National Technical University of Athens MSc on Data Science and Machine Learning Course "Deep Learning"

Graph Machine Learning

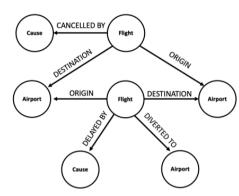
Concepts, algorithms and tools for analysis of graph data

02 June 2022

Stanford CS224W: Machine Learning with Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Many Types of Data are Graphs (1)



Event Graphs

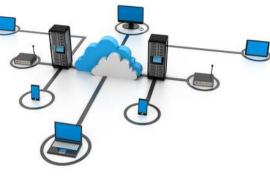
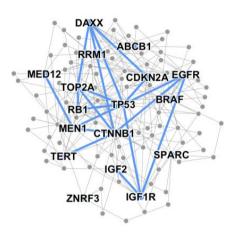


Image credit: SalientNetworks

Computer Networks



Disease Pathways

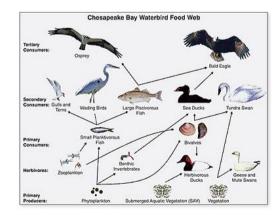


Image credit: Wikipedia

Food Webs

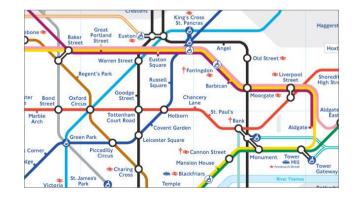


Image credit: visitlondon.com

Underground Networks

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Image credit: Pinterest

Particle Networks

Many Types of Data are Graphs (2)

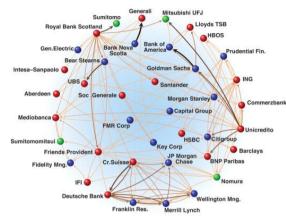
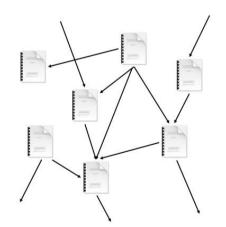


Image credit: Science

Image credit: <u>Medium</u>

Social Networks

Economic Networks Communication Networks



Citation Networks

Image credit: Missoula Current News

Internet

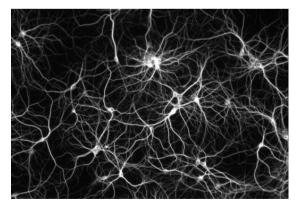


Image credit: The Conversation

Networks of Neurons

9/22/2021

Many Types of Data are Graphs (3)

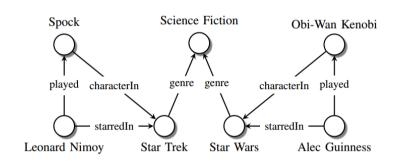


Image credit: Maximilian Nickel et al

Knowledge Graphs

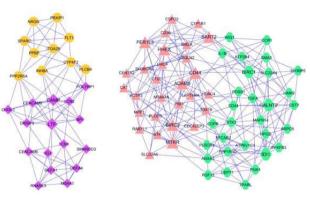


Image credit: ese.wustl.edu

Regulatory Networks

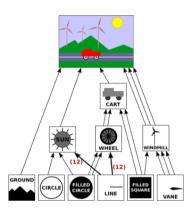
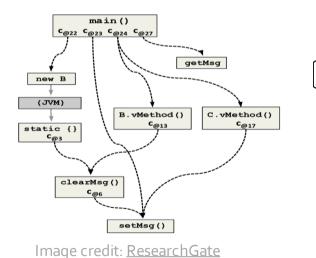


