgue measure
on RY. Show that

li
h—0

m J fx+h) - fO)ldA = 0 .

RN
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Problem 2.15. (a) Suppose that f: R¥ — Ris integrable and K < RY is nonempty
and compact. Show that limjy e, L<+y If(x)|dx = 0.

(b) Suppose that f: RY — R is uniformly continuous and f € LP(RM) for some
1 < p < co. Show that limy—c f(x) = 0.

Problem 2.16. Let X be a nonempty set, Y is a metrizable space and f: X — Y is a map
that is the pointwise limit of simple functions. Show that f(X) ¢ Y is separable.

Problem 2.17. Let (X, 2) be a measurable space, Y a second countable Hausdorff
topological space, and f: X — Y a X-measurable multifunction. Show that Gr f ¢

SR B(Y).

Problem 2.18. Let (Q, X, u) be a measure space and £ < X a countable subset such
thatif A € X, u(A) < oo, then there exists B € £ with u(A A B) < &. Show that LP(Q) is
separable forall 1 < p < co.

Problem 2.19. Let (Q, X, u) be a o-finite measure space and assume that f € L?(Q) for
all p > po > 1. Show that limy_, ;. Iflp = Ifllco-

Problem 2.20. Let (X, ), (Y, £), and (V, D) be measurable spaces, f: X - Y, g: X —
V,andlet h: X — Y x V be defined by h(x) = (f(x), g(x)) for all x € X. Show that h is
(2, £ Q D)-measurable if and only if f is (X, £)-measurable and g is (¥, D)-measurable.

Problem 2.21. Let (X, X) be a measurable space, Y, Y1, Y, separable metrizable spaces,
and V a Hausdorff topological space. Suppose that

fi: XxY — Yy, k =1, 2 are Carathéodory functions ,

g: Y, xY, - Vis Borel measurable .
Show that h: X x Y — V defined by h(x,y) = g(fi(x,y), f2(x,y)) is ¥ &) B(X)-

measurable.

Problem 2.22. Let E c R be Lebesgue measurable with A(E) > 0. Show that there exists
a nonmeasurable subset of E.

Problem 2.23. Let (X, 2, u) be a finite measure space and fy,,,: X > Rwithn,m e N
a family of X-measurable functions such that

fam(X) = fa(x) p-ae.asm — oo and fy(x) - f(x) p-a.e.asn— co.
Show that there exists an increasing sequence m, € N with n > 1 such that
fam,(x) = f(x) p-a.e.asn — oo.

Problem 2.24. Let X be a compact metrizable space and Y be a separable metrizable
space, and consider the function space C(X, Y) with the 7,-topology; see Remark 1.6.17.
Let

L= {e;l(C), CcVYis closed} ;

see Definition 1.6.7. Show that B(C(X, Y)) = o(L).
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Problem 2.25. Let (X, X) be a measurable space, V a compact metrizable space, Y a

separable metrizable space, and consider the function space C(V, Y) endowed with the

T,-topology; see Remark 1.6.17.

(a) Given a Carathéodory function f: X x V — Y, show that f: X — C(V, Y) defined
by f(x)(~) = f(x, -) is Z-measurable.

(b) Ifh: X — C(V,Y) is Z-measurable, show that hi: X x V — Y defined by h(x, -) =
h(x)(-) is a Carathéodory function.

Problem 2.26. Let (X, X, u) be a measure space and f: X — R is a pu-integrable func-
tion. Show that the set C = {x € X: f(x) # 0} has o-finite u-measure.

Problem 2.27. Suppose that X and Y are Hausdorff topological spaces such that

DY) ={(y,v) e YxY: y =v} € B(Y) Q) B(Y).

Show that the graph of any Borel function f: X — Y belongs to B(X) & B(Y).

Problem 2.28. Let (X, X, u) be a finite measure space. Show that there exists an at most
countable family {An}n>1 € X of atoms such that X \ [ J,,5; An is nonatomic.

Problem 2.29. Let (X, 2, u) be a measure space with u being semifinite (see Defini-
tion 2.1.30(a)), and let f, g: X — [0, +co] be two X-measurable functions such that

jfdy < jgdy forall A € ¥ with u(4) < oco.
A A

Show that f(x) < g(x) for p-a.a.x € X.

Problem 2.30. Let A € R be a set of finite Lebesgue measure and let f: R — R be
defined by f(x) = A(A N (—o0, x]) for all x € R. Here A denotes the Lebesgue measure on
RR. Show that f is continuous.

Problem 2.31. Let A € R be a Lebesgue measurable set with A(4) > 0 with A being the
Lebesgue measure on R. Show that A — A contains an open set.

Problem 2.32. Let (X, X, u) be a measure space and f: X — [0, co] is a X-measurable
function. Show that [, fdu = I;O u({x € X: f(x) > s})ds.

