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Abstract—Automatic measurement of semantic text similarity
is an important task in natural language processing. In this
paper, we evaluate the performance of different vector space
models to perform this task. We address the real-world problem
of modeling patent-to-patent similarity and compare TFIDF
(and related extensions), topic models (e.g., latent semantic
indexing), and neural models (e.g., paragraph vectors). Contrary
to expectations, the added computational cost of text embedding
methods is justified only when: 1) the target text is condensed;
and 2) the similarity comparison is trivial. Otherwise, TFIDF
performs surprisingly well in other cases: in particular for
longer and more technical texts or for making finer-grained
distinctions between nearest neighbors. Unexpectedly, extensions
to the TFIDF method, such as adding noun phrases or calculating
term weights incrementally, were not helpful in our context.

Keywords-text similarity, vector space model, text embedding,
patent, big data

I. INTRODUCTION

AUTOMATIC detection of semantic text similarity be-

tween documents plays an important role in many natural

language processing applications. Techniques for this task fall

into two broad categories: structure based and structure agnos-

tic. In the first category, solutions rely on a logical structure

of the text and transform it into an intermediate structure,

such as aligning trees, to do the comparison. While useful

in many contexts, it often is not clear which structure to use

for a particular comparison. In the second category, structure

is ignored and the text is represented using a vector space

model (VSM). While VSMs often do not capture semantic

components of text (e.g., negations), they have been shown to

be able to measure text similarity in many applications.

A vector space model converts text into a numeric vector.

A key aspect of VSMs is the definition and number of

dimensions for each vector. In a common and simple approach,

TFIDF defines a space where each term in the vocabulary is

represented by a separate and orthogonal dimension. TFIDF

measures the term frequency of each term in a text and multi-

plies it by the logged inverse document frequency of that term

across the entire corpus. Despite its simplicity, TFIDF may

suffer from an ignorance of n-gram phrases, complications

with incremental updates upon addition of new documents,

and a large number of dimensions. To deal with such issues,

variants of TFIDF have been proposed to incorporate n-grams

as new terms, and/or to adjust for the timing of the use of

vocabulary across the time line of the corpus.

Other techniques, known as text embedding, attempt to ad-

dress the high-number of dimensions and the loss of semantic

information in TFIDF models, by transforming each text into

a low-dimensional vector. Text embedding methods can be

grouped into two categories: (i) count based methods based

on bag of words (where the order of words are ignored), and

(ii) prediction based methods based on sequence of words

(where the order of words is taken into account). Topic models

are an example of the first approach where each document

is represented as a probability distribution of how relevant

that document is to a given number of topics (and thus a

lower-dimensional space). Each topic is selected as a weighted

average of a subset of terms and document vectors are learned

from the corpus on the assumption that words with similar

meanings will occur in similar documents. Neural models are

an example of the second approach where word vectors are

learned using a shallow neural network trained from pairs of

(target word, context word), where context words are taken

as words observed to surround a target word. The assumption

behind neural models is that words with similar meanings tend

to occur in similar contexts. Document vectors can then be

created out of word vectors through an averaging strategy or by

considering each document as a special context token, hence

obtaining document vectors directly. Prior research suggests

that topic models and neural models are fundamentally similar

in that they both arrive at a representation of the document in

a lower-order space [1].

In this paper, we are interested in similarity measurement

between patents. Patent-to-patent similarity can have several

applications such as decision making on patent filing, pre-

dicting probability of different types of patent rejections and

forecasting the innovation space. Previous studies [2], have

shown that TFIDF is a powerful technique to detect patent-

to-patent similarity, but the performance of other vectorization

methods is unknown. We therefore compare the performance

of TFIDF to other, newer methods to determine the relative

performance of such methods for real world problems.

This paper continues as follows: In section II, we discuss

the background material as well as related comparative studies

on semantic text similarity. In section III, we introduce our

data gathering, pre-processing, vectorizing and performance
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evaluation pipeline. In section IV, we present our experimental

results. In section V, we conclude the paper and propose some

avenues for future work.

II. BACKGROUND

A. Vector Space Models

Vector space models transform text of different lengths

(such as a word, sentence, paragraph, or document) into a nu-

meric vector in order to be fed into down-stream applications

(such as similarity detection or machine learning algorithms).

