
Agenda 

 
• language modeling 

• limitations of traditional n-gram language models 

• Bengio et al. (2003)’s NNLM 

• Google’s word2vec (Mikolov et al. 2013) 

Introduction to word embeddings 
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Language model 

• Goal: determine P(s = w1…wk) in some domain of interest 

P s = P (wi⃓ w1…wi−1) 

k

i=1

 

 

e.g., P w1w2w3  = P (w1) P (w2⃓ w1) P (w3⃓ w1w2)  

 

• Traditional n-gram language model assumption: 

“the probability of a word depends only on context of n − 1 previous words” 

⇒ P s = P (wi⃓ wi−n+1…wi−1) 

k

i=1

 

       

• Typical ML-smoothing learning process (e.g., Katz 1987): 

1. compute P  wi⃓ wi−n+1…wi−1 = 
#wi−n+1…wi−1wi

#wi−n+1…wi−1
  on training corpus 

2. smooth to avoid zero probabilities 
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• Example 

- train a 10-gram LM on a corpus of 100.000 unique words 

- space: 10-dimensional hypercube where each dimension has 100.000 slots 

- model training ↔ assigning a probability to each of the 100.00010 slots 

- probability mass vanishes → more data is needed to fill the huge space 

- the more data, the more unique words! → vicious circle 

- what about corpuses of 106 unique words? 

 

•  → in practice, contexts are typically limited to size 2 (trigram model) 

      e.g., famous Katz (1987) smoothed trigram model 

 

• → such short context length is a limitation: a lot of information is not captured 

 

Traditional n-gram language model 
Limitation 1): curse of dimensionality 
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• We should assign similar probabilities to Obama speaks to the media 

in Illinois and the President addresses the press in Chicago 

Traditional n-gram language model 
Limitation 2): word similarity ignorance 

• In each case, word pairs share no similarity 

• This is obviously wrong 

• We need to encode word similarity to be able to generalize 

• This does not happen because of the “one-hot” vector space representation: 

speaks = 0 0 1 0 …  0 0 0 0  

addresses = 0 0 0 0 …  0 0 1 0  

obama = 0 0 0 0 …  0 1 0 0  

president = 0 0 0 1 …  0 0 0 0  

illinois = 1 0 0 0 …  0 0 0 0  

chicago = 0 1 0 0 …  0 0 0 0  

obama. president = 0  

speaks. addresses = 0  

illinois. chicago = 0  
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Word embeddings: distributed representation of words 

obama = 0……1……0  

V  

w1 obama w V  

“one-hot” vector 

- compression (dimensionality reduction) 

- smoothing (discrete to continuous) 

- densification (sparse to dense) 

• Fighting the curse of 

dimensionality with: 

• Similar words end up close to each other in the feature space 

obama = 0.12…− 0.25  

m ≪ V  

feature1 featurem 

feature vector 

• Each unique word is mapped to a point in a real continuous m-dimensional space 

• Typically, V  > 106, 100 < m < 500 

wi ∈ V ℝ m 
mapping C 
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Neural Net Language Model (Bengio et al. 2003) 

input context: 

(n − 1) past words 

INPUT LAYER 0000......0010 . . . 

wt−n+1 wt−2 wt−1 

(n − 1) ∙ V  

table lookup in shared C V ,m 

0010......0000 0000......1000 

(n − 1) ∙ m PROJECTION 

LAYER 
linear 

. . . 

C(wt−n+1) C(wt−2) C(wt−1) 

. . . . . . . . . 

500 < h < 1000 

(typically) 

HIDDEN 

LAYER 
nonlinear 

. . . 

OUTPUT 

LAYER 
. . . 

softmax.                    ith output  = P  (wi = wt⃓ wt−n+1…wt−1) 

tanh 

concatenation 

V  probabilities 

that sum to 1 

input = (context, target) pair: (wt−n+1…wt−1, wt) 

objective: minimize E = −log P wt⃓wt−n+1…wt−1  

For each training sequence: 
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• Performs a simple table lookup in C V ,m:  concatenate the rows of the shared 

mapping matrix C V ,m corresponding to the context words 

 

Example for a two-word context wt−2wt−1: 

• C V ,m is critical: it contains the weights that are tuned at each step. After training,  

it contains what we’re interested in: the word vectors 

NNLM Projection layer 

⋯

 V  

𝑚 

C(w1) 
…

 

C(wt−2) 

C(w V ) 

…
 

C(wt−1) 

V  

then 

   

.  

