

What is HiPEAC?

- HiPEAC is a European Network of Excellence on High Performance and Embedded Architecture and Compilation
- Created in 2004, HiPEAC gathers over 370 leading European academic and industrial computing system researchers from nearly 140 universities and 70 companies in one virtual centre of excellence of 1500 researchers.

Coordinator: Prof. Koen De Bosschere (UGent)

HiPEAC mission:

HiPEAC encourages computing innovation in Europe by providing:

- Collaboration grants, internships, sabbaticals, the semizannual computing systems week,
- The ACACES summer school, the yearly HiPEAC conference.

The HiPEAC Vision

- Electronic and paper version available now
- Paper version:
- Send to the members with the newsletter
- Was available at HiPEAC 2015 conference

Editors: Marc Duranton (FR-CEA), Koen de Bosschere (BE-U Gent), Albert Cohen (FR-INRIA), Jonas Maebe (BE-U Gent), Harm Munk (NL-ASTRON)

Glimpse into the HiPEAC Vision 2015

For the first time, we have noticed that the community really starts looking for disruptive solutions,
and that incrementally improving current technologies is considered inadequate to address the challenges that the computing community faces:

"The End of the World As We Know It"

Structure of the HiPEAC vision 2015

Structure of the HiPEAC vision 2015

Moore's law: increase in transistor density

Source from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

The end of Dennard Scaling

Parameter (scale factor = a)	Classic Scaling	Current Scaling
Dimensions	I / a	I / a
Voltage	I / a	I
Current	I / a	I / a
Capacitance	I / a	$>\mathrm{I} / \mathrm{a}$
Power/Circuit	$\mathrm{I} / \mathrm{a}^{2}$	I / a
Power Density	I	a
Delay/Circuit	I / a	$\sim \mathrm{I}$

Source: Krisztián Flautner "From niche to mainstream: can critical systems make the transition?"

Limited frequency increase \Rightarrow more cores

Source from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

Limitation by power density and dissipation

Source from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton Smith, Chris Batten, and Krste Asanoviç

Why using several compute cores?

1. Using several cores is also an answer to the Law of Diminishing Returns [Pollack's Rule] :

- Effectiveness per transistor decreases when the size of a single core is increased, due to the locality of computation
- Controlling a larger core and data transport over a single larger core is super-linear
- Smaller cores are more efficient in ops/mm²/W

2. Large area of today's microprocessors are for best effort processing and used to cope with unpredictability (branch prediction, reordering buffers, instructions, caches).

Less than 20% of the area for execution units

Source: Dan Connors, "OpenCL and CUDA Programming for Multicore and GPU
Architectures» ACACES 2011

Stagnation of performance since few years

Source from C Moore, « Data Processing in ExaScale-Class Computer Systems », Salishan, April 2011

Power limits the active silicon area => more efficient specialized units

Specialization leads to more efficiency

Source from Bill Dally (nVidia) « Challenges for Future Computing Systems » HiPEAC conference 2015

Potential other optimizations
 $\mathbf{P}_{\text {per unit }}=C V^{2} f+T_{s c} V I_{\text {peak }+} V I_{\text {leak }}$

Average power, peak power, power density, energy-delay, ...

CIRCUITS

- Voltage scaling/islands

- Clock gating/routing

Clock-tree distribution, half-swing clocks

- Redesigned latches/flip-flops pin-ordering, gate restructuring, topology restructuring, balanced delay paths, optimized bit transactions
- Redesigned memory cells

Low-power SRAM cells, reduced bit-line swing, multi-Vt, bit line/word line isolation/segmentation

- Other optimizations

Transistor resizing, GALS, low-power logic

ARCHITECTURE
 COMPILER, OS, APPLICATION

- Voltage/freq scaling
- Gating

Pipeline, clock, functional units, branch prediction, data path

- Split instrucn windows
- SMT thread throttling

- Bank partitioning

- Cache redesign

Sequential, MRU, hash-rehash, column-associative, filter cache, subbanking, divided word line, block buffers, multi-divided module, scratch

- Low-power states

DRAM refresh-control

- Switching control

Gray, bus-invert, address-increment

- Code compression
- Data packing/buffering

- Switching control

Register relabeling, operand swapping, instruction scheduling

- Memory access reduce Locality optimizations, register allocation
- Power-mode-control
- CPU/resource schedule
- Memory/disk control

Disk spinning, page allocation, memory mapping, memory bank control

- Networking

Power-aware routing, proximity-based routing, balancing hop count,

- Distributed computing

Mobile agents placement, network-driven computation

- Fidelity control
- Dynamic data types
- Power API

Energy consumption of ICT

- Esimated consumption 410 TWh in 2020, 25\% for servers

BAU Scenario Annual Electricity Consumption of ICT (in TWh/a)

Cost of moving data

The High Cost of Data Movement
 Fetching operands costs more than computing on them

28nm

Source: Bill Dally, « To ExaScale and Beyond »
www.nvidia.com/content/PDF/sc 2010/theater/Dally SC10.pdf

Performances of SRAM hardly increase

Node	45 nm	16 nm	14 nm	10 nm
Density	$150 \mathrm{~F}^{2}$	$2 \mathrm{ti} 7 \mathrm{~F}^{2}$	ti00 F2	$450 \mathrm{~F}^{2}$
SRAM DENSITY - 16nm vs 28nm				

