
Graph Machine Learning
Concepts, algorithms and tools for analysis of graph data

National Technical University of Athens
MSc on Data Science and Machine Learning
Course “Deep Learning”

02 June 2022

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 21

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
9/22/2021

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 22

Economic Networks

Citation Networks

Communication Networks

9/22/2021

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 23

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes

Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules

Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 26

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes

Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules

Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

Main question:

How do we take advantage of
relational structure for better

prediction?

9/22/2021

Complex domains have a rich relational
structure, which can be represented as a

relational graph

By explicitly modeling relationships we
achieve better performance!

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 27

28Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Images

Text/Speech

Modern deep learning toolbox is designed
for simple sequences & grids

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 29

Modern
deep learning toolbox

is designed for
sequences & grids

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Not everything
can be represented as
a sequence or a grid

How can we develop neural
networks that are much more

broadly applicable?

New frontiers beyond classic neural
networks that only learn on images

and sequences
9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 32
9/22/2021

Networks are complex.
� Arbitrary size and complex topological

structure (i.e., no spatial locality like grids)

� No fixed node ordering or reference point
� Often dynamic and have multimodal features

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 33

vs.

Networks Images

Text

9/22/2021

(Supervised) Machine Learning Lifecycle:
This feature, that feature. Every single time!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 36

Raw
Data

Graph
Data

Learning
Algorithm Model

Downstream
prediction task

Feature
Engineering

Representation
Learning --

Automatically
learn the features

9/22/2021

Map nodes to d-dimensional
embeddings such that similar nodes in

the network are embedded close
together

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 37

representationnode

Feature representation,
embedding

u
Learn a neural network

9/22/2021

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 41

Node level

Edge-level

Community
(subgraph)
level

Graph-level
prediction,
Graph
generation

� Node classification: Predict a property of a node
� Example: Categorize online users / items

� Link prediction: Predict whether there are missing
links between two nodes
� Example: Knowledge graph completion

� Graph classification: Categorize different graphs
� Example: Molecule property prediction

� Clustering: Detect if nodes form a community
� Example: Social circle detection

� Other tasks:
� Graph generation: Drug discovery
� Graph evolution: Physical simulation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 429/22/2021

� Node classification: Predict a property of a node
� Example: Categorize online users / items

� Link prediction: Predict whether there are missing
links between two nodes
� Example: Knowledge graph completion

� Graph classification: Categorize different graphs
� Example: Molecule property prediction

� Clustering: Detect if nodes form a community
� Example: Social circle detection

� Others:
� Graph generation: Drug discovery
� Graph evolution: Physical simulation

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 439/22/2021

These Graph ML tasks lead to
high-impact applications!

A protein chain acquires its native 3D structure

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Image credit: DeepMind

Computationally predict a protein’s 3D structure
based solely on its amino acid sequence

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 46

Image credit: DeepMind

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 47

Image credit: DeepMind

Image credit: SingularityHub

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 50

Items

Users

� Users interacts with items
� Watch movies, buy merchandise, listen to music

� Nodes: Users and items

� Edges: User-item interactions
� Goal: Recommend items users might like

9/22/2021

Interactions

“You might also like”

Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node
embeddings such that

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

9/22/2021

Many patients take multiple drugs to treat
complex or co-existing diseases:

� 46% of people ages 70-79 take more than 5 drugs
� Many patients take more than 20 drugs to treat

heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict
adverse side effects

,

Prescribed
drugs

Drug
side effect

30%
prob.

65%
prob.

52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs9/22/2021

� a

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 56

� Nodes: Road segments
� Edges: Connectivity between road segments
� Prediction: Time of Arrival (ETA)

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 57

Image credit: DeepMind

Predicting Time of Arrival with Graph Neural
Networks

� Used in Google Maps

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 58
Image credit: DeepMind

� Antibiotics are small molecular graphs
� Nodes: Atoms

� Edges: Chemical bonds

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 60

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials:
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 61

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."
Cell 180.4 (2020): 688-702.

� A Graph Neural Network graph classification model
� Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

� Objects: nodes, vertices N
� Interactions: links, edges E
� System: network, graph G(N,E)

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 66

Undirected
� Links: undirected

(symmetrical, reciprocal)

� Examples:
� Collaborations
� Friendship on Facebook

Directed
� Links: directed

(arcs)

� Examples:
� Phone calls
� Following on Twitter

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 70

A

B

D

C

L

MF

G

H

I

A
G

F

B

C

D

E

� A heterogeneous graph is defined as

� Nodes with node types

� Edges with relation types

� Node type
� Relation type

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 71

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 73

U
nd

ir
ec

te
d

A

Node degree, ki: the number
of edges adjacent to node i
kA = 4

D
ir

ec
te

d

A
G

F

B
C

D

E

In directed networks we define
an in-degree and out-degree.
The (total) degree of a node is the
sum of in- and out-degrees.

2 in
Ck 1 out

Ck 3 Ck

k = k = 1
N

ki
i=1

N

å = 2E
N

outin kk

Avg. degree:

Source: Node with kin = 0
Sink: Node with kout = 0 N

E
k

� Bipartite graph is a graph whose nodes can
be divided into two disjoint sets U and V such that
every link connects a node in U to one in V; that is,
U and V are independent sets

� Examples:
� Authors-to-Papers (they authored)
� Actors-to-Movies (they appeared in)
� Users-to-Movies (they rated)
� Recipes-to-Ingredients (they contain)

� “Folded” networks:
� Author collaboration networks
� Movie co-rating networks

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 74

U V

A

B

C

D

E

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 76

Aij = 1 if there is a link from node i to node j
Aij = 0 otherwise

¸̧
¸
¸
¸

¹

·

¨̈
¨
¨
¨

©

§

0111
1000
1001
1010

A

¸̧
¸
¸
¸

¹

·

¨̈
¨
¨
¨

©

§

0110
0000
0001
1000

A

Note that for a directed graph (right) the matrix is not symmetric.