Image credit: math.hws.edu

Scene Graphs



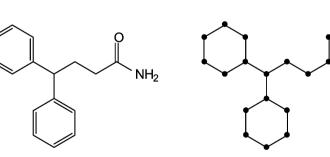


Image credit: MDPI

Molecules

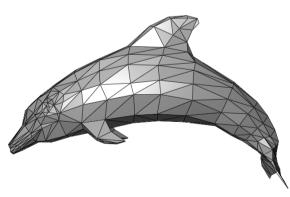
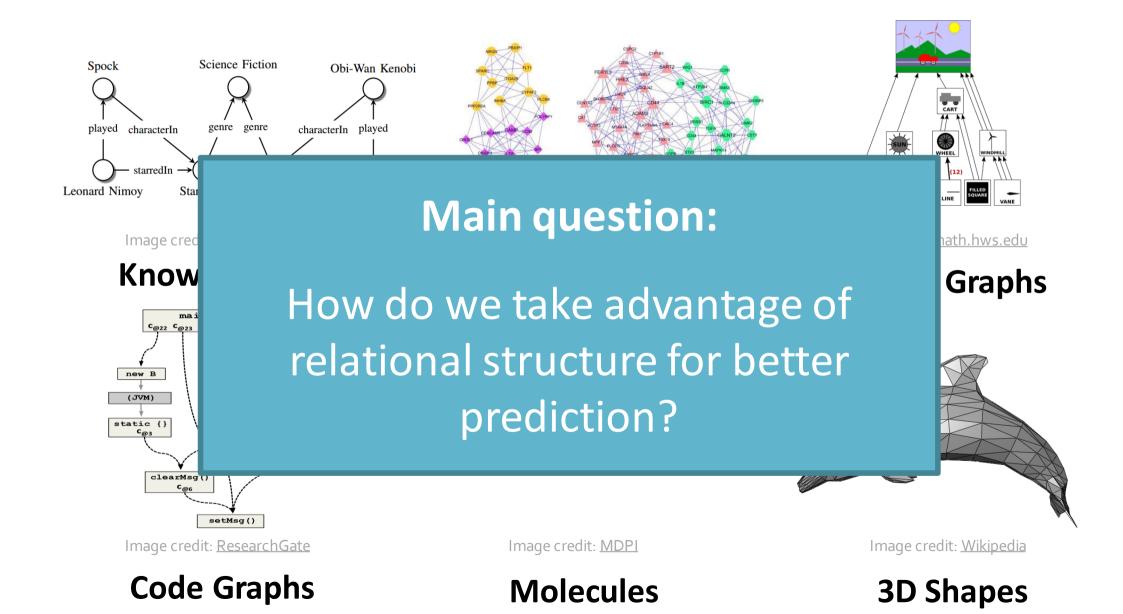


Image credit: Wikipedia

3D Shapes

Code Graphs

Graphs and Relational Data

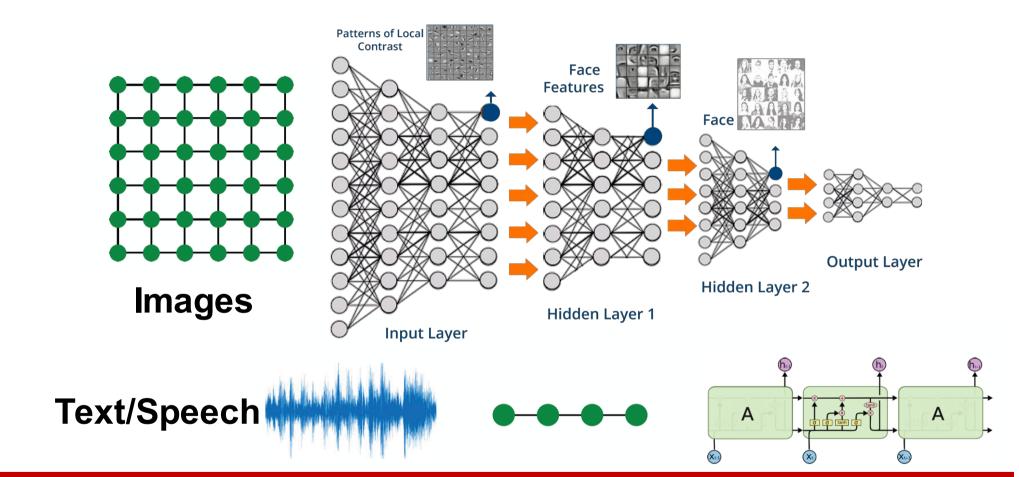


9/22/2021

Complex domains have a rich relational structure, which can be represented as a relational graph

By explicitly modeling relationships we achieve better performance!

Today: Modern ML Toolbox



Modern deep learning toolbox is designed for simple sequences & grids

Doubt thou the stars are fire; Doubt that the sun doth move; Doubt truth to be a liar; But never doubt I love...