TFIDF, the most basic text vectorization method, defines a

space where each term in the vocabulary is represented by

a separate and orthogonal dimension. Despite its popularity

and simplicity, basic TFIDF may suffer from (i) ignorance of

n-gram phrases, (ii) complications with incremental updates

upon addition of new documents, and (iii) a large number

of dimensions. To deal with the two former issues, variants

of TFIDF have been proposed: (i) to incorporate n-grams as

new terms, and/or (ii) to adjust for the timing of the use of

vocabulary across the time line of the corpus. To deal with

the latter issue, text embedding methods attempt to address

the high-number of dimensions by transforming each text

into a low-dimensional vector. Text embedding techniques can

be categorized into count-based and prediction-based models.

Count-based models (a.k.a. topic models) create a document-

term matrix where the weight of each cell is based on the

number of times a term appears in the focal document.

Prediction-based models (a.k.a. neural models) predict the

occurrence of a term/document based on surrounding terms

to learn a vectorization for each term/document.

In this section, we review mentioned families of the vector

space models, namely (i) TFIDF models, (ii) topic models and

(iii) neural models. From each family, we also select candi-

dates to be compared for patent-to-patent similarity detection.

1) TFIDF Models.: Term Frequency–Inverse Document

Frequency (TFIDF) is one of the most common vectorization

techniques for textual data with many possible variations [3].

TFIDF considers two documents as similar if they share rare,

but informative, words. In TFIDF, every term is considered as

a different dimension orthogonal to all other dimensions. Each

term is represented by a weight which is positively correlated

with its occurrence in the current document and negatively

correlated with its occurrence in all other documents in the

corpus. The logic behind TFIDF is to downgrade the impor-

tance of terms that are common in many documents, on the

view that those terms carrying less information specific to a

focal text. Despite the popularity and applicability of TFIDF to

many applications, it suffers from the curse of dimensionality

in many downstream applications (e.g. computing k nearest

neighbors[4]), it ignores n-gram phrases, and all IDF weights

might need to be updated upon the addition of new documents.

The basic model, however, can be extended in several ways

to avoid some of these pitfalls. We consider two recently

proposed extensions in this study.

First, we consider adding certain n-grams to the term

vocabulary. N-grams allow for the combination of terms into

higher-level concepts, which may be particularly important

for research in computational social sciences including patent

research [5]. Adding n-grams blindly, however, would vastly

increase the size of vocabulary, and thus the number of vector

dimensions. A more manageable approach, therefore, is to add

noun phrases based on synthetic properties of the text. We test

the phrase extraction technique from [6] which extracts noun

phrases based on a pattern based method.

A second, and separate, extension takes advantage of the

timing information of patents to implement incremental IDF

[7]. More specifically, whenever a new document is added to

the corpus, the corresponding IDF at that point in time is cal-

culated based on the current state of the total corpus.Therefore,

a term would have a low IDF when it is first introduced

into the vocabulary and high differentiating power; and the

IDF would attenuate over time as use of the term became

more common. An example would be a niche term for an

emerging technology, where the term would have a very high

importance at the time of filing the patent, but the term would

reduce in importance over time. As a convenient side property,

incremental calculation of IDFs also avoids the need to update

all TFIDF vectors upon addition of a new document to the

corpus.

2) Topic Models.: Topic models transform a text into a

fixed size vector, equal to a given number of latent topics. The

vector represents the probability distribution that the focal text

relates to each of the different topics. In practice, each topic

is a weighted average of a subset of terms. Similar to TFIDF,

topic models treat the text as a bag of words where order of

words is ignored. On the down side, interpretation of each

topic can be subjective and determining the right number of

topics requires tuning of the model.

Latent Semantic Indexing (LSI) [8], [9] is a commonly

used topic model to find low-dimension representation of

words or documents. Latent Dirichlet allocation (LDA) is

another popular topic model that fits a probabilistic model

with a special prior to extract topics and document vectors.

We choose LSI as the representative of topic models in this

study, as LDA models can be hard to reproduce due to their

highly probabilistic nature.

3) Neural Models.: Unlike models that simply count terms,

neural models capture information from the context of other

words that surround a given word, hence taking ordering into

account. A well-known model for predicting word context is

W2V (Word to Vector)[10], where the authors propose an

algorithm based on a neural network of three layers to learn

word vectors. Prior research has shown the W2V model to

perform well with analogy and similarity relationships.