1

4
3

2 1

4

3
2

� Adjacency list:
� Easier to work with if network is

� Large
� Sparse

� Allows us to quickly retrieve all
neighbors of a given node
� 1:
� 2: 3, 4
� 3: 2, 4

� 4: 5
� 5: 1, 2

9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 81

3
2

45

1

� Machine learning with Graphs
� Applications and use cases

� Different types of tasks:
� Node level
� Edge level

� Graph level

� Choice of a graph representation:
� Directed, undirected, bipartite, weighted,

adjacency matrix
9/22/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 89

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

� Design features for nodes/links/graphs
� Obtain features for all training data

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 8

C

A

B

D E

H

F

G

Node features

Graph featuresLink features

∈ ℝ

∈ ℝ

∈ ℝ

� Train an ML model:
� Random forest

� SVM

� Neural network, etc.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 9

풙ퟏ 푦

풙푵 푦

� Apply the model:
� Given a new

node/link/graph, obtain
its features and make a
prediction

풙 푦

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

14

? ?

?
?

?
Machine
Learning

Node classification

ML needs features.

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Goal: Characterize the structure and position of
a node in the network:

� Node degree

� Node centrality

� Clustering coefficient

� Graphlets

9/27/2021 15Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Node feature

� The degree 푘 of node 푣 is the number of
edges (neighboring nodes) the node has.

� Treats all neighboring nodes equally.

9/27/2021 16Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

푘 = 1
푘 = 2

푘 = 3

푘 = 4

� Node degree counts the neighboring nodes
without capturing their importance.

� Node centrality 푐 takes the node importance
in a graph into account

� Different ways to model importance:
� Engienvector centrality

� Betweenness centrality

� Closeness centrality

� and many others…

9/27/2021 17Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Eigenvector centrality

� Betweenness centrality:
� A node is important if it lies on many shortest

paths between other nodes.

� Example:

9/27/2021 20Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

푐 = 푐 = 푐 = 0
푐 = 3

(A-C-B, A-C-D, A-C-D-E)

푐 = 3
(A-C-D-E, B-D-E, C-D-E)

� Closeness centrality:
� A node is important if it has small shortest path

lengths to all other nodes.

� Example:

9/27/2021 21Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

푐 = 1/(2 + 1 + 2 + 3) = 1/8
(A-C-B, A-C, A-C-D, A-C-D-E)

푐 = 1/(2 + 1 + 1 + 1) = 1/5
(D-C-A, D-B, D-C, D-E)

� Measures how connected 푣 푠 neighboring
nodes are:

� Examples:

9/27/2021 22Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

푣
푣 푣

푒 = 1 푒 = 0.5 푒 = 0

#(node pairs among 푘 neighboring nodes)
In our examples below the denominator is 6 (4 choose 2).

� Observation: Clustering coefficient counts the
#(triangles) in the ego-network

� We can generalize the above by counting
#(pre-specified subgraphs, i.e., graphlets).

9/27/2021 23Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

푣 푣

3 triangles (out of 6 node triplets)
푒 = 0.5

푣 푣

� We have introduced different ways to obtain
node features.

� They can be categorized as:
� Importance-based features:

� Node degree

� Different node centrality measures

� Structure-based features:
� Node degree

� Clustering coefficient

� Graphlet count vector

9/27/2021 29Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

� Importance-based features: capture the
importance of a node in a graph
� Node degree:

� Simply counts the number of neighboring nodes

� Node centrality:
� Models importance of neighboring nodes in a graph

� Different modeling choices: eigenvector centrality,
betweenness centrality, closeness centrality

� Useful for predicting influential nodes in a graph
� Example: predicting celebrity users in a social

network
9/27/2021 30Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

� Structure-based features: Capture topological
properties of local neighborhood around a node.
� Node degree:

� Counts the number of neighboring nodes

� Clustering coefficient:
� Measures how connected neighboring nodes are

� Graphlet degree vector:
� Counts the occurrences of different graphlets

� Useful for predicting a particular role a node
plays in a graph:
� Example: Predicting protein functionality in a

protein-protein interaction network.
9/27/2021 31Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

� The task is to predict new links based on the
existing links.

� At test time, node pairs (with no existing links)
are ranked, and top 퐾 node pairs are predicted.

� The key is to design features for a pair of nodes.

9/27/2021 34Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

?

?

Two formulations of the link prediction task:
� 1) Links missing at random:

� Remove a random set of links and then
aim to predict them

� 2) Links over time:
� Given 퐺[푡 , 푡] a graph defined by edges

up to time 푡 , output a ranked list L
of edges (not in 퐺[푡 , 푡]) that are
predicted to appear in time 퐺[푡 , 푡]

� Evaluation:
� n = |Enew|: # new edges that appear during

the test period [푡 , 푡]
� Take top n elements of L and count correct edges

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

퐺[푡 , 푡]
퐺[푡 , 푡]

� Methodology:
� For each pair of nodes (x,y) compute score c(x,y)

� For example, c(x,y) could be the # of common neighbors
of x and y

� Sort pairs (x,y) by the decreasing score c(x,y)
� Predict top n pairs as new links
� See which of these links actually

appear in 퐺[푡 , 푡]

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

X

� Distance-based feature
� Local neighborhood overlap
� Global neighborhood overlap

9/27/2021 37Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

Link feature

Shortest-path distance between two nodes
� Example:

� However, this does not capture the degree of
neighborhood overlap:
� Node pair (B, H) has 2 shared neighboring nodes,

while pairs (B, E) and (A, B) only have 1 such node.

9/27/2021 38Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

푆 = 푆 = 푆 = 2

C

A
B

D E

H

F

G
푆 = 푆 = 3

Captures # neighboring nodes shared between
two nodes 풗ퟏ and 풗ퟐ:
� Common neighbors: |푁 푣 ∩푁 푣 |

� Example: 푁 𝐴 ∩푁 퐵 = 퐶 = 1

� Jaccard’s coefficient: | ∩ |
| ∪ |

� Example:
∩
∪

= { }
{ , }

=

� Adamic-Adar index:
∑ ∈ ∩ ()

� Example:
()

=

9/27/2021 39Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

F
푁

푁

� Limitation of local neighborhood features:
� Metric is always zero if the two nodes do not have

any neighbors in common.

� However, the two nodes may still potentially be
connected in the future.

� Global neighborhood overlap metrics resolve
the limitation by considering the entire graph.

9/27/2021 40Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A
B

D E

F푁

푁

푁 ∩푁 = 휙
|푁 ∩ 푁 | = 0

� Katz index: count the number of walks of all
lengths between a given pair of nodes.