Images

Modern deep learning toolbox is designed for sequences & grids

9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

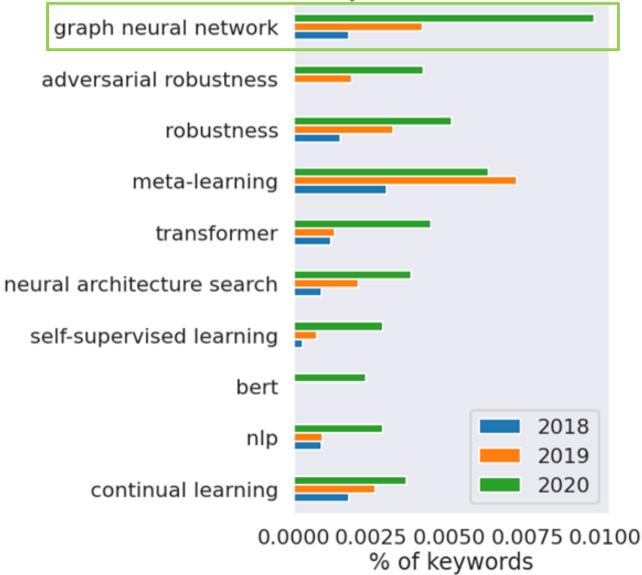
Not everything can be represented as a sequence or a grid

How can we develop neural networks that are much more broadly applicable?

New frontiers beyond classic neural networks that only learn on images and sequences

The hottest subfield in ML

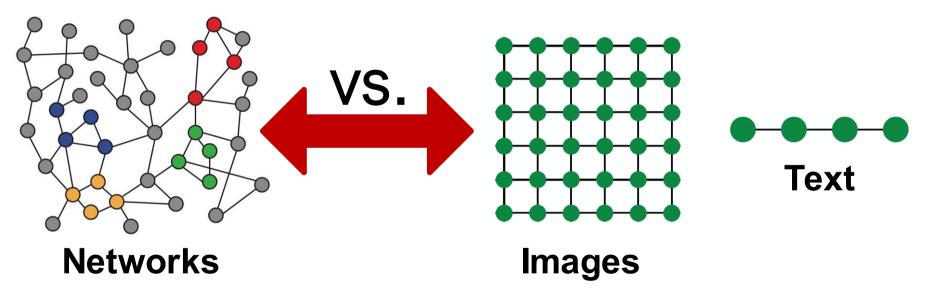
ICLR Keyword Growth 2018-2020



Why is Graph Deep Learning Hard?

Networks are complex.

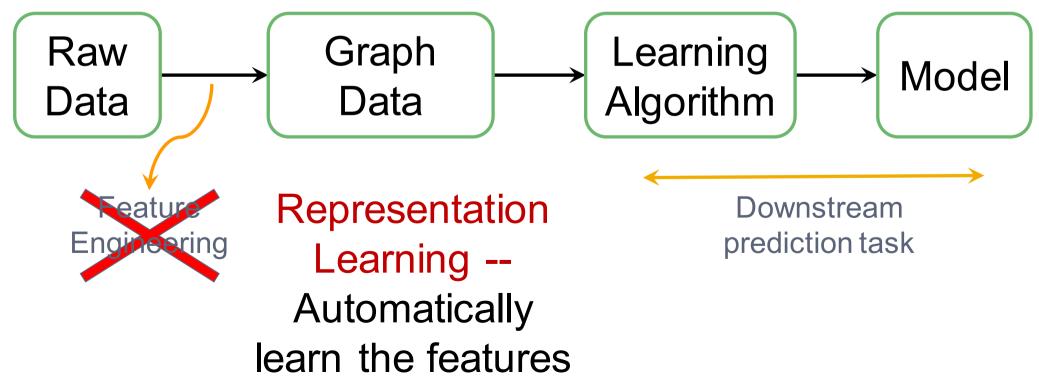
 Arbitrary size and complex topological structure (*i.e.*, no spatial locality like grids)



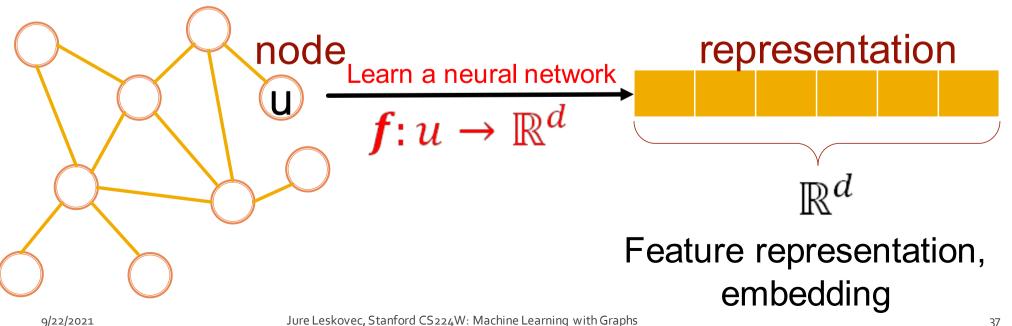
- No fixed node ordering or reference point
- Often dynamic and have multimodal features

CS224W & Representation Learning

(Supervised) Machine Learning Lifecycle: This feature, that feature. Every single time!