To obtain document vectors from word vectors, one can

average together all word vectors. Because simple averaging

will give the same weight to both important and unimportant

words, one may be able to retain more information by assign-

ing weights during averaging based on TFIDF. Alternatively,

an extension of W2V, known as D2V (Document to Vector) or

paragraph vectors[11], has been proposed to obtain document

vectors directly by considering a document as a special context
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token that can be added to the training data, such that the

model can learn token vectors and consider them as document

vectors. D2V can be implemented incrementally and showed

a better performance compared to the previous approaches

in some similarity detection benchmarks. However, on the

negative side, it has numerous hyper-parameters which should

be tuned to harvest its power to the full extent. We consider

the D2V model as the representative neural model for the

experiments in this study.

B. Similarity Metric

Given two vectors, one can measure similarity between

them in many ways: Euclidean distance, angular separation,

correlation, and others. Although there are differences between

each measure, in this study we adopt cosine similarity as the

measure of interest as it is frequently-used.

C. Existing Comparative Studies

Several recent studies compare different vector space mod-

els with respect to their similarity detection power for texts.

Very few of them, however, target similarity detection for

longer texts (e.g. documents). In [12] the authors compared

D2V variants against an averaging W2V, as well as a prob-

abilistic n-gram model for two similarity tasks. In the first

task, the goal is to detect similarity of forum questions;

the second task aims to detect similarity between pair of

sentences. The authors find that D2V is superior for most cases

and that training the model on a large corpora can improve

their results. In [13] the authors attempt to detect similarity

between sentences and compare several neural models against

a baseline that simply averages together word vectors. They

find that more complex neural models work best for in-

domain scenarios (where both the training data set and the

testing data set are from the same domain), while a baseline

of averaging word vectors is hard to beat for out-of-domain

cases. In [14] the authors proposed a method for sentence

embedding through the weighted averaging of word vectors

as transformed by a dimensionality reduction technique. They

show that their text vectors outperform well-known methods

to detect sentence to sentence similarity. In [15] the authors

use an unsupervised method to vectorize sentences and show

that their method outperforms other state-of-the-art techniques

to detect similarity of short sequences of words. In each of

these studies, however, the objective was to determine the

performance of similarity detection algorithms on relatively

short sections of text.

There has been much less research on the performance of

similarity comparisons for longer text. In [16] the authors

compared D2V to a weighted W2V, LDA, and TFIDF to

detect the similarity of documents in Wikipedia and arXiv

corpus. They find that D2V can outperform other models

on Wikipedia, but that D2V could barely beat a simple

TFIDF baseline on arXiv. In [17] the authors compared several

algorithms to detect similarity between biomedical papers of

PubMed and find that advanced embedding techniques again

can hardly beat simpler baselines such as TFIDF. This paper

adds to the stream of research comparing text vectorization

methods for longer text. In particular, we focus on a real-world

problem with an objective standard for determining similarity,

whereas prior research has had to rely on broad categorizations

from repositories such as Wikipedia and arXiv. To the best of

our knowledge, this work is also the first comparative study

of semantic similarity methods in the patent space.

III. DATA PIPELINE

The Patent Research Foundation1 provided us with a corpus

of all publicly available patents from the United States Patent

and Trademark Office (USPTO) from January 1976 to January

2018.2 From the raw data, we create a pipeline to extract the

technical description from each patent and vectorize the text.

Our code, based on Python 3, is available on GitHub upon

email request. For the purpose of this study, we focus on the

following fields:

• Number: unique ID for each issued patent

• Title: patent information of high density

• Abstract: patent information of moderate density

• Description: patent information of low density

• Date: date when the patent application was submitted

• Class: one of 491 patent main class classifications3

• Subclass: one of 82,520 patent subclass classifications2

A. Pre-Processing

For pre-processing of the data, we use the DataProc service

of Google Cloud Platfrom4. DataProc, a managed Apache

Spark5 service hosted by Google, provides a high-performance

infrastructure for rapid implementation of data parallel tasks

such as data pre-processing. We apply several pre-processing

steps to the textual fields of patent data (title, abstract, descrip-

tion):

• Remove HTML, non-ASCII characters, terms with digits,

terms less than 3 characters, internet addresses, and

sequences such as DNA

• Stem words and change to lower-case

• Remove stopwords (general NLP and patent-specific)

• Remove rare terms with low total document frequency

B. Vectorizing

We vectorize titles, abstracts and descriptions for each of

the following models:

1) Simple TFIDF: We use the machine learning library

in the Apache Spark framework for our implementation of

TFIDF. There are two flavors of of TFIDF in Spark to consider.