� Q: How to compute #walks between two
nodes?

� Use powers of the graph adjacency matrix!

9/27/2021 41Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

� Distance-based features:
� Uses the shortest path length between two nodes

but does not capture how neighborhood overlaps.
� Local neighborhood overlap:

� Captures how many neighboring nodes are shared
by two nodes.

� Becomes zero when no neighbor nodes are shared.
� Global neighborhood overlap:

� Uses global graph structure to score two nodes.

� Katz index counts #walks of all lengths between two
nodes.

9/27/2021 46Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

� Goal: We want features that characterize the
structure of an entire graph.

� For example:

9/27/2021 48Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

C

A

B

D E

H

F

G

� Graph Kernels: Measure similarity between
two graphs:
� Graphlet Kernel [1]

� Weisfeiler-Lehman Kernel [2]

� Other kernels are also proposed in the literature
(beyond the scope of this lecture)

� Random-walk kernel

� Shortest-path graph kernel

� And many more…

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.
[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

� Goal: Design graph feature vector 휙 퐺
� Key idea: Bag-of-Words (BoW) for a graph

� Recall: BoW simply uses the word counts as
features for documents (no ordering considered).

� Naïve extension to a graph: Regard nodes as words.

� Since both graphs have 4 red nodes, we get the
same feature vector for two different graphs…

9/27/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

휙() = 휙

What if we use Bag of node degrees?
Deg1: Deg2: Deg3:

� Both Graphlet Kernel and Weisfeiler-Lehman
(WL) Kernel use Bag-of-* representation of
graph, where * is more sophisticated than
node degrees!

9/27/2021 52Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

휙() = count() = [1, 2, 1]

휙() = count() = [0, 2, 2]

Obtains different features
for different graphs!

� Traditional ML Pipeline
� Hand-crafted feature + ML model

� Hand-crafted features for graph data
� Node-level:

� Node degree, centrality, clustering coefficient, graphlets

� Link-level:
� Distance-based feature

� local/global neighborhood overlap

� Graph-level:
� Graphlet kernel, WL kernel

9/27/2021 69Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

2

Input
Graph

Structured
Features

Learning
Algorithm

Downstream
prediction task

Feature engineering
(node-level, edge-level, graph-

level features)

Given an input graph, extract node, link
and graph-level features, learn a model
(SVM, neural network, etc.) that maps
features to labels.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu9/28/2021

Prediction

3

Input
Graph

Structured
Features

Learning
Algorithm Prediction

Downstream
prediction task

Feature
Engineering

Representation Learning --
Automatically

learn the features

Graph Representation Learning alleviates

the need to do feature engineering every

single time.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu9/28/2021

Goal: Efficient task-independent feature
learning for machine learning with graphs!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 4

vectornode

푓: 푢 → ℝ
ℝ

Feature representation,
embedding

푢

9/28/2021

� Task: Map nodes into an embedding space

� Similarity of embeddings between nodes indicates
their similarity in the network. For example:
� Both nodes are close to each other (connected by an edge)

� Encode network information
� Potentially used for many downstream predictions

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 5

Vec

ℝembeddings

• Node classification
• Link prediction
• Graph classification
• Anomalous node detection
• Clustering
• ….

Tasks

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

� Assume we have a graph G:

� V is the vertex set.
� A is the adjacency matrix (assume binary).
� For simplicity: No node features or extra

information is used

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 89/28/2021

1

4
3

2

=

0111
1000
1001
1010

AV: {1, 2, 3, 4}

� Goal is to encode nodes so that similarity in
the embedding space (e.g., dot product)
approximates similarity in the graph

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 99/28/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 10

Goal:

Need to define!

9/28/2021

in the original network Similarity of the embedding
similarity 푢, 푣 ≈ 𝐳 𝐳

1. Encoder maps from nodes to embeddings
2. Define a node similarity function (i.e., a

measure of similarity in the original network)
3. Decoder𝐃𝐄𝐂 maps from embeddings to the

similarity score
4. Optimize the parameters of the encoder so

that:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 119/28/2021

in the original network Similarity of the embedding

similarity 푢, 푣 ≈ 𝐳 𝐳
𝐃𝐄𝐂(𝐳 𝐳)

� Encoder: maps each node to a low-dimensional
vector

� Similarity function: specifies how the
relationships in vector space map to the
relationships in the original network

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 12

Similarity of 푢 and 푣 in
the original network

dot product between node
embeddings

9/28/2021

Decoder

ENC 푣 = 𝐳

similarity 푢, 푣 ≈ 𝐳 𝐳

node in the input graph

d-dimensional
embedding

Simplest encoding approach: Encoder is just an

embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 13

matrix, each column is a node
embedding [what we learn /
optimize]

indicator vector, all zeroes
except a one in column
indicating node v

9/28/2021

ENC 푣 = 𝐳풗 = 𝐙 ⋅ 푣

Simplest encoding approach: encoder is just an

embedding-lookup

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 14

Dimension/size
of embeddings

one column per node

embedding
matrix

embedding vector for a
specific node

9/28/2021

Simplest encoding approach: Encoder is just an

embedding-lookup

Each node is assigned a unique

embedding vector

(i.e., we directly optimize
the embedding of each node)

Many methods: DeepWalk, node2vec

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 15

� Encoder + Decoder Framework

� Shallow encoder: embedding lookup
� Parameters to optimize: 𝐙 which contains node

embeddings 𝐳 for all nodes 푢 ∈ 푉
� We will cover deep encoders (GNNs) in Lecture 6

� Decoder: based on node similarity.
� Objective: maximize 𝐳 𝐳 for node pairs (푢, 푣)

that are similar

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 16

� Key choice of methods is how they define node

similarity.

� Should two nodes have a similar embedding if
they…
� are linked?
� share neighbors?
� have similar “structural roles”?

� We will now learn node similarity definition that uses
random walks, and how to optimize embeddings for
such a similarity measure.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 17

� This is unsupervised/self-supervised way of
learning node embeddings.
� We are not utilizing node labels
� We are not utilizing node features
� The goal is to directly estimate a set of coordinates

(i.e., the embedding) of a node so that some aspect
of the network structure (captured by DEC) is
preserved.

� These embeddings are task independent

� They are not trained for a specific task but can be
used for any task.

