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Abstract. Symbolic Systems in Artificial Intelligence which are based on formal logic and deductive reasoning are fundamentally
different from Artificial Intelligence systems based on artificial neural networks, such as deep learning approaches. The difference
is not only in their inner workings and general approach, but also with respect to capabilities. Neural-symbolic Integration, as a
field of study, aims to bridge between the two paradigms. In this paper, we will discuss neural-symbolic integration in its relation
to the Semantic Web field, with a focus on promises and possible benefits for both, and report on some current research on the
topic.
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Approaches in Artificial Intelligence (AI) based on
machine learning, and in particular those employing
artificial neural networks, differ fundamentally from
approaches that leverage knowledge bases to perform
logical deduction and reasoning.1 The former are con-
nectionist or subsymbolic AI systems able to solve
complex tasks over unstructured data using supervised
or unsupervised learning, including problems which
cannot reasonably be hand-coded by humans. Subsym-
bolic methods are generally robust against noise in
training or input data and have recently, in the wake
of deep learning, been shown to exceed human perfor-
mance in tasks involving video, audio, and text pro-
cessing. The latter are symbolic systems that thrive un-
der the presence of large amounts of structured data,
including for agent planning, constraint solving, data
management, integration and querying, and other tra-

*Corresponding author. E-mail: hitzler@ksu.edu.
1We focus herein on deductive reasoning. Logical inductive and

abductive reasoning have also been looked at in the Semantic Web
context, e.g. [14,22], but to keep the discussion concise, we have not
included them in this treatise.

ditional application areas of knowledge-based systems
and formal semantics. Classical rule-based systems,
ontologies, and knowledge graphs that power search
and information retrieval across the Web are also types
of symbolic AI systems.

Symbolic and subsymbolic systems are rather com-
plementary to each other. For example, the key
strengths of subsymbolic systems are weaknesses of
symbolic ones, and vice versa. Symbolic systems are
brittle, i.e., susceptible to data noise or minor flaws
in the logial encoding of a problem, which stands in
contrast to the robustness of connectionist approaches.
But subsymbolic systems are generally black boxes in
the sense that the systems cannot be inspected in ways
that provide insight into their decisions (despite some
recent progress on this in the wake of the explainable
AI effort) while symbolic knowledge bases can in prin-
ciple be inspected to interpret how a decision follows
from input. Most importantly, symbolic and subsym-
bolic systems contrast in the types of problems and
data they excel at. Scene recognition from images ap-
pears to be a problem which in general lies outside the
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capabilities of symbolic systems, for example, while
complex planning scenarios appear to be outside the
scope of current deep learning approaches.2

On a more technical level, symbolic and subsym-
bolic systems differ fundamentally in how they repre-
sent data, information, or knowledge. Symbolic sys-
tems typically utilize structured representation lan-
guages, e.g. stemming from formal logic and the sub-
field of AI known as knowledge representation and
reasoning. Trainable artificial neural networks, on
the other hand, typically use representations based
on high-dimensional Euclidean space, i.e. real-valued
vectors, matrices, etc., and it is by no means obvi-
ous how reconciliations between these representation
forms can be designed.3

The complementary nature of these methods has
drawn a divide in the rich field of AI. The divide is
technical in nature, as symbol manipulation as cap-
tured by logical, deductive reasoning, which lies at the
core of symbolic approaches, cannot be sufficiently
performed using current subsymbolic systems. More-
over, the training to study subsymbolic systems (in-
volving probability theory, statistics, linear algebra,
and optimization) differs from symbolic systems (in-
volving logic and propositional calculus, set and re-
cursion theory, and advanced computability reason-
ing) so strongly that AI researchers tend to find a side
of the divide based on their intellectual interests and
background. The divide is also cultural in nature, one
of mindsets and prior believes, that in the past could
sometimes split the academic AI research commu-
nity by provoking (heated) fundamental discussions.
The divide is even geographical, where the European
Union holds a much higher prevalence of researchers
working on symbolic approaches than in the United
States.