The first method is based on CountVectorizer, where vocabu-

lary is generated and term frequencies are explicitly counted

before being multiplied with inverse document frequency. The

CountVectorizer method, however, creates a highly sparse

1Patent Research Foundation: https://www.patrf.org
2Data can also be downloaded from: https://bulkdata.uspto.gov
3USPTO patent classification: https://www.uspto.gov/web/patents/ classifi-

cation/selectnumwithtitle.htm
4Google Cloud Dataproc Service: https://cloud.google.com/dataproc
5Apache Spark: https://spark.apache.org
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representation of a document over the vocabulary. The second

method takes advantage of HashingTF which transforms a set

of terms to fixed-length feature vectors. The hashing trick can

be used to directly derive dimensional indices, but it can suffer

from collisions. In this work, we use the first method as a

slower but more robust technique.

2) Incremental TFIDF: Incremental updating of inverse

document frequencies can be implemented in one of two ways:

(i) create a new TFIDF model at a fixed time interval for

newly arrived patents, or (ii) create a TFIDF model on the

whole corpus and then adjust document frequency vectors

by subtracting document frequencies of future patents with

respect to each focal patent. We implement the second.

3) Phrase-augmented TFIDF: We augment the vocabulary

of TFIDF by noun phrases as extracted from the open source

NPFST library6. The library is based on Python 2, which

was ported to Python 3 to be compatible with the rest of

the pipeline. NPFST can be configured to limit the number

of noun phrases based on their frequency and length.

4) LSI: Despite the advantage of Spark for running data

parallel tasks, its support for model parallel tasks such as

LSI is limited. Therefore, we use the LSI implementation in

Gensim7, a well-established library for text vectorization. Gen-

sim implements several different vector space models, exploits

parallelism of multiple CPU cores, and supports large corpora

that cannot be resided in the memory. Gensim also implements

LSI in a memory-efficient way to support incremental updates,

an important consideration for large corpora. Gensim accepts

TFIDF document-word matrix as input and has several hyper-

parameters, of which we consider the followings for tuning:

• num-topics: number of latent topics

• chunksize: number of documents in each training chunk

• decay: weight of existing observations relative to new

ones (max 1.0)

5) D2V: We also use the implementation of D2V in Gen-

sim, as the Gensim version is memory efficient, allows for

incremental updates, and can be parallelized over multiple

cores. We fix the random seed and Python hash seed for

reproducibility of results. D2V implementation accepts raw

pre-processed text in the form of TaggedDocument elements,

and has several hyper-parameters, of which we consider the

followings for tuning:

• dm: flag to choose distributed memory or distributed bag
of words algorithms

• size: dimension of the feature vectors

• window: maximum distance between target and context

word in text

• sample: threshold as to which high-frequency words are

randomly ignored

• iter: number of iterations over the corpus

• hs: flag to choose hierarchical softmax or negative sam-
pling methods

6Phrase Machine Library: http://slanglab.cs.umass.edu/phrasemachine
7Gensim Library: https://radimrehurek.com/gensim/index.html

C. Evaluation

To evaluate the relative performance for each vectorization

method, we construct a classification test on our data, where

we use the similarity score between two vectors from a given

method to predict whether that pair of patents would be rated

as similar (positive label) or not (negative label) according to

an independent benchmark. Our evaluation test requires:

1) a benchmark indicator of similarity as the ground truth,

2) a way to calculate a similarity score between vectors,

3) a metric to assess the accuracy of predictions, and

4) a mechanism to tune hyper-parameters.

1) Benchmark: Identifying a ground-truth benchmark for

similarity is an important requirement for evaluating the

performance of similarity detection from automated text vec-

torization. While a continuous measure of the ground truth

would be ideal, we are not aware of a reliable measure of

continuous patent-to-patent similarity that is separate from

textual analysis. Instead, we construct a benchmark set of both

more-similar pairs of patents (positive case) as identified by

the USPTO, and less-similar pairs of patents (negative case),

and evaluate the relative performance of text vectorization

techniques in predicting the difference between the two cases.

