## Introduction to word embeddings

## Agenda

- language modeling
- limitations of traditional n-gram language models
- Bengio et al. (2003)'s NNLM
- Google's word2vec (Mikolov et al. 2013)


## Language model

- Goal: determine $\mathrm{P}\left(\mathrm{s}=\mathrm{w}_{1} \ldots \mathrm{w}_{\mathrm{k}}\right)$ in some domain of interest

$$
\begin{gathered}
P(s)=\prod_{i=1}^{k} P\left(w_{i} \mid w_{1} \ldots w_{i-1}\right) \\
\text { e.g., } P\left(w_{1} w_{2} w_{3}\right)=P\left(w_{1}\right) P\left(w_{2} \mid w_{1}\right) P\left(w_{3} \mid w_{1} w_{2}\right)
\end{gathered}
$$

- Traditional n-gram language model assumption: "the probability of a word depends only on context of $n-1$ previous words"

$$
\Rightarrow \widehat{\mathrm{P}}(\mathrm{~s})=\prod_{\mathrm{i}=1}^{\mathrm{k}} \mathrm{P}\left(\mathrm{w}_{\mathrm{i}} \mid \mathrm{w}_{\mathrm{i}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{i}-1}\right)
$$

- Typical ML-smoothing learning process (e.g., Katz 1987):

1. compute $\widehat{P}\left(w_{i} \mid w_{i-n+1} \ldots w_{i-1}\right)=\frac{\# w_{i-n+1} \ldots w_{i-1} w_{i}}{\# w_{i-n+1} \ldots w_{i-1}}$ on training corpus
2. smooth to avoid zero probabilities

## Traditional n-gram language model

Limitation 1): curse of dimensionality

- Example
- train a 10 -gram LM on a corpus of 100.000 unique words
- space: 10-dimensional hypercube where each dimension has 100.000 slots
- model training $\leftrightarrow$ assigning a probability to each of the $100.000^{10}$ slots
- probability mass vanishes $\rightarrow$ more data is needed to fill the huge space
- the more data, the more unique words! $\rightarrow$ vicious circle
- what about corpuses of $10^{6}$ unique words?
- $\rightarrow$ in practice, contexts are typically limited to size 2 (trigram model) e.g., famous Katz (1987) smoothed trigram model
- $\rightarrow$ such short context length is a limitation: a lot of information is not captured


## Traditional n-gram language model

## Limitation 2): word similarity ignorance

- We should assign similar probabilities to Obama speaks to the media in Illinois and the President addresses the press in Chicago
- This does not happen because of the "one-hot" vector space representation:

$$
\left.\begin{array}{rl}
\text { obama } & =\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0
\end{array}\right]
\end{array}\right] \overrightarrow{\text { obama. }} \overrightarrow{\text { president }}=\overrightarrow{0}
$$

- In each case, word pairs share no similarity
- This is obviously wrong
- We need to encode word similarity to be able to generalize


## Word embeddings: distributed representation of words

- Each unique word is mapped to a point in a real continuous m-dimensional space
- Typically, $|\mathrm{V}|>10^{6}, 100<\mathrm{m}<500$


- Fighting the curse of dimensionality with:
- compression (dimensionality reduction)
- smoothing (discrete to continuous)
- densification (sparse to dense)
- Similar words end up close to each other in the feature space


## Neural Net Language Model (Bengio et al. 2003)

For each training sequence: input $=($ context, target $)$ pair: $\left(w_{t-n+1} \cdots w_{t-1}, w_{t}\right)$ objective: minimize $\mathrm{E}=-\log \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{t}-1}\right)$


## NNLM Projection layer

- Performs a simple table lookup in $\mathrm{C}_{|\mathrm{V}|, \mathrm{m}}$ : concatenate the rows of the shared mapping matrix $\mathrm{C}_{|\mathrm{V}|, \mathrm{m}}$ corresponding to the context words

Example for a two-word context $\mathrm{w}_{\mathrm{t}-2} \mathrm{~W}_{\mathrm{t}-1}$ :


Concatenate (1) and (2) $\rightarrow$ C $\left(\mathrm{w}_{\mathrm{t}-2}\right) \quad \mathrm{C}\left(\mathrm{w}_{\mathrm{t}-1}\right)$

- $\mathrm{C}_{|\mathrm{V}|, \mathrm{m}}$ is critical: it contains the weights that are tuned at each step. After training, it contains what we're interested in: the word vectors