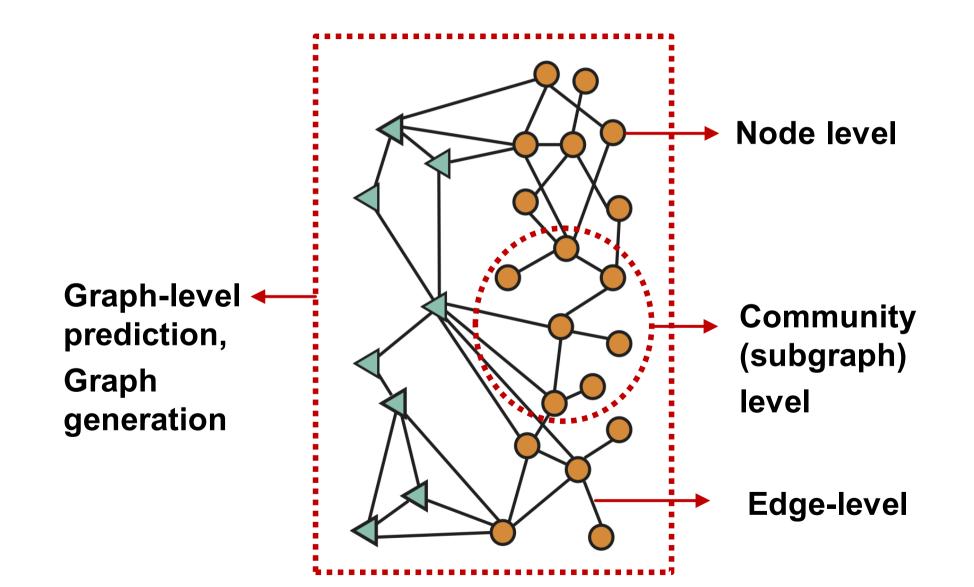
Map nodes to d-dimensional embeddings such that similar nodes in the network are embedded close together



Stanford CS224W: Applications of Graph ML

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Different Types of Tasks



9/22/2021

Classic Graph ML Tasks

Node classification: Predict a property of a node

- Example: Categorize online users / items
- Link prediction: Predict whether there are missing links between two nodes
 - Example: Knowledge graph completion
- Graph classification: Categorize different graphs
 - Example: Molecule property prediction
- Clustering: Detect if nodes form a community
 - Example: Social circle detection
- Other tasks:
 - Graph generation: Drug discovery
 - Graph evolution: Physical simulation

Classic Graph ML Tasks

Node classification: Predict a property of a node

- Example: Categorize online users / items
- Link prediction: Predict whether there are missing
 - links
 - Exa
- Grap These Graph ML tasks lead to phs
- Exa high-impact applications!
 - Exa
- Others:
 - Graph generation: Drug discovery
 - Graph evolution: Physical simulation