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 18

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

� Vector 𝐳 :
� The embedding of node 푢 (what we aim to find).

� Probability푃 푣 𝐳) :
� The (predicted) probability of visiting node 푣 on

random walks starting from node 푢.

� Softmax function:
� Turns vector of 퐾 real values (model predictions) into
퐾 probabilities that sum to 1: 휎(풛)[푖] =

풛[]

∑ 풛[]

� Sigmoid function:
� S-shaped function that turns real values into the range of (0, 1).

Written as 푆 푥 = .

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 20

Non-linear functions used to produce predicted probabilities

Our model prediction based on 𝐳

1

4

3

2

5
6

7

9
10

8

11

12

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 21

Given a graph and a starting
point, we select a neighbor of
it at random, and move to this
neighbor; then we select a
neighbor of this point at
random, and move to it, etc.
The (random) sequence of
points visited this way is a
random walk on the graph.

Step 1 Step 2

Step 3 Step 4

Step 5

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 22

probability that u
and v co-occur on a
random walk over

the graph

9/28/2021

1. Estimate probability of visiting node 풗 on a

random walk starting from node 풖 using

some random walk strategy 푹

2. Optimize embeddings to encode these

random walk statistics:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 239/28/2021

Similarity in embedding space (Here:
dot product=cos(휃)) encodes random walk “similarity”

1. Expressivity: Flexible stochastic definition of
node similarity that incorporates both local
and higher-order neighborhood information
Idea: if random walk starting from node 푢
visits 푣 with high probability, 푢 and 푣 are
similar (high-order multi-hop information)

2. Efficiency: Do not need to consider all node
pairs when training; only need to consider
pairs that co-occur on random walks

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 249/28/2021

� Given 퐺 = (푉, 퐸),
� Our goal is to learn a mapping 푓: 푢 → ℝ :
푓 푢 = 𝐳

� Log-likelihood objective:

� 푁 (푢) is the neighborhood of node 푢 by strategy 푅

� Given node 푢, we want to learn feature
representations that are predictive of the nodes
in its random walk neighborhood 푁 (푢).

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 26

1. Run short fixed-length random walks

starting from each node 푢 in the graph using
some random walk strategy R.

2. For each node 푢 collect 푁 (푢), the multiset*

of nodes visited on random walks starting
from 푢.

3. Optimize embeddings according to: Given
node 푢, predict its neighbors 푁 (푢).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 27
*푁 (푢) can have repeat elements since nodes can be visited multiple times on random walks

9/28/2021

Maximum likelihood objective

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

• Intuition: Optimize embeddings 풛 to maximize
the likelihood of random walk co-occurrences.

• Parameterize 푃(푣|𝐳푢) using softmax:

9/28/2021

Why softmax?
We want node 푣 to be
most similar to node 푢
(out of all nodes 푛).
Intuition: ∑ exp 푥 ≈
max exp(푥)

Equivalently,

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 29

Putting it all together:

sum over all
nodes 푢

sum over nodes 푣
seen on random

walks starting from 푢

predicted probability of 푢
and 푣 co-occuring on

random walk

Optimizing random walk embeddings =

Finding embeddings 𝐳풖 that minimize L
9/28/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

But doing this naively is too expensive!

Nested sum over nodes gives
O(|V|2) complexity!

9/28/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

� After we obtained the objective function, how do
we optimize (minimize) it?

� Gradient Descent: a simple way to minimize ℒ :

� Initialize 푧 at some randomized value for all nodes 푢.

� Iterate until convergence:

� For all 푢, compute the derivative ℒ .

� For all 푢, make a step in reverse direction of derivative: 푧 ← 푧 − 휂 ℒ .
9/28/2021

ℒ =
∈ ∈ ()

−log(푃(푣|𝐳))

휂: learning rate

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

� Stochastic Gradient Descent: Instead of evaluating
gradients over all examples, evaluate it for each
individual training example.

� Initialize 푧 at some randomized value for all nodes 푢.

� Iterate until convergence:

� Sample a node 푢, for all 푣 calculate the derivative ℒ()
.

� For all 푣, update:푧 ← 푧 − 휂 ℒ()
.

9/28/2021

ℒ() =
∈ ()

−log(푃(푣|𝐳))

1. Run short fixed-length random walks starting
from each node on the graph

2. For each node 푢 collect 푁 (푢), the multiset of
nodes visited on random walks starting from 푢.

3. Optimize embeddings using Stochastic
Gradient Descent:

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

We can efficiently approximate this using
negative sampling!

9/28/2021

� So far we have described how to optimize
embeddings given a random walk strategy R

� What strategies should we use to run these

random walks?

� Simplest idea: Just run fixed-length, unbiased

random walks starting from each node (i.e.,
DeepWalk from Perozzi et al., 2013)
� The issue is that such notion of similarity is too constrained

� How can we generalize this?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 379/28/2021

Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.

� Core idea: Embed nodes so that distances in
embedding space reflect node similarities in
the original network.

� Different notions of node similarity:

� Naïve: similar if two nodes are connected
� Neighborhood overlap (covered in Lecture 2)
� Random walk approaches (covered today)

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 489/28/2021

� How to use embeddings 풛풊 of nodes:

� Clustering/community detection: Cluster points 풛풊
� Node classification: Predict label of node 푖 based on 풛풊
� Link prediction: Predict edge (푖, 푗) based on (풛풊, 풛풋)

� Where we can: concatenate, avg, product, or take a difference
between the embeddings:
� Concatenate: 푓(풛 , 풛)= 푔([풛 , 풛])
� Hadamard: 푓(풛 , 풛)= 푔(풛 ∗ 풛) (per coordinate product)
� Sum/Avg: 푓(풛 , 풛)= 푔(풛 + 풛)
� Distance: 푓(풛 , 풛)= 푔(||풛 − 풛풋||)

� Graph classification: Graph embedding 풛푮 via aggregating
node embeddings or anonymous random walks.
Predict label based on graph embedding 풛 .

9/28/2021 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Intuition: Map nodes to !-dimensional
embeddings such that similar nodes in the
graph are embedded close together

3

f ()=
Input graph 2D node embeddings

How to learn mapping function "?
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Today: We will now discuss deep learnig
methods based on graph neural networks
(GNNs):

¡ Note: All these deep encoders can be
combined with node similarity functions
defined in the Lecture 3.