Neural-Symbolic Integration [2,4,16,28],4 as a field
of research, addresses fundamental problems related to
building a technical bridge between the symbolic and
subsymbolic sides of the divide. The promises from a
successful bridging of the divide are plenty. In the ab-
stract, one could hope for best-of-both-worlds systems,
which combine the transparency and reasoning-ability

2The topic is being investigated, of course, and some recent
progress is made. E.g., [1] reports on an application of deep learning
to planning, and explicitly frames it as work towards bridging the
“subsymbolic-symbolic boundary.”

3It is possible to establish a formal, mathematical bridge in some
cases, as e.g. laid out in [31], but so far with limited applicability [3].

4See also http://www.neural-symbolic.org/.

of symbolic systems with the robustness and learning-
capabilities of subsymbolic ones. As such, integrated
symbolic-subsymbolic systems may be able to address
the knowledge acquisition bottleneck faced by sym-
bolic systems, learn to perform advanced logical or
symbolic reasoning tasks even in the presence of noisy
or uncertain facts, and even yield self-explanatory sub-
symbolic models. This is the promise of added value
of neural-symbolic integration research for Computer
Science. And also more fundamentally, a bridging may
shed insights into how natural (human) neural net-
works can perform tasks as witnessed by homo sapiens
pursuing mathematics, formal logic, and other pursuits
that we, introspectively, see as symbolic in nature; this
is a basic research problem for Cognitive Science as a
discipline.

In the following, we will first lay out, in more de-
tail, promises and possible benefits of neural-symbolic
integration research for the Semantic Web. Then we
will look at potential benefits of Semantic Web and
neural-symbolic integration research for deep learning.
Finally, we will also provide brief pointers to some cur-
rent research going on in relation to this theme.

1. Benefits of neural-symbolic integration for the
Semantic Web

One of the issues that plagues the Semantic Web
(as well as many other fields in Computer Science and
its applications) is the knowledge acquisition bottle-
neck. It refers to the difficult issue of encoding or other-
wise storing knowledge, as structured information, for
use in Computer Science applications. The manual en-
coding of such information, e.g. from human experts’
knowledge, is a very slow and time-consuming, thus
costly, process involving both topic experts and knowl-
edge engineers. At the same time, automated meth-
ods are a far cry from producing artifacts (e.g., from
textbooks, technical documentations, and other written
sources) which would be of sufficient quality for use in
intelligent systems applications based on logical infer-
ence, such as expert systems, or for data curation and
integration.

The underpinnings of key Semantic Web standards,
such as RDF [9] and OWL [29], are explicitly logi-
cal, which reflects that Semantic Web applications of-
ten rely on high data (and schema/ontology) quality,
similar to knowledge bases used primarily for deduc-
tive reasoning. The knowledge acquisition bottleneck
in the Semantic Web field is very noticeable, e.g., given

http://www.neural-symbolic.org/
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that the creation of ontologies as well as the creation of
high-quality knowledge graphs involves high amounts
of human export labour and is correspondingly expen-
sive.

The promise of integrated neural-symbolic systems
is that they would be capable of both learning and (de-
ductive) reasoning, and thus that they would be able to
acquire, through machine learning, knowledge which
is of sufficiently high quality to perform deductive rea-
soning. This anticipated capability directly addresses
the knowledge acquisition bottleneck. There is, thus,
a promise in this line of work that integrated neural-
symbolic systems will lead to

– better methods for automated ontology construc-
tion,

– better methods for ontology population (and,
thus, knowledge graph construction),

– better methods for ontology alignment,
– better methods for assessing the quality of knowl-

edge graph content,

and similar major lines of research central to the Se-
mantic Web field.

At the same time, integrated neural-symbolic sys-
tems carry the promise of being able to perform de-
ductive reasoning – after training – using a (highly
parallel) artificial neural network architecture. Conse-
quently, reasoning using such systems can be expected
to be extremely fast. This contrasts with traditional de-
ductive reasoning methods, which are usually designed
to be provably sound and complete but suffer from
long algorithm runtimes. While there has been signif-
icant progress on developing highly efficient deduc-
tive reasoning engines for Semantic Web content, this
remains an issue given ever-increasing availability of
data. In fact, the underlying problem is fundamental,
as sound and complete reasoning over Semantic Web
data necessarily suffers from high computational com-
plexity [30].