Y

Example of Node-level ML Tasks

Example (1): Protein Folding

A protein chain acquires its native 3D structure

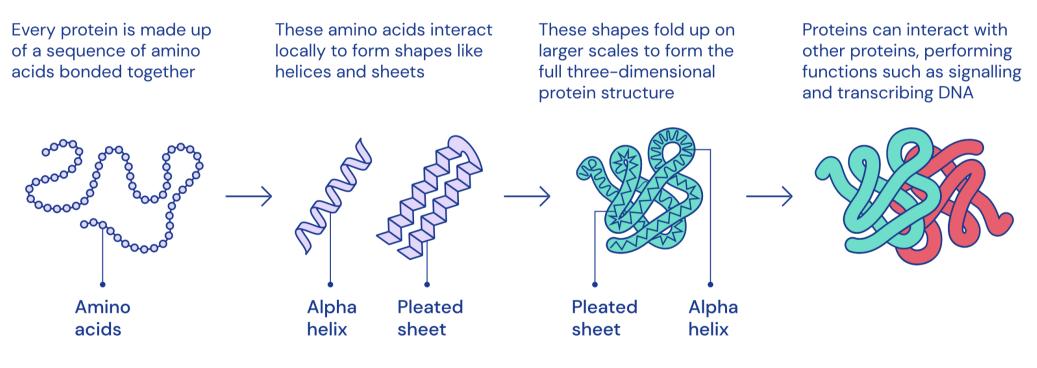
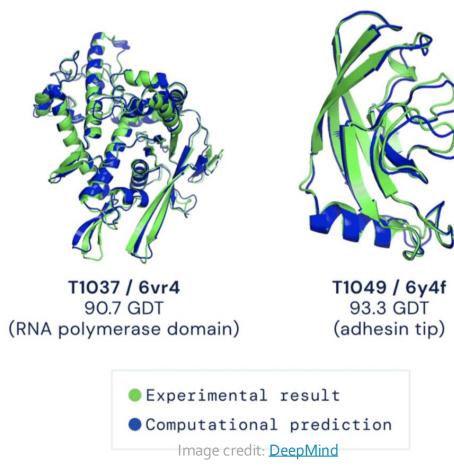


Image credit: DeepMind

The Protein Folding Problem

Computationally predict a protein's 3D structure based solely on its amino acid sequence



AlphaFold: Impact

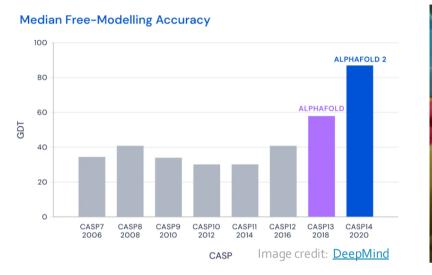


Image credit: SingularityHub

AlphaFold's Al could change the world of biological science as we know it

DeepMind's latest AI breakthrough can accurately predict the way proteins fold

Has Artificial Intelligence 'Solved' Biology's **Protein-Folding Problem? DeepMind's latest AI** breakthrough could turbocharge drug discovery

9/22/2021

12-14-20

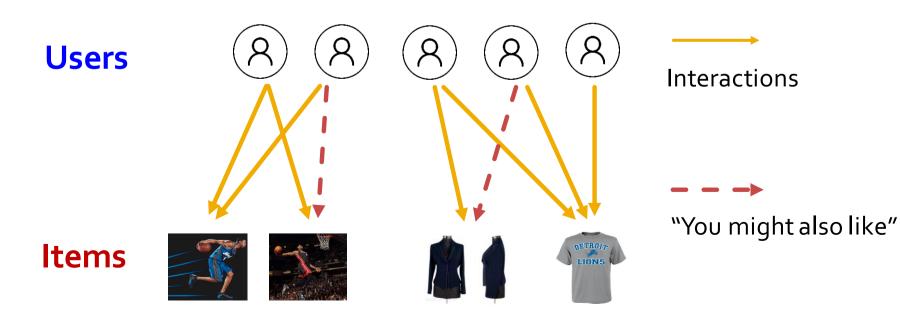
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Examples of Edge-level ML Tasks

Example (2): Recommender Systems

Users interacts with items

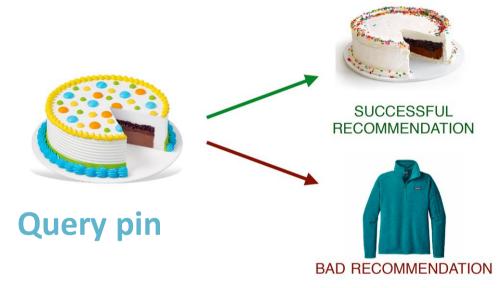
- Watch movies, buy merchandise, listen to music
- Nodes: Users and items
- Edges: User-item interactions
- Goal: Recommend items users might like



Ying et al., <u>Graph Convolutional Neural Networks for Web-Scale Recommender Systems</u>, KDD 2018

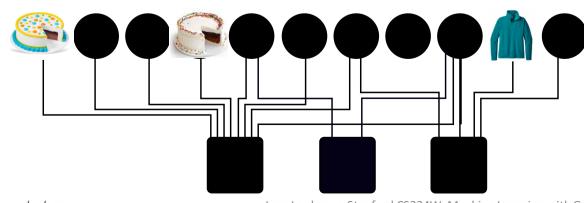
PinSage: Graph-based Recommender

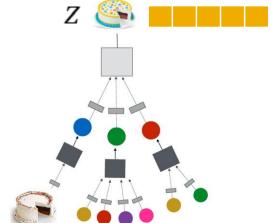
Task: Recommend related pins to users



Task: Learn node embeddings z_i such that $d(z_{cake1}, z_{cake2})$ $< d(z_{cake1}, z_{sweater})$