8

multiple layers of
non-linear transformations
based on graph structure

ENC $ =

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Tasks we will be able to solve:
¡ Node classification
§ Predict a type of a given node

¡ Link prediction
§ Predict whether two nodes are linked

¡ Community detection
§ Identify densely linked clusters of nodes

¡ Network similarity
§ How similar are two (sub)networks

1010/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

But networks are far more complex!
§ Arbitrary size and complex topological structure (i.e.,

no spatial locality like grids)

§ No fixed node ordering or reference point
§ Often dynamic and have multimodal features

12

vs.

Networks Images

Text

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ Assume we have a graph <:
§ B is the vertex set
§ C is the adjacency matrix (assume binary)
§ D ∈ ℝ<×|?| is a matrix of node features
§ G: a node in B; H G : the set of neighbors of G.
§ Node features:

§ Social networks: User profile, User image
§ Biological networks: Gene expression profiles, gene

functional information
§ When there is no node feature in the graph dataset:

§ Indicator vectors (one-hot encoding of a node)
§ Vector of constant 1: [1, 1, …, 1]

3310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Join adjacency matrix and features
¡ Feed them into a deep neural net:

¡ Issues with this idea:
¡ Issues with this idea:
§ I(|B|) parameters
§ Not applicable to graphs of different sizes
§ Sensitive to node ordering

34
End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CNN on an image:

35

Goal is to generalize convolutions beyond simple lattices
Leverage node features/attributes (e.g., text, images)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

But our graphs look like this:

36

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

End-to-end learning on graphs with GCNs Thomas Kipf

or this:

Graph-structured data

6

… …

…

Input

Hidden layer Hidden layer

ReLU

Output

ReLU

What if our data looks like this?

or this:

§ There is no fixed notion of locality or sliding
window on the graph

§ Graph is permutation invariant
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!
¡ We can have many different order plans.

3710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

38

A
C

B

E
F

D

A

B

C

D

E

F

Node features)$ Adjacency matrix *$

A
B
C
D
E
F

A B C D E FOrder plan 1

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

39

A
C

B

E
F

D

A

B

C

D

E

F

Node features)$ Adjacency matrix *$

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node features)# Adjacency matrix *#

A
B
C
D
E
F

A B C D E FOrder plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Graph does not have a canonical order of the nodes!

40

A
C

B

E
F

D

A

B

C

D

E

F

Node feature)$ Adjacency matrix *$

A
B
C
D
E
F

A B C D E FOrder plan 1

E
D

F

B
A

C

A

B

C

D

E

F

Node feature)# Adjacency matrix *#

A
B
C
D
E
F

A B C D E FOrder plan 2

Graph and node representations
should be the same for Order plan 1

and Order plan 2

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
¡ No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

Switching the order of the
input leads to different

outputs!

Are other neural network architectures, e.g.,
MLPs, permutation invariant / equivariant?
¡ No.

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

This explains why the naïve MLP approach
fails for graphs!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

¡ Are any neural network architecture, e.g.,
MLPs, permutation invariant / equivariant?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

This explains why the naïve MLP approach is bad!

End-to-end learning on graphs with GCNs Thomas Kipf

A B C D E
A
B
C
D
E

0 1 1 1 0 1 0
1 0 0 1 1 0 0
1 0 0 1 0 0 1
1 1 1 0 1 1 1
0 1 0 1 0 1 0

Feat

A naïve approach

8

• Take adjacency matrix and feature matrix

• Concatenate them

• Feed them into deep (fully connected) neural net

• Done?

Problems:

• Huge number of parameters
• No inductive learning possible

?A

C

B

D

E

[A,X]

Next: Design graph neural
networks that are permutation

invariant / equivariant by
passing and aggregating

information from neighbors!

Idea: Node’s neighborhood defines a
computation graph

53

Determine node
computation graph

1

Propagate and
transform information

1

Learn how to propagate information across the
graph to compute node features

[Kipf and Welling, ICLR 2017]

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Key idea: Generate node embeddings based
on local network neighborhoods

54

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Intuition: Nodes aggregate information from
their neighbors using neural networks

55

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

Neural networks
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Intuition: Network neighborhood defines a
computation graph

56

Every node defines a computation
graph based on its neighborhood!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Model can be of arbitrary depth:
§ Nodes have embeddings at each layer
§ Layer-0 embedding of node " is its input feature, $+
§ Layer-% embedding gets information from nodes that

are % hops away

57

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

xA

xB

xC

xE
xF

xA

xA

Layer-2

Layer-1
Layer-0

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Neighborhood aggregation: Key distinctions
are in how different approaches aggregate
information across the layers

58

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

What is in the box?

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Basic approach: Average information from
neighbors and apply a neural network

59

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(1) average messages
from neighbors

(2) apply neural network
10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Basic approach: Average neighbor messages
and apply a neural network

60

Average of neighbor’s
previous layer embeddings

Total number
of layers

Initial 0-th layer embeddings are
equal to node features

Embedding after L
layers of neighborhood

aggregation

Non-linearity
(e.g., ReLU)

embedding of
$ at layer (hBC = xB

zB = hB
(D)

hB
(E;0) = >(WE N

F∈H(B)

hF
(E)

N(G)
+ BEhB

(E)), ∀R ∈ {0, … , T − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Notice summation is a permutation
invariant pooling/aggregation.

&I

How do we train the GCN to
generate embeddings?

Need to define a loss function on the embeddings.
6310/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

We can feed these embeddings into any loss function
and run SGD to train the weight parameters

ℎ!": the hidden representation of node " at layer #
¡ $": weight matrix for neighborhood aggregation
¡ %": weight matrix for transforming hidden vector of

self
64

Trainable weight matrices
(i.e., what we learn)

Final node embedding

h6(8) = x6

z6 = h6(:)
h6(;<0) = :(W; <

=∈?(6)

h=(;)
N(>) + B;h6

(;)), ∀B ∈ {0. . G − 1}

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Many aggregations can be performed
efficiently by (sparse) matrix operations

¡ Let
¡ Then: ∑,∈.& ℎ,

(/) = A!,:H(/)
¡ Let - be diagonal matrix where
-!,! = Deg $ = |2 $ |
§ The inverse of J: J!" is also diagonal:
J#,#!" = 1/|L M |

¡ Therefore,

65

Matrix of hidden embeddings 2(&'!)