Integrated neural-symbolic systems would perform
reasoning after training, and presumably this form of
reasoning would not be provably sound and complete,
but would trade correctness guarantees with higher
runtime efficiency, in the spirit of approximate reason-
ing – see e.g. [32] for an exhibition of the underlying
rationale. As such, integrated neural-symbolic systems
carry a promise to elevate deductive Semantic Web
reasoning to much larger amounts of data.

With integrated neural-symbolic systems capable of
approximate deductive reasoning, this would further-
more open up possible investigations into combining

deductive and inductive reasoning, as well as common-
sense reasoning based e.g. on natural language, within
a single (artificial neural network based) system.

Side products of such approaches would also be,
e.g., entity encodings in formats suitable for artificial
neural networks, such as vector or matrix representa-
tions. These in turn could be utilized to assess entity
similarity with potential applications in data integra-
tion. Such encodings could furthermore be used as a
sort of compression for data transfer and storage.

2. Benefits of Semantic Web technologies and
neural-symbolic integration for deep learning

Semantic Web Technologies are designed for en-
abling better and more efficient data sharing, discov-
ery, integration and reuse. These data management
core capabilities of Semantic Web Technologies are
designed to ease the data curation and preparation bur-
den for the training of deep learning systems. Semantic
Web data, provided in large amounts and freely avail-
able on the Web [51], furthermore provides a rich re-
source for training data, and deductive reasoning meth-
ods over such data can further extend it.

Integrated neural-symbolic systems will further-
more make it possible to utilize background knowl-
edge, given as knowledge graphs or ontologies, as part
of deep learning applications. Promises of this include
the leveraging of background knowledge and deduc-
tive reasoning aspects for improved trainability, but
also for interpreting trained deep learning systems by
means of background knowledge. The former aspect
attempts to reinforce the usefulness of deep learning
models through injection of knowledge and has been
successfully used in task-oriented conversational AI
systems [23] and question answering [44]. The latter
aspect touches on the Explainable AI theme currently
being discussed, which aims at addressing the black-
box nature of deep learning systems by making them
more transparent, understandable, verifiable, and trust-
worthy. Most of the current work on this topic attempts
to explain system behavior by means of input or output
features; however explanations by way of background
knowledge carry the promise of being much closer to
human conceptualizations, and thus more useful in ap-
plications.

Integrated neural-symbolic systems which incorpo-
rate deductive reasoning capabilities could further-
more naturally combine these with inferences based
on statistics or similarities, including natural-language
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common-sense reasoning as demonstrated by some
deep learning approaches. Such combinations should
naturally lead to stronger deep learning systems.

Neural-symbolic systems have already been used on
linked datasets like Freebase and DBpedia for different
tasks like link prediction [62] and noise tolerant RDFS
reasoning [41]. The links between linked datasets
could further allow neural-symbolic systems to both
integrate and reason over information coming from
different sources. The advantage of this is twofold:
firstly, the combined information can be used to extend
the amount of training data for neural-symbolic sys-
tems; secondly, a neural-symbolic system can be used
to learn to reason over a single knowledge graph and
then links can be used as entry points to reason over a
different one. This could be useful in contexts in which
it is costly to learn to reason over a large dataset; one
could thus use neural-symbolic methods over a smaller
one (or a part of the large one) and then use the learned
capabilities over the large one.

Recent years have also seen some progress in
zero/few-shot relation learning over knowlegdge
graphs, utilizing deep learning [12]. Zero/few-shot re-
lation learning refers to the ability of the deep learn-
ing model to infer new relations of pairs of entities
where that relation has not been seen or has only oc-
curred a few times before in the training set [7]. This
generalization capability is still quite limited and fun-
damentally different from the efforts that have been
done under transfer learning and the domain adapta-
tion paradigm in other machine learning tasks.