C(wt−2) Concatenate           and              → 

C V ,m 

…
 

   

C(wt−1) 

0000......0010 wt−2 

wt−1 0001......0000 

1 

1 

2 
2 

1 2 
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NNLM hidden/output layers and training 

• Softmax (log-linear classification model) is used to output positive numbers that 

sum to one (a multinomial probability distribution): 

for the ith unit in the output layer: P wi = wt⃓ wt−n+1…wt−1 = 
e
ywi

 e
yw

i′V

i′=1

 

         Where: 

          - y = b + U. tanh d + H. x  

          - tanh : nonlinear squashing (link) function 

           - x : concatenation C w  of the context weight vectors seen previously  

           - b : output layer biases ( V  elements) 

          - d : hidden layer biases (h elements). Typically 500 < h < 1000 

          - U : V  * h matrix storing the hidden-to-output weights 

          - H : (h * (n − 1)m) matrix storing the projection-to-hidden weights 

          → 𝛉 = (𝐛, 𝐝, 𝐔,𝐇, 𝐂) 

• Complexity per training sequence: n ∗ m + n ∗ m ∗ h + 𝐡 ∗ 𝐕  

         computational bottleneck: nonlinear hidden layer (h ∗ V  term) 

• Training is performed via stochastic gradient descent (learning rate ε):  

θ ← θ + ε ∙
𝜕E

𝜕θ
 = θ + ε ∙

𝜕logP  wt⃓ wt−n+1…wt−1

𝜕θ
 

                         (weights are initialized randomly, then updated via backpropagation)  
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• - tested on Brown (1.2M words, V ≅ 16K, 200K test set) and AP News (14M 

words, V ≅ 150K reduced to 18K, 1M test set) corpuses  

• - Brown: h = 100, n = 5, m = 30 

        - AP News: h = 60, n = 6, m = 100, 3 week training using 40 cores 

        - 24% and 8% relative improvement (resp.) over traditional smoothed n-gram LMs 

           in terms of test set perplexity: geometric average of 1/P wt⃓  wt−n+1…wt−1  

 

• Due to complexity, NNLM can’t be applied to large data sets → poor performance 

on rare words 

 

• Bengio et al. (2003) initially thought their main contribution was a more accurate 

LM. They let the interpretation and use of the word vectors as future work 

 

• On the opposite, Mikolov et al. (2013) focus on the word vectors 

NNLM facts 
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• Key idea of word2vec: achieve better performance not by using a more complex model 

(i.e., with more layers), but by allowing a simpler (shallower) model to be trained on 

much larger amounts of data 

 

• Two algorithms for learning words vectors: 

 

     - CBOW: from context predict target (focus of what follows) 

     - Skip-gram: from target predict context 

 

• Compared to Bengio et al.’s (2003) NNLM: 

     - no hidden layer (leads to 1000X speedup) 

     - projection layer is shared (not just the weight matrix) 

     - context: words from both history & future: 

       “You shall know a word by the company it keeps” (John R. Firth 1957:11): 

       

Google’s word2vec (Mikolov et al. 2013a) 

…Pelé has called Neymar an excellent player… 

…At the age of just 22 years, Neymar had scored 40 goals in 58 internationals… 

…occasionally as an attacking midfielder, Neymar was called a true phenomenon… 

These words will represent Neymar 
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hierarchical softmax.               tth output  = P (wi = wt⃓wt−n 2 …wt−1wt+1…wt+n 2 ) 

input context: 

INPUT LAYER 1 0 0 0 1 0 0 0 0 0 0 . . . . . .  1 0 0 1 0 0 0 0 0 0 1 0 V  

table lookup in shared C V ,m 

PROJECTION 

LAYER 
linear 1

n
∙ C ⊡  

. . . 

. . . 

averaging 

OUTPUT 

LAYER 
V  probabilities 

that sum to 1 

n ≅ 8 typically 

100 < m < 1000 

typically 

⊡= 

n 2  history words: w
t−

n

2
…wt−1 

0000...0010 0000...0010 … 

n 2  future words: wt+1 +⋯+w
t+

n

2
 

0000...0010 0000...0010 … 

C’ 

word2vec’s Continuous Bag-of-Words (CBOW) 

                    input = (context, target) pair: (wt−
n

2
…wt−1wt+1…wt+

n

2
, wt) 

objective: minimize E = −log P wt⃓wt−n 2 …wt−1wt+1…wt+n 2  

For each training sequence: 
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Weight updating intuition 

• For each (context, target=wt) pair, only the word vectors from matrix C corresponding  

to the context words are updated 

• Recall that we compute P (wi = wt⃓ context) ∀ wi ∈ V . We compare this distribution to  

the true probability distribution (1 for wt, 0 elsewhere) 

• If P (wi = wt⃓ context) is overestimated (i.e., > 0, happens in potentially V − 1 cases),  

some portion of C’(wi) is subtracted from the context word vectors in C, proportionally to  

the magnitude of the error 

• Reversely, if P (wi = wt⃓ context) is underestimated (< 1, happens in potentially 1 case),  

some portion of C’(wi) is added to the context word vectors in C 

       → at each step the words move away or get closer to each other in the feature space → clustering 