3)
(&'!)

3(/) = [ℎ4(/)…ℎ|6|
(/)]7

W(E;0) = X20YW(E)@
2∈3(4)

ℎ2(56/)
|C(D)|

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Re-writing update function in matrix form:

§ Red: neighborhood aggregation
§ Blue: self transformation

¡ In practice, this implies that efficient sparse
matrix multiplication can be used (CD is sparse)

¡ Note: not all GNNs can be expressed in matrix form, when
aggregation function is complex

66

W(E;0) = >(ZYW(E)5E
N +W E [E

N)
where ZY = X20Y

O(&) = [ℎ"(&)…ℎ|)|
(&)]*

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ Node embedding J6 is a function of input graph
¡ Supervised setting: we want to minimize the loss
ℒ (see also Slide 15):

min
$
ℒ(", * E!)

§): node label
§ ℒ could be L2 if) is real number, or cross entropy

if) is categorical
¡ Unsupervised setting:
§ No node label available
§ Use the graph structure as the supervision!

6710/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ “Similar” nodes have similar embeddings
ℒ = 8

8',8&
CE(:,,!, DEC <,, <!)

§ Where \F,B = 1 when node > and $ are similar
§ CE is the cross entropy (Slide 16)
§ DEC is the decoder such as inner product (Lecture 4)

¡ Node similarity can be anything from
Lecture 3, e.g., a loss based on:
§ Random walks (node2vec, DeepWalk, struc2vec)
§ Matrix factorization
§ Node proximity in the graph

6810/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Directly train the model for a supervised task
(e.g., node classification)

69

Safe or toxic
drug?

Safe or toxic
drug?

E.g., a drug-drug
interaction network

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Directly train the model for a supervised task
(e.g., node classification)
¡ Use cross entropy loss (Slide 16)

70

Encoder output:
node embedding

Classification
weights

Node class
labelSafe or toxic drug?

ℒ = <
6∈E

-6log(:(z6FN)) + 1 − -6 log(1 − : z6FN)

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

71

(1) Define a neighborhood
aggregation function

(2) Define a loss function on the
embeddings

E=

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

72

(3) Train on a set of nodes, i.e.,
a batch of compute graphs

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

73

(4) Generate embeddings
for nodes as needed

Even for nodes we never
trained on!

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

¡ The same aggregation parameters are shared
for all nodes:
§ The number of model parameters is sublinear in
|B| and we can generalize to unseen nodes!

74

INPUT GRAPH

B

D
E

F

CA

Compute graph for node A Compute graph for node B

shared parameters

shared parameters

-> F>

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

75

Inductive node embedding Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate
embeddings on newly collected data about organism B

Train on one graph Generalize to new graph

zD

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

76

Train with snapshot New node arrives
Generate embedding

for new node

¡ Many application settings constantly encounter
previously unseen nodes:

§ E.g., Reddit, YouTube, Google Scholar
¡ Need to generate new embeddings “on the fly”

zD

10/7/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 28

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer 2

(4) Graph augmentation

(3) Layer
connectivity

(5) Learning objective

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 30

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

(2) Aggregation

(1) Message
GNN Layer 1

GNN Layer = Message + Aggregation
• Different instantiations under this perspective
• GCN, GraphSAGE, GAT, …

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ Idea of a GNN Layer:
§ Compress a set of vectors into a single vector
§ Two-step process:

§ (1) Message
§ (2) Aggregation

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 31

Input node embedding 9!#.% , 9(∈/(!)#.%

(from node itself + neighboring nodes)

:-th GNN Layer

Output node embedding 9!#

(2) Aggregation

(1) Message

Node "

¡ (1) Message computation
§ Message function:

§ Intuition: Each node will create a message, which will be
sent to other nodes later

§ Example: A Linear layer ";
(<) = $ < %;

<=>

§ Multiply node features with weight matrix 5 #

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 32

(2) Aggregation

(1) Message

Node "

!6
(7) = MSG 7 &6

789

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

¡ (2) Aggregation
§ Intuition: Each node will aggregate the messages from

node &’s neighbors

§ Example: Sum(⋅), Mean(⋅) or Max(⋅) aggregator

§%?
< = Sum({";

< , 4 ∈ 6(&)})

!!(#) = AGG # !6
7 , (∈ * +

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 33

(2) Aggregation

(1) Message

Node "

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

%?
< = CONCAT AGG ";

< , 4 ∈ 6 & ,"?
<

¡ Issue: Information from node + itself could get lost

§ Computation of %?
(<) does not directly depend on %?

(<=>)

¡ Solution: Include &:
(789) when computing &:

(7)

§ (1) Message: compute message from node > itself
§ Usually, a different message computation will be performed

§ (2) Aggregation: After aggregating from neighbors, we can
aggregate the message from node > itself
§ Via concatenation or summation

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 34

;!
(#) = < # =!#<%;'

(#) = 5 # ='#<%

First aggregate from neighbors

Then aggregate from node itself

(2) Aggregation

(1) Message

¡ Putting things together:
§ (1) Message: each node computes a message

§ (2) Aggregation: aggregate messages from neighbors

§ Nonlinearity (activation): Adds expressiveness
§ Often written as ?(⋅): ReLU(⋅), Sigmoid(⋅) , …
§ Can be added to message or aggregation

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 35

!6
(7) = MSG 7 &6

789 , (∈ {* + ∪ +}

!!(#) = AGG # %%
, ' ∈) * ,%!

#

¡ (1) Graph Convolutional Networks (GCN)

¡ How to write this as Message + Aggregation?

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 36

%?
(<) = ? $ < G

;∈@ ?

%;
<=>

6 &

%?
(<) = ? G

;∈@ ?
$ < %;

<=>

6 &

Aggregation

Message

T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

(2) Aggregation

(1) Message

https://arxiv.org/pdf/1609.02907.pdf

¡ (1) Graph Convolutional Networks (GCN)

¡ Message:

§ Each Neighbor: ";
(<) = >

@ ? $ < %;
<=>

¡ Aggregation:
§ Sum over messages from neighbors, then apply activation

§ %?
< = ? Sum ";

< , 4 ∈ 6 &

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 37

Normalized by node degree
(In the GCN paper they use a slightly
different normalization)

%?
(<) = ? G

;∈@ ?
$ < %;

<=>

6 &
(2) Aggregation

(1) Message

In GCN graph is assumed to have
self-edges that are included in the
summation.