3. Selection of recent related work

3.1. Deductive Semantic Web reasoning using deep
learning

Deductive reasoning over RDF(S) and OWL data
has become a part of the standard toolbox for knowl-
edge graphs, and the use of neural-symbolic systems
for this purpose has begun to be investigated.

[41] has proposed a noise-tolerant algorithm for
deep-learning-based reasoning designed specifically
for RDF(S) knowledge graphs. They have introduced
a layered graph model representation of RDF graphs
based on their predicates, in the form of 3D adjacency
matrices where each layer layout forms a graph word.
Each input graph and its corresponding entailments
then have been represented as a sequence of graph
words and have been fed to a neural machine transla-

tion model. Their results show noise-tolerant capabil-
ities of their deep model, compared to their symbolic
counterpart. However evaluation and training are done
on a dataset that uses only one ontology for the infer-
ence, i.e., there is no learning of the general logical de-
duction calculus, and consequently no transfer thereof
to new data.

[33] applies Recursive Reasoning Networks (RNN)
to OWL RL reasoning where recursive update lay-
ers are used to update the individual embeddings us-
ing the relations and class memberships in the knowl-
edge base. Their results show the potential of neural-
symbolic methods to attain accuracy similar to sym-
bolic methods. However, as for the above mentioned
[41], re-training is required for new ontologies to learn
the embeddings for the new vocabularies in the ontol-
ogy, i.e., the approach does not natively support trans-
fer to new data.

[20] addresses the transferability issue by adapt-
ing end-to-end memory networks for emulating deduc-
tive RDFS reasoning. Transfer was achieved primarily
by utilizing a preprocessing step consisting of a nor-
malization. It was demonstrated that the resulting ap-
proach can perform reasoning over previously unseen
RDFS knowledge graphs.

3.2. Knowledge graph embeddings

With the recent revival of interest in artificial neu-
ral networks, neural link prediction models have been
applied extensively for the completion of knowledge
graphs, understood in the sense of link-prediction.5

These methods [6,10,39,47,50,62–64,66,69] heavily
rely on the subsymbolic representations, called embed-
dings, of entities and relations learned through max-
imization of a scoring objective function over valid
factual triples. Thus, the current success of such deep
models hinges primarily on the power of those sub-
symbolic continuous real-valued representations in en-
coding the similarity/relatedness of entities and rela-
tions. For example, TransE [6] for a knowledge base
triple s, p, o learns an embedding function by minimiz-
ing the distance based on the respective vector repre-
sentations d(s + p, o) where d is a distance function.
These methods have been often tested over link predic-
tion tasks.

5Traditionally, “completion” in the context of RDF(S) referred
only to materialization of logical consequences; more recently, the
term has also been used to refer to the adding of new relationships
(graph edges) based on statistical or NLP methods.
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The use of additional information, such has text,
can increase the quality of the representation [65,67,
68]. Moreover, embedded representations of knowl-
edge graphs can be extended by considering the logi-
cal axioms that appear in a knowledge base, for exam-
ple, complex logical formulas can be aggregated using
fuzzy logic [27].

A recent trend in knowledge graph embedding con-
cerns approaches that use hyperbolic geometry in
place of euclidean geometry [46,54]; hyperbolic ge-
ometry generally appears to be more suited to repre-
sent hierarchical structures like terminologies and on-
tologies.

Node2vec [24] is instead a widely adopted approach
that combines random walks and natural language
techniques [43] to efficiently generate vector repre-
sentations of networks nodes that has also been used
to support knowledge graph embeddings [48]. In the
same line of works, RDF2Vec [52] embeds RDF-based
entities in a vector space by applying word embedding
techniques [43] over a virtual document that contains
lexicalized rdf-graph walks; thus the generated repre-
sentations are based on token-token co-occurrences.

While most knowledge graph embedding ap-
proaches rely on a single encoding of triples, there is a
recent line of work that tries to leverage the informa-
tion that can be found in longer paths using recurrent
neural networks [15,70]

Also recently, a number of works have been done
on the problem of generalizing neural networks to
work on arbitrarily structured graphs [17,34] opening
promising directions for future research on reasoning
on structured data.