Predict whether two nodes in a graph are related





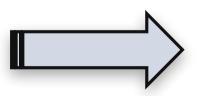
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

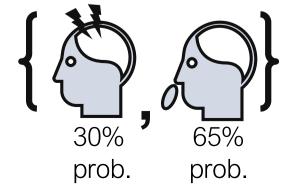
Example (3): Drug Side Effects

Many patients take multiple drugs to treat complex or co-existing diseases:

- 46% of people ages 70-79 take more than 5 drugs
- Many patients take more than 20 drugs to treat heart disease, depression, insomnia, etc.

Task: Given a pair of drugs predict adverse side effects

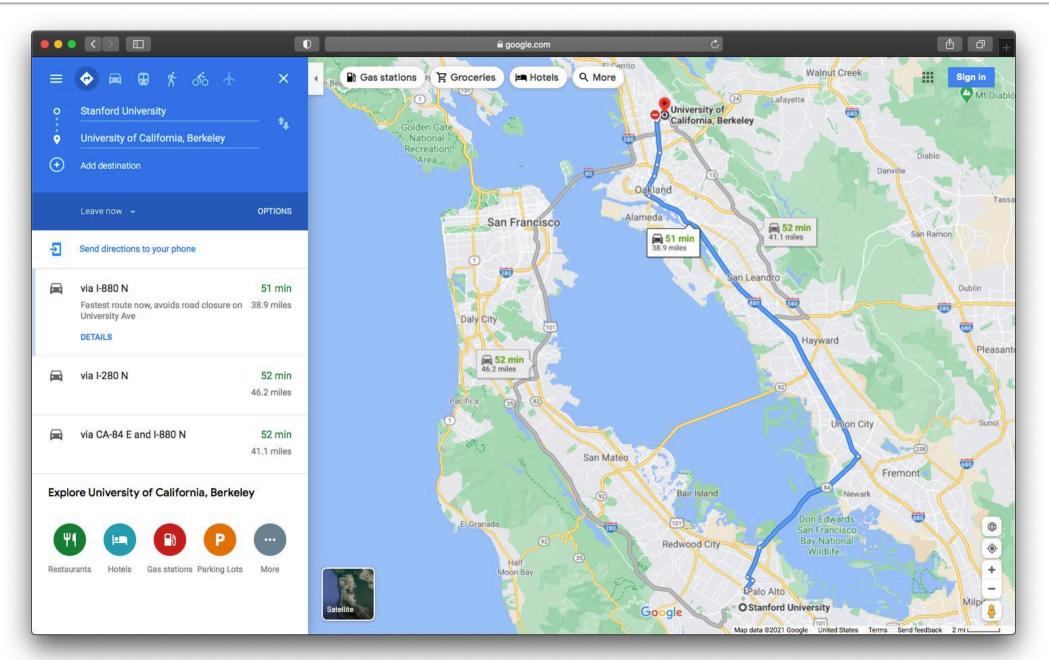




Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

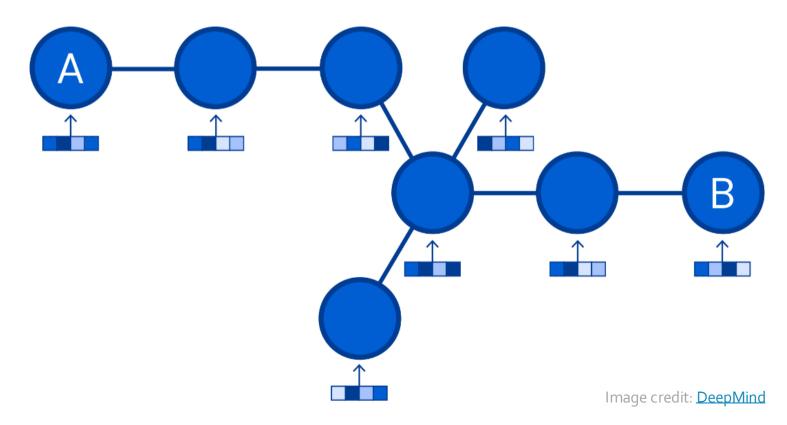
Examples of Subgraph-level ML Tasks

Example (4): Traffic Prediction



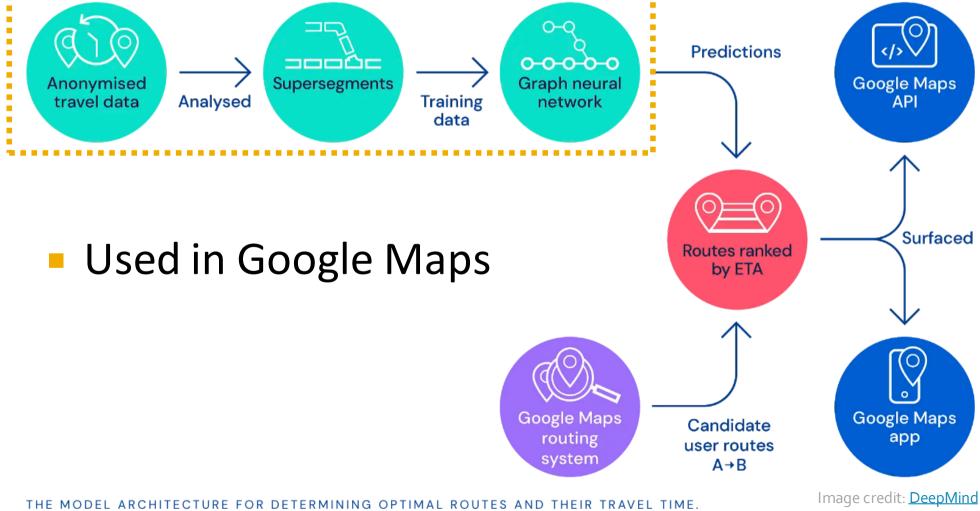
Road Network as a Graph

- Nodes: Road segments