Memory density at 1500 MHz and above scales by $\sim 1.1 \mathrm{x}$ or less from 28 nm to 16 nm

Source: Joel Hruska, « Stop obsessing over transistor counts: It's a terrible way of comparing chips », http://www.extremetech.com

SRAM takes more and more SoC area

Fig 3. To compress design schedule time, designers often reuse earlier design blocks and use third party IP. It is very rare that a new chip featuring billions of transistors is designed completely from scratch. Generally, most of a new design's transistors are used to form memories or functions derived from similar functions implemented in earlier designs. (Source: Semico Research Corporation, Study Number SC103-10, October 2010)

Flash scaling also hits limits

Questions

Q1. Why so difficult ? WON e- YNO

Q2. 3D V-NAND Can Solve ?

- At 20nm, about 70e- stored

- Vt not ok for multilevel storage Flash Memory

The future will be non volatile memories

But still in development and which technology will be the winner?

	FeRAM	RRAM	Magnetic field write MRAM	PRAM	STT MRAM
Non-volatile cell factor	$16-32$	$4-6$	$16-32$	$5-8$	$5-7$
Memory $\left(\mathrm{F}^{2}\right)$	Y	Y	Y	Y	Y
Read time (ns)	$20-50$	$10-20$	$3-20$	$5-20$	$3-15$
Write/erase time (ns)	50	20	$10-20$	>30	$3-15$
Number of rewrites	10^{12}	10°	$10^{15} \mathrm{~min}$	10^{12}	$10^{15} \mathrm{~min}$
Power consumption at write	Low	Low	Somewhat high	Low	Low
Required input voltage (V)	$2-3$	1.2	3	$1.5-3$	1.5

The cost per transistors is not decreasing anymore

And the development cost is increasing

SoC Development Costs have Soared from \$20 Million at 90 nm to Over $\$ 100$ Million at 32 nm

Rock's law: cost of IC plant doubles every 4 years
: Reaching $10^{\text {th }}$ or $100^{\text {th }}$ of $\$$ Billions...

"Main drives in compuAng"

High Performance Computing

1965
General Electric GE6tis
4 processors, 2 MIPS

2012
Bull B510, 10K cores,
4TeraBytes RAM, 200 TFlops

2015
Tianhe-2 (MilkyWay-2): Intel Xeon E5-2692 12C 2.200GHz, Intel Xeon Phi ti1S1P, ti.12M cores, 1,024 TB RAM, 50 PFlops, 17,8 MW

Yesterday

Today

\$\$ = Fuel of innovation?
 HPC: not anymore a drive for component developments

Specialization with interposer

Many cores: technology to reduce energy consumption and cost

Traditional Chip

Large IC with maximum integration

0000000000000000000000000000
1 die
$5000 \$$ wafer cost 89 dies of $6 \mathrm{~cm}^{2}$

20\% yield
\rightarrow 281 \$ die cost

- 7281 \$ die cost

IC cost ${ }^{*} \quad 95 \%$ final test yield $\rightarrow 296$ \$ IC cost
$5000 \$$ wafer cost
89 dies of $6 \mathrm{~cm}^{2}$
20% yield
$\rightarrow>281 \$$ die cost

Multiples small dies
Small dies stacked on a large interposer

25 chiplets +1 interposer

ti00 mm
Wafer
$\mathbf{0 . 9} \mathrm{cm}^{2}$ dies
Chiplets:
5000 \$ wafer cost
714 dies of $0.9 \mathrm{~cm}^{2}$
80% yield
$\rightarrow>8.75$ \$ die cost
$\quad \rightarrow>255$
90% final test yield
$\rightarrow>284 \$$ tiD-IC cost

2 GFLOPS/W More energy efficiency 10 GFLOPS/W
*: test and package costs are not included but considered equal for both technologies in this exercise ${ }_{\text {ti5 }}$

Together...

Electrons for compute
Electrons like to interact; easily moved; interaction needed for compute + lons for storage lons like to interact; stay put; good for storage + Photons to communicate

Photons don't like to interact or stay put; good for long-distances
See the presentation on "The Machine" from HP

Software cost is rapidly increasing

Parallelismand'specializzaAonarenotot

 for free....
Frequency limit

 -yparallelism Energy efficiency
- خheterogeneity

Parallelism and specializaAon are not for free....

Frequency limit

 -yparallelism Energy efficiency シ̌heterogeneity

Managing complexity....

"Nontrivial software written with threads, semaphore and mutexes is incomprehensible by humans"

Edward A. Lee

The future of embedded software
ARTEMIS 2006

Parallelism seems to be too complex for humans?

Time to think differently?

-Approximate computing
-Probabilistic CMOS

- Neuromorphic computing

- Declarative programming
-Graphene
- Spintronic
-Quantum...

Time to think differently?

-Approximate computing
-Probabilistic CMOS

- Neuromorphic computing
-Declarative programming
-Graphene
- Spintronic
-Quantum...

Declarative Programming

Time to think differently?

-Adequate computing
-Probabilistic CMOS

- Neuromorphic computing
-Declarative programming
-Graphene
- Spintronic
-Quantum...

Declarative Programming

We are entering a transition period...

Scaling without Technology Help

[Hill \& Kozyrakis '12]