3.3. Explainable deep learning

While deep learning is highly successful [36] and
even surpasses human capabilities [59,60] in many
fields, it also lacks transparency or interpretability
[26,40] of how a decision is being produced from these
systems. In safety-critical applications, e.g., in medi-
cal, legal or military contexts, this is deemed insuffi-
cient. Consequently, researchers are investigating how
to produce explanations for the behavior of deep learn-
ing systems [25].

Explanations [55,71,72] produced from deep learn-
ing systems are mostly statistical and helpful to under-
stand how it produces the output, and the additional
use of domain information helps to enhance [19] the
explanation. [49] used an ontology-based deep learn-
ing model which predicts human behaviour via Re-

strictricted Boltzman Machines [61] and produces ex-
planations of the output using domain ontologies. In
the domain of transfer learning to explain which fea-
tures are beneficial and which are not for the transfer,
[11] used domain knowledge to enhance the explana-
tion.

[73] shows the use of semantic annotations to la-
bel objects in the hidden layers of popular CNN ar-
chitectures. Labels ranging from colors, materials, tex-
tures, parts, objects and scenes help to get a better un-
derstanding of hidden parts of the deep network. Al-
though the labels are not semantically structured, this
shows that background knowledge can help to improve
explainability.

[57] provides a feasibility study on how domain on-
tologies together with description logic based concept
induction [37,56] can be used to explain input output
behaviour of trained deep neural networks.

Although the explanation produced solely using sta-
tistical techniques is beneficial, it is far from being
a trustable explanation [35,40]. The main limitation
of statistical methods is that it does not take domain
knowledge or general background knowledge into ac-
count when making the output. A combined effort to
use statistical techniques with semantic web technolo-
gies should be helpful to provide trustable explana-
tions. An overview of using knowledge graphs to en-
hance explanation, and possible limitations of this, is
described in [35].

3.4. Other systems for deductive reasoning using
deep learning

The Neural Theorem Prover (NTP) [53] is an ex-
tension of the Prolog language in which strict atom
unification is replaced with similarity of atoms in
an embedded space; while originally NTP suffered
from scalability issues, due to the complexity of the
approach, there is evidence that proof-path selection
strategies can reduce the complexity impact [45].

DeepProbLog [42] is a programming language that
combines a probabilistic logic with neural networks,
thus offering a framework that combines the strengths
from both approaches.

Logic Tensor Networks [58] (LTNs) combine deep
neural networks and first order fuzzy logic. Elements
of the logic language are embedded in a vector space
(e.g., constants are represented as vectors while pred-
icates are neural tensor networks [62] that have been
used on simple reasoning tasks [8,62]). LTNs can be
trained over both facts and rules and after training they
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can be used to make novel logical inferences over data.
LTNs have been applied to semantic image interpreta-
tion tasks [18] but they have also been shown to have
some computational limitations [5].

PossibleWorldNet [21] is a variant of Tree Neu-
ral Networks (TreeNN) which has been success-
fully used for conducting entailment over proposi-
tional logic formulas. To evaluate whether A entails
B, the PossibleWorldNet generates a set of “possible
worlds,” and then evaluates A and B in each of those
worlds. Their results show the clear advantage of using
this model compared to sequence-to-sequence models
which would capture the structure implicitly.

Neural multi-hop reasoners [15,70] deal with more
complex reasoning on large knowledge bases where
multi-hop inference is required. They combine the rich
multi-hop inference of the symbolic logical reason-
ing paradigm with the generalization capabilities of
attention-based recurrent neural networks.

4. Conclusion

In the wake of deep learning, neural-symbolic ap-
proaches are receiving renewed attention. We have laid
out promises of neural-symbolic integration research
for the Semantic Web field, and vice versa. It appears
to be reasonable to expect that the corresponding lines
of research will receive growing attention in forthcom-
ing years. E.g., several articles in this issue point into
similar directions [13,35,38].
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