¡ (2) GraphSAGE

¡ How to write this as Message + Aggregation?

§ Message is computed within the AGG ⋅
§ Two-stage aggregation

§ Stage 1: Aggregate from node neighbors

§ Stage 2: Further aggregate over the node itself

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 38

%?
(<) = ? $(<) H CONCAT %?

<=> , AGG %;
<=> , ∀4 ∈ 6 &

==(!)
(#) ← AGG ='(#<%), ∀A ∈ B C

=!(#) ← # 5(#) ⋅ CONCAT(=!#<% , ==(!)
(#))

Hamilton et al. Inductive Representation Learning on Large Graphs, NeurIPS 2017

https://arxiv.org/pdf/1706.02216.pdf

¡ Mean: Take a weighted average of neighbors

¡ Pool: Transform neighbor vectors and apply
symmetric vector function Mean(⋅) or Max(⋅)

¡ LSTM: Apply LSTM to reshuffled of neighbors

AGG = 7
6∈I(:)

&6
(789)

*(+)

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 39

AGG = Mean({MLP(&6
(789)), ∀(∈ *(+)})

AGG = LSTM([&6
(789), ∀(∈ = * +])

Message computation

Message computation

Aggregation

Aggregation

Aggregation

¡ ℓ! Normalization:
§ Optional: Apply ℓA normalization to %?

(<) at every layer

§ !!(#) ←
&#
(%)

&#
(%)

'
∀* ∈ - where ' ' = ∑('(' (ℓ'-norm)

§ Without ℓ' normalization, the embedding vectors have
different scales (ℓ'-norm) for vectors

§ In some cases (not always), normalization of embedding
results in performance improvement

§ After ℓ' normalization, all vectors will have the same
ℓ'-norm

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 40

¡ (3) Graph Attention Networks

¡ In GCN / GraphSAGE
§ ?:6 =

9
I : is the weighting factor (importance)

of node (’s message to node +
§ ⟹ ?:6 is defined explicitly based on the

structural properties of the graph (node degree)
§ ⟹ All neighbors (∈ *(+) are equally important

to node +

&:
(7) = A(∑6∈I : ?:6C(7)&6

(789))

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 41

Attention weights

¡ (3) Graph Attention Networks

Not all node’s neighbors are equally important
§ Attention is inspired by cognitive attention.
§ The attention D4J focuses on the important parts of

the input data and fades out the rest.
§ Idea: the NN should devote more computing power on that

small but important part of the data.
§ Which part of the data is more important depends on the

context and is learned through training.

&:
(7) = A(∑6∈I : ?:6C(7)&6

(789))

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 42

Attention weights

Can we do better than simple
neighborhood aggregation?

Can we let weighting factors !!" to be
learned?

¡ Goal: Specify arbitrary importance to different
neighbors of each node in the graph

¡ Idea: Compute embedding "#(%) of each node in the
graph following an attention strategy:
§ Nodes attend over their neighborhoods’ message
§ Implicitly specifying different weights to different nodes

in a neighborhood

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

¡ Let ""# be computed as a byproduct of an
attention mechanism #:
§ (1) Let E compute attention coefficients F4J across

pairs of nodes (, + based on their messages:
G:6 = E(C(7)&6

(789),C(7)H:
(789))

§ KBC indicates the importance of LDMmessage to node >

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 44

90
(#.%)

91(#.%)E01

NFG = O($(<)%F
(<=>),$(<)%G

(<=>))

§ Normalize G:6 into the final attention weight D4J
§ Use the softmax function, so that ∑;∈@ ? Q?; = 1:

0!% =
exp(5!%)

∑)∈+ ! exp(5!))
§ Weighted sum based on the final attention weight
D4J

!!(#) = 7(∑%∈+ ! 0!%$(<)!%(#,-))

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 45

H01
Weighted sum using QFG, QFI, QFJ:
=>(#) = #(K>?5(#)=?(#<%)+K>@5(#)=@(#<%)+

K>A5(#)=A(#<%))

91(#.%)

92(#.%)
H02

H03

¡ Multi-head attention: Stabilizes the learning
process of attention mechanism
§ Create multiple attention scores (each replica

with a different set of parameters):

§ Outputs are aggregated:
§ By concatenation or summation

§ %?
(<) = AGG(%?

(<) 1 , %?
(<) 2 , %?

(<) 3)

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

!!(#)[1] = 7(∑%∈+ ! 0!%- ;(#)!%(#,-))
!!(#)[2] = 7(∑%∈+ ! 0!%' ;(#)!%(#,-))
!!(#)[3] = 7(∑%∈+ ! 0!%. ;(#)!%(#,-))

¡ Key benefit: Allows for (implicitly) specifying different
importance values ("4J) to different neighbors

¡ Computationally efficient:
§ Computation of attentional coefficients can be parallelized

across all edges of the graph
§ Aggregation may be parallelized across all nodes

¡ Storage efficient:
§ Sparse matrix operations do not require more than
U(V + X) entries to be stored

§ Fixed number of parameters, irrespective of graph size
¡ Localized:

§ Only attends over local network neighborhoods
¡ Inductive capability:

§ It is a shared edge-wise mechanism
§ It does not depend on the global graph structure

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 48

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

¡ In practice, these classic GNN
layers are a great starting point
§ We can often get better

performance by considering a
general GNN layer design

§ Concretely, we can include
modern deep learning modules
that proved to be useful in many
domains

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 50

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Many modern deep learning modules can be
incorporated into a GNN layer
§ Batch Normalization:

§ Stabilize neural network training

§ Dropout:
§ Prevent overfitting

§ Attention/Gating:
§ Control the importance of a message

§ More:
§ Any other useful deep learning modules

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 51

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

A suggested GNN Layer

https://arxiv.org/pdf/2011.08843.pdf

¡ Goal: Regularize a neural net to prevent overfitting.
¡ Idea:

§ During training: with some probability ^, randomly set
neurons to zero (turn off)