       → analogy with a spring force layout. See online demo with Chrome 

 

input → projection 

weight matrix 

projection → output  

weight matrix 

⋯

 

C(w1) 

…
 

C(wt−n/2) 

C(w V ) 

…
 

C(wt+n/2) 

C V ,m 

…
 

C′m, V  

prediction 
error  … 

C′(w1) C′(wi) 

… 

C′(w V ) 

constant 

adjustments 
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word2vec facts 

• Complexity is n ∗ m +m ∗ log 𝐕  (Mikolov et al. 2013a) 

• On Google news 6B words training corpus, with 𝐕  ~ 106: 

      - CBOW with m = 1000 took 2 days to train on 140 cores 

      - Skip-gram with m = 1000 took 2.5 days on 125 cores 

      - NNLM (Bengio et al. 2003) took 14 days on 180 cores, for m = 100 only! 

         (note that m = 1000 was not reasonably feasible on such a large training set) 

• word2vec training speed ≅ 100K-5M words/s 

• Quality of the word vectors: 

        -  ↗ significantly with amount of training data and dimension of the word vectors (m),  

               with diminishing relative improvements 

        - measured in terms of accuracy on 20K semantic and syntactic association tasks.  

          e.g., words in bold have to be returned: 

 

 

 

 

 

• Best NNLM: 12.3% overall accuracy. Word2vec (with Skip-gram): 53.3% 

 
References: http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd  

                    https://code.google.com/p/word2vec/ 

Capital-Country Past tense Superlative Male-Female Opposite 

Athens: Greece walking: walked easy: easiest brother: sister ethical: unethical 

Adapted from Mikolov et al. (2013a) 
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Remarkable properties of word2vec’s word vectors 

regularities between words are encoded in the difference vectors  

e.g., there is a constant country-capital difference vector 

Mikolov et al. (2013b) 
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Remarkable properties of word2vec’s word vectors 

constant female-male difference vector 

picture taken from http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd 15 
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constant male-female difference vector 

Remarkable properties of word2vec’s word vectors 

• Vector operations are supported and make intuitive sense: 

𝑤𝑘𝑖𝑛𝑔 − 𝑤𝑚𝑎𝑛 + 𝑤𝑤𝑜𝑚𝑎𝑛 ≅ 𝑤𝑞𝑢𝑒𝑒𝑛 

𝑤𝑝𝑎𝑟𝑖𝑠 − 𝑤𝑓𝑟𝑎𝑛𝑐𝑒 + 𝑤𝑖𝑡𝑎𝑙𝑦 ≅ 𝑤𝑟𝑜𝑚𝑒 𝑤ℎ𝑖𝑠 − 𝑤ℎ𝑒 + 𝑤𝑠ℎ𝑒 ≅ 𝑤ℎ𝑒𝑟 

𝑤𝑒𝑖𝑛𝑠𝑡𝑒𝑖𝑛 − 𝑤𝑠𝑐𝑖𝑒𝑛𝑡𝑖𝑠𝑡 + 𝑤𝑝𝑎𝑖𝑛𝑡𝑒𝑟 ≅ 𝑤𝑝𝑖𝑐𝑎𝑠𝑠𝑜 

𝑤𝑤𝑖𝑛𝑑𝑜𝑤𝑠 − 𝑤𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑓𝑡 + 𝑤𝑔𝑜𝑜𝑔𝑙𝑒 ≅ 𝑤𝑎𝑛𝑑𝑟𝑜𝑖𝑑  𝑤𝑐𝑢 − 𝑤𝑐𝑜𝑝𝑝𝑒𝑟 + 𝑤𝑔𝑜𝑙𝑑 ≅ 𝑤𝑎𝑢 

constant singular-plural difference vector 

• Online demo (scroll down to end of tutorial) 

picture taken from http://www.scribd.com/doc/285890694/NIPS-DeepLearningWorkshop-NNforText#scribd 16 
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Applications 

• High quality word vectors boost performance of all NLP tasks, including 

document classification, machine translation, information retrieval… 

• Example for English to Spanish machine translation: 

About 90% reported accuracy (Mikolov et al. 2013c) 
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Application to document classification 

Kusner, M. J., Sun, E. Y., Kolkin, E. N. I., & EDU, W. From Word Embeddings To Document Distances. Proceedings of the 32nd 

International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. 

With the BOW 

representation D1 and D2 

are at equal distance from 

D0. Word embeddings 

allow to capture the fact 

that D1 is closer. 
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Google word2vec webpage (with link to C code): 

https://code.google.com/p/word2vec/  

 

Python implementation: 

https://radimrehurek.com/gensim/models/word2vec.html  

 

Kaggle tutorial on movie review classification with word2vec: 

https://www.kaggle.com/c/word2vec-nlp-tutorial/details/part-2-word-vectors  

 

Insightful blogpost: http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/  19 
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