For the selection of more-similar pairs of patents, one

might consider patent citations to be a natural choice – for

one would expect patent citations to reference more-similar

patents. Within the full set of patent citations, however, there

is a subset of “102 rejections” that one would expect to be

even more highly-similar that an average patent citation. Patent

examiners issue a 102 rejection when they believe that a cited

patent is similar enough to the citing patent to cause them to

reject the patent application of the citing patent on the basis

that the new invention is not novel enough. Although 102 re-

jections are not a perfect indicator of similarity, it is reasonable

to believe that 102 rejections are considerably more-similar

to each other than some other comparison sets. We therefore

select 102 rejections as our indicator of similarity.8

For the selection of the comparison set of less-similar patent

pairs, one can easily identify patents that are in fact very

dissimilar, and therefore very easy to distinguish from positive

cases defined above. Alternatively, one can also pick pairs

of patents that are, themselves, somewhat similar, and there-

fore much harder to distinguish from the positive cases. As

such, we select and evaluate the performance of vectorization

methods across a range of comparison difficulties. Going from

harder separation to easier separation, we select negative cases

for three testing scenarios: (i) pairs of patents selected at

random from the same subclass, (ii) pairs of patents selected

at random from the same main class and (iii) pairs of patents

simply selected at random.

8The Patent Research Foundation provided us with pairs of patents in 102
rejections from public records for use in this study. More recently, the USPTO
has also released a data set of 102 rejections[18]. Validation tests on both data
sets give similar results.
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In summary, we selected a random set of 102 rejection

patent pairs for our positive labels, and we selected multiple

sets of patent pairs for our negative labels (sets drawn from

the same subclass, the same main class, or at random). We

choose the size of our test set large enough to avoid selection

bias (a set of 50K positive and 50K negative-labeled pairs).

2) Similarity Calculation: We calculate the similarity of

each patent pair based on the cosine sim. of their correspond-

ing vectors from a different vector space. To compare pairs of

patents from an incremental TFIDF model, a recent study[7]

proposes replacing the IDF of the latter patent to that of the

former patent so that both vectors have the same time scale to

compare. Therefore we pre-compute aggregated DFs by month

so that IDF replacement could be done efficiently at run time.

3) Evaluation Metric: The Receiver Operating Character-

istic (ROC) curve is a standard method for comparing the

accuracy of classifiers in which the class distribution can be

skewed and the probability threshold to assign labels is not

determined. Given labels and predictions, the Area Under the

Curve (AUC) represents the probability that a vectorization

method will predict that a positive case (a randomly selected

102 rejection pair of patents) to be more similar than a negative

case (a randomly selected pair of patents from a comparison

set). The AUC is our preferred metric for comparing models,

and we plot ROC curves for visual comparisons.

4) Model Tuning: Models with hyper-parameters (e.g.,

topic models and neural models) need to be tuned for optimal

performance. Studies show that hyper-parameter tuning can

be as important as, or even more important than, the choice

of the model itself [1]. However, the complexity and cost

of tuning can escalate quickly as the number of hyper-

parameters increases. Classic approaches to tuning, such as

grid or random search, are often a poor choice when the cost

of model evaluation is high. For grid search, it is difficult to

select grid points for continuous parameters, and every added

hyper-parameter will increase the tuning cost geometrically.

For random search, one can end up calculating many poor

configurations where model evaluation is expensive.

Bayesian optimization is shown to be superior to classic

hyper-parameter tuning solutions for expensive models [19].

In particular, it provides a global, derivative-free approach

that is suitable for tuning black box models with a high

cost of evaluation. The costs of tuning is also linear with

respect to the number of hyper-parameters. We used the scikit-

optimize library9 to implement Bayesian optimization due to

the library’s ability to run in parallel and to integrate with other

libraries. We set a tuning budget equal to 10 times the number

of hyper-parameters for most experiments, but stopped tuning

short for the description field due to the high cost and low

improvement expectation.

IV. EXPERIMENTAL RESULTS

A. Model Comparisons

Figure 1 plots the performance of patent-to-patent similarity

measurement by model. Each row corresponds to a different

vectorization approach and each column corresponds to testing

on a different text field. Each pane compares a simple TFIDF

model as a baseline (solid lines) with a more complicated

vectorization method indicated for that row (dashed lines).