§ During testing: Use all the neurons for computation

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 53

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Removed neurons

Dropout

https://www.jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf?utm_campaign=buffer&utm_content=buffer79b43&utm_medium=social&utm_source=twitter.com

¡ In GNN, Dropout is applied to the
linear layer in the message function
§ A simple message function with linear

layer: !6
(7) = C 7 &6

789

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 54

Dropout
%;
<=> ";

(<)

$ <

Visualization of a linear layer

(2) Aggregation

(1) Message

Apply activation to I-th dimension of
embedding J
¡ Rectified linear unit (ReLU)

ReLU _V = max(_V, 0)
§ Most commonly used

¡ Sigmoid

? _V =
1

1 + N=W!
§ Used only when you want to restrict the

range of your embeddings
¡ Parametric ReLU
PReLU _V = max _V, 0 + OVmin(_V, 0)

OV is a trainable parameter
§ Empirically performs better than ReLU

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 55

X

Y

0
X

Y

0

1

X

Y

0
$ = &'

$ = '

$ = '

$ = 1
1 +)!"

¡ Summary: Modern deep learning
modules can be included into a GNN
layer for better performance

¡ Designing novel GNN layers is still
an active research frontier!

¡ Suggested resources: You can
explore diverse GNN designs or try
out your own ideas in GraphGym

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 56

A GNN Layer

https://github.com/snap-stanford/GraphGym

CS224W: Machine Learning with Graphs
Jure Leskovec, Stanford University

http://cs224w.stanford.edu

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 58

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

GNN Layer 1

GNN Layer 2

(3) Layer
connectivity

How to connect GNN layers into a GNN?
• Stack layers sequentially
• Ways of adding skip connections

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

https://arxiv.org/pdf/2011.08843.pdf

¡ How to construct a Graph Neural Network?
§ The standard way: Stack GNN layers sequentially
§ Input: Initial raw node feature J:
§ Output: Node embeddings &:

(X) after K GNN layers

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 59

=!(B) = Y!

=!(%)

=!(C)

=!(D)

¡ The Issue of stacking many GNN layers
§ GNN suffers from the over-smoothing problem

¡ The over-smoothing problem: all the node
embeddings converge to the same value
§ This is bad because we want to use node

embeddings to differentiate nodes
¡ Why does the over-smoothing problem

happen?

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 60

¡ Receptive field: the set of nodes that determine
the embedding of a node of interest
§ In a L-layer GNN, each node has a receptive field of
L-hop neighborhood

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 61

Receptive field for
1-layer GNN

Receptive field for
2-layer GNN

Receptive field for
3-layer GNN

¡ Receptive field overlap for two nodes
§ The shared neighbors quickly grows when we

increase the number of hops (num of GNN layers)

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 62

1-hop neighbor overlap
Only 1 node

2-hop neighbor overlap
About 20 nodes

3-hop neighbor overlap
Almost all the nodes!

¡ We can explain over-smoothing via the notion
of receptive field
§ We knew the embedding of a node is determined

by its receptive field
§ If two nodes have highly-overlapped receptive fields, then

their embeddings are highly similar

§ Stack many GNN layers à nodes will have highly-
overlapped receptive fields à node embeddings
will be highly similar à suffer from the over-
smoothing problem

¡ Next: how do we overcome over-smoothing problem?

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 63

¡ What do we learn from the over-smoothing problem?
¡ Lesson 1: Be cautious when adding GNN layers

§ Unlike neural networks in other domains (CNN for image
classification), adding more GNN layers do not always help

§ Step 1: Analyze the necessary receptive field to solve your
problem. E.g., by computing the diameter of the graph

§ Step 2: Set number of GNN layers b to be a bit more than the
receptive field we like. Do not set c to be unnecessarily
large!

¡ Question: How to enhance the expressive power of a
GNN, if the number of GNN layers is small?

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 64

¡ How to make a shallow GNN more expressive?
¡ Solution 1: Increase the expressive power within

each GNN layer
§ In our previous examples, each transformation or

aggregation function only include one linear layer
§ We can make aggregation / transformation become a

deep neural network!

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 65

(2) Aggregation

(1) Transformation

If needed, each box could
include a 3-layer MLP

¡ How to make a shallow GNN more expressive?
¡ Solution 2: Add layers that do not pass messages

§ A GNN does not necessarily only contain GNN layers
§ E.g., we can add MLP layers (applied to each node) before and after

GNN layers, as pre-process layers and post-process layers

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 66

Pre-processing layers: Important when
encoding node features is necessary.
E.g., when nodes represent images/text

Post-processing layers: Important when
reasoning / transformation over node
embeddings are needed
E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

¡ What if my problem still requires many GNN layers?
¡ Lesson 2: Add skip connections in GNNs

§ Observation from over-smoothing: Node embeddings in
earlier GNN layers can sometimes better differentiate nodes

§ Solution: We can increase the impact of earlier layers on the
final node embeddings, by adding shortcuts in GNN

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 67

Idea of skip connections:
Before adding shortcuts:

Z Y
After adding shortcuts:

Z Y + Y

Duplicate
into two
branches

Sum two
branches

He et al. Deep Residual Learning for Image Recognition, CVPR 2015

https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

¡ Why do skip connections work?
§ Intuition: Skip connections create a mixture of models
§ 6 skip connections à 2@ possible paths
§ Each path could have up to 6 modules

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 68

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Path 1: include this module

Path 2: skip this module

All the possible paths:
2 ∗ 2 ∗ 2 = 29 = 8

§ We automatically get a mixture
of shallow GNNs and deep GNNs

https://arxiv.org/abs/1605.06431

¡ A standard GCN layer

¡ %?
(<) = ? ∑;∈@ ? $ < 9*+,-

@ ?

¡ A GCN layer with skip connection

¡ %?
(<) = ? ∑;∈@ ? $ < 9*+,-

@ ? + %?
(<=>)

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 69

This is our d _

d(_) + _

¡ Other options: Directly
skip to the last layer
§ The final layer directly

aggregates from the all the
node embeddings in the
previous layers

10/12/21 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 70

Xu et al. Representation learning on graphs with jumping knowledge networks, ICML 2018

(!(#)

(!(%)

(!(&)

Input: (!(')

Output: (!(()*+,)

https://arxiv.org/abs/1806.03536