## NNLM hidden/output layers and training

- Softmax (log-linear classification model) is used to output positive numbers that sum to one (a multinomial probability distribution):
for the $\mathrm{i}^{\text {th }}$ unit in the output layer: $\widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{t}-1}\right)=\frac{\mathrm{e}^{\mathrm{y} \mathrm{w}_{\mathrm{i}}}}{\sum_{\mathrm{i}^{\prime}=1}^{|\mathrm{V}|} \mathrm{e}^{\mathrm{y} \mathrm{w}_{\mathrm{i}^{\prime}}}}$
Where:
$-\mathrm{y}=\mathrm{b}+\mathrm{U} \cdot \tanh (\mathrm{d}+\mathrm{H} \cdot \mathrm{x})$
- tanh : nonlinear squashing (link) function
-x : concatenation C(w) of the context weight vectors seen previously
- b : output layer biases (|V| elements)
- d : hidden layer biases (h elements). Typically $500<\mathrm{h}<1000$
$-\mathrm{U}:|\mathrm{V}| * \mathrm{~h}$ matrix storing the hidden-to-output weights
$-\mathrm{H}:(\mathrm{h} *(\mathrm{n}-1) \mathrm{m})$ matrix storing the projection-to-hidden weights
$\rightarrow \boldsymbol{\theta}=(\mathbf{b}, \mathbf{d}, \mathbf{U}, \mathbf{H}, \mathbf{C})$
- Complexity per training sequence: $\mathrm{n} * \mathrm{~m}+\mathrm{n} * \mathrm{~m} * \mathrm{~h}+\mathbf{h} *|\mathbf{V}|$
computational bottleneck: nonlinear hidden layer ( $\mathrm{h} *|\mathrm{~V}|$ term)
- Training is performed via stochastic gradient descent (learning rate $\varepsilon$ ):

$$
\theta \leftarrow \theta+\varepsilon \cdot \frac{\partial \mathrm{E}}{\partial \theta}=\theta+\varepsilon \cdot \frac{\partial \log \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \cdots \mathrm{w}_{\mathrm{t}-1}\right)}{\partial \theta}
$$

(weights are initialized randomly, then updated via backpropagation)

## NNLM facts

-     - tested on Brown (1.2M words, $|\mathrm{V}| \cong 16 \mathrm{~K}, 200 \mathrm{~K}$ test set) and AP News ( 14 M words, $|\mathrm{V}| \cong 150 \mathrm{~K}$ reduced to $18 \mathrm{~K}, 1 \mathrm{M}$ test set) corpuses
-     - Brown: $\mathrm{h}=100, \mathrm{n}=5, \mathrm{~m}=30$
- AP News: $\mathrm{h}=60, \mathrm{n}=6, \mathrm{~m}=100, \mathbf{3}$ week training using 40 cores
$-24 \%$ and $8 \%$ relative improvement (resp.) over traditional smoothed n-gram LMs in terms of test set perplexity: geometric average of $1 / \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n}+1} \ldots \mathrm{w}_{\mathrm{t}-1}\right)$
- Due to complexity, NNLM can't be applied to large data sets $\rightarrow$ poor performance on rare words
- Bengio et al. (2003) initially thought their main contribution was a more accurate LM. They let the interpretation and use of the word vectors as future work
- On the opposite, Mikolov et al. (2013) focus on the word vectors


## Google's word2vec (Mikolov et al. 2013a)

- Key idea of word2vec: achieve better performance not by using a more complex model (i.e., with more layers), but by allowing a simpler (shallower) model to be trained on much larger amounts of data
- Two algorithms for learning words vectors:
- CBOW: from context predict target (focus of what follows)
- Skip-gram: from target predict context
- Compared to Bengio et al.'s (2003) NNLM:
- no hidden layer (leads to 1000X speedup)
- projection layer is shared (not just the weight matrix)
- context: words from both history \& future:
"You shall know a word by the company it keeps" (John R. Firth 1957:11):


These words will represent Neymar

## word2vec's Continuous Bag-of-Words (CBOW)

For each training sequence: $\quad$ input $=($ context, target $)$ pair: $\left(w_{t-\frac{n}{2}} \ldots w_{t-1} w_{t+1} \ldots w_{t+\frac{n}{2}}, w_{t}\right)$ objective: minimize $\mathrm{E}=-\log \widehat{\mathrm{P}}\left(\mathrm{w}_{\mathrm{t}} \mid \mathrm{w}_{\mathrm{t}-\mathrm{n} / 2} \ldots \mathrm{w}_{\mathrm{t}-1} \mathrm{w}_{\mathrm{t}+1} \ldots \mathrm{w}_{\mathrm{t}+\mathrm{n} / 2}\right)$


## Weight updating intuition

- For each (context, target= $w_{t}$ ) pair, only the word vectors from matrix C corresponding to the context words are updated
- Recall that we compute $P\left(w_{i}=w_{t} \mid\right.$ context $) \forall w_{i} \in V$. We compare this distribution to the true probability distribution ( 1 for $w_{t}, 0$ elsewhere)
- If $P\left(w_{i}=w_{t} \mid\right.$ context $)$ is overestimated (i.e., $>0$, happens in potentially $|V|-1$ cases), some portion of $\mathrm{C}^{\prime}\left(\mathrm{w}_{\mathrm{i}}\right)$ is subtracted from the context word vectors in C, proportionally to the magnitude of the error
- Reversely, if $\mathrm{P}\left(\mathrm{w}_{\mathrm{i}}=\mathrm{w}_{\mathrm{t}}\right.$ I context) is underestimated ( $<1$, happens in potentially 1 case), some portion of $\mathrm{C}^{\prime}\left(\mathrm{w}_{\mathrm{i}}\right)$ is added to the context word vectors in C
$\rightarrow$ at each step the words move away or get closer to each other in the feature space $\rightarrow$ clustering $\rightarrow$ analogy with a spring force layout. See online demo with Chrome