The comparison is done for each of the three benchmarks

mentioned earlier in Section III-C: a random set of 102

rejection patent pairs with positive labels, and three sets of

patent pairs with negative labels (sets drawn from the same

subclass, the same main class, or at random). Cosine similarity

of each patent pair is calculated using the two vector space

models and their corresponding ROC curves are plotted, where

different colors correspond to different benchmarks.

In the first row of Fig. 1, TFIDF with noun phrases performs

almost identically to the baseline, across all text lengths

and benchmarks. This is counter-intuitive, as augmenting a

bag-of-words vector with n-grams would seem to add more

information. It is possible, however, that adding every noun

phrases is too granular. We performed additional experiments

with including only the top 50, 100, and 200 noun phrases,

but found even worse results than the baseline.

In the second row of Fig. 1, incremental TFIDF also

performs almost identically to the baseline, across all text

lengths and benchmarks. This result is contrary to recent

studies [7] where incremental TFIDF was presumed to be

beneficial. However, even if incremental TFIDF is not better at

similarity detection, it is computationally cheaper for a corpus

that expands over time, and therefore our results suggest that

incremental TFIDF may be a reasonable choice in that context.

In the third row of Fig. 1, a highly-tuned LSI model is able

to beat the performance of the baseline, but only for a very

easy similarity comparison and only for very short text (titles).

Otherwise, LSI performs worse than the baseline.

In the fourth row of Fig. 1, a highly-tuned D2V model is

able to beat the baseline, but this gain is considerable only for

very short text (title) and only for an easy similarity compari-

son. D2V gives only a very slight improvement over baseline

on all other conditions. It also is important to emphasize that

the very minor improvement of D2V over the simple TFIDF

baseline were obtained only after very extensive and expensive

tuning of the D2V model.

To summarize, Table I reports the AUC and the percentage

improvement in AUC of the best vectorization method in

all different text field - test set evaluation scenarios over

the simple TFIDF baseline while Table II depicts the rough

wall time estimate required by each method to compute the

corresponding vector space representation of the full corpus

using our hardware setting (excluding pre-processing time).

In each case, the best method10 performs better than a simple

TFIDF model, but the percentage of improvement is negligible

9Scikit-Optimize Library: https://scikit-optimize.github.io
10Highly tuned D2V performs the best in all testing scenarios.
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Legend: Green : Rej. vs random pairs Blue : Rej. vs same class pairs Red : Rej. vs same subclass pairs

_________ TFIDF baseline - - - - - Comparison model

Fig. 1: Inferred accuracy of patent-to-patent similarity by vectorization method: Figures plot ROC curves for the prediction of

patent rejection based on similarity score of four vectorization methods: TFIDF with noun phrases; TFIDF with incremental

calculation of IDF; highly-tuned LSI; and highly-tuned D2V. In each plot, solid lines represent the simple TFIDF model as a

baseline, and dashed lines represent the comparison model. Experiments were run by text length (title, abstract and description)

and difficulty of prediction: easy (in green: discrimination between a 102 rejection pair and a random pair); medium (in blue:

discrimination between a 102 rejection pair and a pair from the same class); and difficult (in red: discrimination between a

102 rejection pair and a pair from the same subclass).
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Legend: ______ AUC for D2V during tuning . . . . AUC for D2V with default parameters - - - - AUC for simple TFIDF baseline

Fig. 2: Hyper-parameter tuning of D2V for each testing scenario is depicted. Rows correspond to testing difficulty: Same

subclass (discrimination between a 102 rejection pair and a pair from the same subclass); same class (discrimination between

a 102 rejection pair and a pair from the same class); and random (discrimination between a 102 rejection pair and a random

pair). Columns correspond to text fields with different lengths.

in most cases other than similarity comparison based on titles

with a very easy distinguishability (102 rejections pairs versus

random pairs). Moreover the computation wall time of the best

method is at least two orders of magnitude highers than the

baseline TFIDF in all scenarios.

TABLE I: AUC performance comparison of the best VSM to

the simple TFIDF.

Title Abstract Description
Sub-class

Best VSM 0.646 0.749 0.775
TFIDF 0.643 0.738 0.768

Improvement 0.4% 1.5% 0.9%
Main-class

Best VSM 0.723 0.858 0.900
TFIDF 0.720 0.846 0.886

Improvement 0.4% 1.4% 1.6%
Random

Best VSM 0.907 0.977 0.993
TFIDF 0.786 0.957 0.988

Improvement 15.4% 2.0% 0.5%

TABLE II: Computation wall time comparison of the best

VSM to the simple TFIDF.