Problem 2.33. Let (X, 2, u), (Y, £, v) be two o-finite measure spaces. Show that (X x
Y, 2 L, u xv)is o-finite as well.

Problem 2.34. Let (X, X, u) be a measure space, f,,f: X — [0, +0o) withn > 1 are

2-measurable functions and suppose that f;, LA f. Show that for every 9 > 0, f;;’ 5 f9.

Problem 2.35. Let (X, X, u) be a nonatomic measure space and f: X — [0,00] is a
2-measurable function. Show that the measure X 5 A — &(A) = j , fdu is nonatomic if
and only if u({x € X: f(x) = +o0}) = 0.
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Problem 2.36. Let X be a Hausdorff topological space, p: B(X) — [0, +00) be a finite
Borel measure, and f: X — R be a continuous function. Show that there exists an at
most countable set D € R such that u({x € X: f(x) =n}) >0 foralln € D.

Problem 2.37. Let X, Y be two metric spacesand f: X — Y.Let Cf = {x € X: fis
continuous}. Show that Cr € B(X).

Problem 2.38. Does the Lebesgue Dominated Convergence Theorem (see Theorem 2.3.8)
hold for nets? Justify your answer.

Problem 2.39. Let X be a Polish space and A < X. Show that A is analytic if and only if
A = projy Bwith B € B(X x X) = B(X) X) B(X).

Problem 2.40. Let (X, X2) be a measurable space and Y a metric space. Show that
f: X — Yis Z-measurable if and only if for all continuous ¢ : ¥ — R we have that ¢ o f
is X-measurable.

Problem 2.41. Let (Q, X) be a measurable space, X a separable metrizable space, Y a
Hausdorff topological space, f: Q x X — Y a Carathéodory map, and U < Y be open.
Show that the multifunction w — G(w) = {x € X: f(w, x) € U} is measurable.

Problem 2.42. Let (Q, X)be ameasurable space, XisaPolishspaceand Fy,: Q — Pf(X)
with n € IN are measurable multifunctions such that for every w € Q, there exists n ¢ IN
such that F,(w) € Pi(X). Show that w — [, Fn(w) is measurable.

Problem 2.43. Let {X,},>1 be a sequence of Polish spaces and foreachn € N, A, ¢ X,
is analytic. Show that [],,.; An is an analytic subset of [ ],,.1 Xx.

Problem 2.44. Let X, Y be a Polish spaces, A € B(X), f: A — Y is a Borel measurable
map, and E = f(A). Assume that f is injective and B € B(Y). Show that f~! is Borel
measurable.

Problem 2.45. Let X, Y be Polish spaces and f: X — Y be Borel measurable.
(a) Show thatif A ¢ X is analytic, then f(A) C Y is analytic.
(b) Show that if B ¢ Y is analytic, then f~1(B) < X is analytic.

Problem 2.46. Let X, Y be Hausdorff topological spaces and f: X — Y be a map that
has a graph that is a Souslin subset of X x Y. Show that f is Borel measurable.

Problem 2.47. Let (X, %, p) be a finite measure space, K ¢ L!(X) be uniformly inte-
grable, and K* be the sequential closure for the y-almost everywhere convergence in K.
Show that K* is uniformly integrable as well.

Problem 2.48. Let (X, %, u) be a measure space and C < L' (X) a uniformly integrable
set. Show that for given £ > 0 there exist £ € L'(X), and § > O such that A ¢

2, IA §edp < 6 implies supyec IA Ifldu < e.
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Problem 2.49. Let (X, %, u) be a measure space and C < L' (X) a uniformly integrable
set. Show that for given € > 0 there is &, € L1(X), such that SUpfec I{|ﬂ>{ ) Ifldu < €.

Problem 2.50. Let (X, X, u) be a measure space and C ¢ L!(X). Assume that for every
€ > 0wecan find & € L1(Q), such that

sup j Ifldu < €.
feC
{12}

Show that C is uniformly integrable.

Problem 2.51. Let (X, X, u) be a measure space and C ¢ L!(X) be a bounded set,
and suppose that for every ¢ > 0 we can find & € L(Q), and § > 0 such that
Ael, f , hedp < 6 implies that supyec f 4 [fldp < €. Show that Cis uniformly integrable.

Problem 2.52. Let (2, X) be a measurable space, X a separable metrizable space,
f: QxX — RaCarathéodory function, and F: Q — Pj(X) a measurable multifunction.
Let m(w) = min[f(w, x): x € F(w)] and M(w) = {x € F(w): m(w) = f(w, x)}. Show that
m and M are both measurable.

Problem 2.53. Let (X, X) be a measurable space and y, v be finite measures on (X, X).
Show that either pLv or that there exist ¢ > 0 and B € X with y(B) > O and v > ey on B,
that is, B is a positive set for v — ep.