## word2vec facts

- Complexity is $\mathrm{n} * \mathrm{~m}+\mathrm{m} * \log |\mathbf{V}|$ (Mikolov et al. 2013a)
- On Google news 6B words training corpus, with $|\mathbf{V}| \sim 10^{6}$ :
- CBOW with $\mathrm{m}=1000$ took $\mathbf{2}$ days to train on $\mathbf{1 4 0}$ cores
- Skip-gram with $m=1000$ took 2.5 days on $\mathbf{1 2 5}$ cores
- NNLM (Bengio et al. 2003) took $\mathbf{1 4}$ days on $\mathbf{1 8 0}$ cores, for $\mathrm{m}=100$ only! (note that $\mathrm{m}=1000$ was not reasonably feasible on such a large training set)
- word 2 vec training speed $\cong 100 \mathrm{~K}-5 \mathrm{M}$ words/s
- Quality of the word vectors:
- $\nearrow$ significantly with amount of training data and dimension of the word vectors (m), with diminishing relative improvements
- measured in terms of accuracy on 20K semantic and syntactic association tasks.
e.g., words in bold have to be returned:

| Capital-Country | Past tense | Superlative | Male-Female | Opposite |
| :--- | :--- | :--- | :--- | :--- |
| Athens: Greece | walking: walked | easy: easiest | brother: sister | ethical: unethical |

Adapted from Mikolov et al. (2013a)

- Best NNLM: $12.3 \%$ overall accuracy. Word2vec (with Skip-gram): 53.3\%


## Remarkable properties of word2vec's word vectors

Country and Capital Vectors Projected by PCA


Mikolov et al. (2013b)
regularities between words are encoded in the difference vectors
e.g., there is a constant country-capital difference vector

## Remarkable properties of word2vec's word vectors


constant female-male difference vector

## Remarkable properties of word2vec's word vectors


constant male-female difference vector

constant singular-plural difference vector

- Vector operations are supported and make intuitive sense:

$$
\begin{array}{rr}
w_{\text {king }}-w_{\text {man }}+w_{\text {woman }} \cong w_{\text {queen }} & w_{\text {einstein }}-w_{\text {scientist }}+w_{\text {painter }} \cong w_{\text {picasso }} \\
w_{\text {paris }}-w_{\text {france }}+w_{\text {italy }} \cong w_{\text {rome }} & w_{\text {his }}-w_{\text {he }}+w_{\text {she }} \cong w_{\text {her }} \\
w_{\text {windows }}-w_{\text {microsoft }}+w_{\text {google }} \cong w_{\text {android }} & w_{c u}-w_{\text {copper }}+w_{\text {gold }} \cong w_{\text {au }}
\end{array}
$$

- Online demo (scroll down to end of tutorial)


## Applications

- High quality word vectors boost performance of all NLP tasks, including document classification, machine translation, information retrieval...
- Example for English to Spanish machine translation:


About 90\% reported accuracy (Mikolov et al. 2013c)

## Application to document classification



With the BOW representation $D_{1}$ and $D_{2}$ are at equal distance from $\mathrm{D}_{0}$. Word embeddings allow to capture the fact that $D_{1}$ is closer.

$D_{0}$ The President greets the press in Chicago.
$\oint 1.63=0.49 \rrbracket+0.42 \pi+0.44 \pi+0.28 \rrbracket$
$D_{2}$ The band gave a concert in Japan.

## Resources

## Papers:

Chen, S. F., \& Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech \& Language, 13(4), 359-393.

Katz, S. M. (1987). Estimation of probabilities from sparse data for the language model component of a speech recognizer. Acoustics, Speech and Signal Processing, IEEE Transactions on, 35(3), 400-401.

Bengio, Yoshua, et al. "A neural probabilistic language model." The Journal of Machine Learning Research 3 (2003): 11371155.

Mikolov, T., Chen, K., Corrado, G., \& Dean, J. (2013a). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., \& Dean, J. (2013b). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).

Mikolov, T., Le, Q. V., \& Sutskever, I. (2013c). Exploiting similarities among languages for machine translation. arXiv preprint arXiv:1309.4168.

Rong, X. (2014). word2vec Parameter Learning Explained. arXiv preprint arXiv:1411.2738.

Google word2vec webpage (with link to C code):
https://code.google.com/p/word2vec/

## Python implementation:

https://radimrehurek.com/gensim/models/word2vec.html

## Kaggle tutorial on movie review classification with word2vec:

https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-2-word-vectors