Title Abstract Description
Best VSM hours days weeks
TFIDF seconds minutes hours

B. Hyper-parameter Tuning

To better understand the effect of tuning hyper-parameters

using Bayesian Optimization, Figure 2 plots the AUC of D2V

while tuning the model. Rows correspond to testing difficulty;

columns correspond to text fields. We stopped tuning at 10

times the number of parameters (i.e., 60 rounds), except for

Description where there was little improvement.

Several trends in Figure 2 are clear: 1) easier similarity

detection makes hyper-parameter tuning more important; 2)

longer text makes hyper-parameter tuning less beneficial; and

3) using D2V with default parameters gives very poor per-

formance - substantially worse than a simple TFIDF baseline.

Table III shows the values of tuned hyper-parameters of D2V.
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TABLE III: Highly-tuned hyper-parameters for D2V.

Field Benchmark dm hs size window sample iter AUC

Title Sub-class 0 1 374 1 1e-3.28 10 0.647
Title Main-class 0 1 250 10 1e-3 10 0.725
Title Random 0 0 321 1 1e-3.08 10 0.907

Abstract Sub-class 1 1 491 1 1e-4.06 10 0.750
Abstract Main-class 1 0 290 1 1e-4.01 10 0.859
Abstract Random 1 0 522 1 1e-4.04 9 0.977

Description Sub-class 1 0 321 7 1e-4.91 10 0.775
Description Main-class 1 1 592 1 1e-5.52 10 0.900
Description Random 1 0 501 1 1e-7 10 0.993

V. CONCLUSION

In this paper, we evaluated the performance of text vec-

torization methods for the real-world application of automatic

measurement of patent-to-patent similarity. We compared a

simple TFIDF baseline to more complicated methods, includ-

ing extensions to the basic TFIDF model, LSI topic model,

and D2V neural model. We tested models on shorter to longer

text, and for easier to harder problems of similarity detection.

For our application, we find that the simple TFIDF, con-

sidering its performance and cost, is a sensible choice. The

use of more complex embedding methods which can require

extensive tuning, such as LSI and D2V, is only justified if the

text is very condensed and the similarity detection is relatively

coarse. Moreover extensions to the baseline TFIDF, such as

adding n-grams or incremental IDFs, does not seem beneficial.

Although our conclusion is based on experiments over patents,

we believe that it can be generalized to other corpora due to

the minimal patent-specific interventions in our pipeline.

Our results are compatible with previous studies on seman-

tic text similarity detection of embedding methods. The focus

of prior research, however, has typically been on short text

and simple similarity detection problems. Few studies have

evaluated the performance of different vector space models

on long text or for more challenging benchmarks.

For the context of this study (patent-to-patent similarity)

in practice, discriminating between random pairs of patents

and rejection pairs of patents is a rather trivial problem

that probably does not require a complicated NLP solution.

It is only on such problems, however, that D2V and LSI

might outperform the TFIDF model considerably. Instead, for

many applications, users are often looking for the automatic

detection of differences between relatively similar patents (e.g.

same-subclass pairs versus rejection pairs). For such problems,

where the differences in similarity are small, simple TFIDF

appears to be a good choice. The difference in cost and

simplicity is to the extent that the use of a simple TFIDF

model, which might do slightly worse under certain conditions

then more complex models, may still be justified. An extension

of TFIDF with incremental IDF calculation could provide

additional benefit of avoiding calculation of all TFIDF vectors

upon addition of new patent(s) without scarifying performance

for similarity detection task.

This study can be extended by future research in several

directions, both in theory and in practice. We observed that

incorporating noun phrases and incremental timing informa-

tion did not lead to better detection of similar patents. For

the case of noun phrases, perhaps the low weights of locally-

filtered phrases misses the signal, and a more global approach

for filtering might improve the performance. For the case of

incremental TFIDF, it appears that adjusting IDF vectors based

on time is not strong enough to affect the model performance

in our context. It remains to be seen, however, how incremental

IDFs may affect similarity detection in more rapidly evolving

domains. Another dimension for future work would be to study

the effect of similarity metrics other than cosine similarity.

Finally, investigation of the limitations of text embedding

methods is a fertile area for future research.
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