- Edges: Connectivity between road segments
- Prediction: Time of Arrival (ETA)



Traffic Prediction via GNN

Predicting Time of Arrival with Graph Neural Networks



9/22/2021

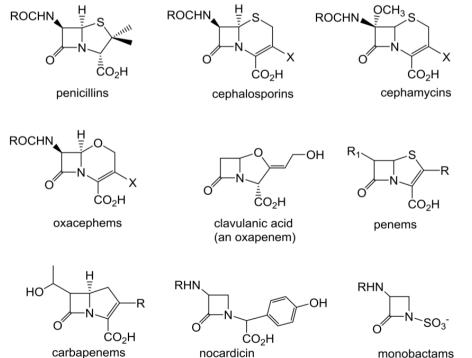
Examples of Graph-level ML Tasks

Example (5): Drug Discovery

Antibiotics are small molecular graphs

Nodes: Atoms

Edges: Chemical bonds



Konaklieva, Monika I. "Molecular targets of β -lactam-based antimicrobials: beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

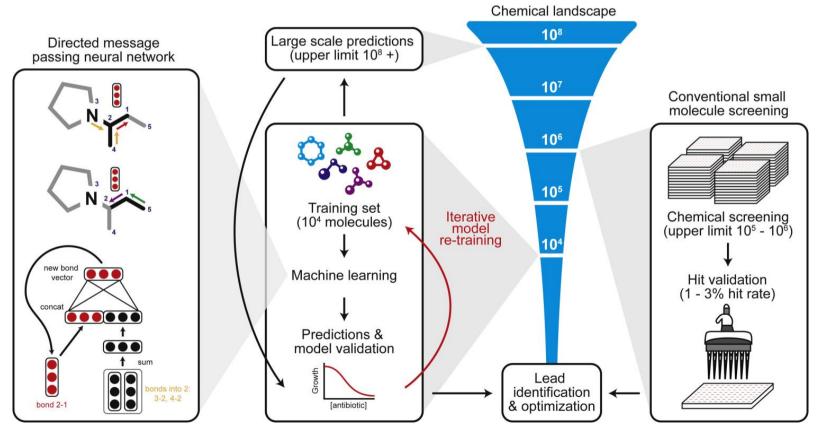
9/22/2021

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Stokes et al., <u>A Deep Learning Approach to Antibiotic Discovery</u>, Cell 2020

Deep Learning for Antibiotic Discovery

A Graph Neural Network graph classification model
Predict promising molecules from a pool of candidates

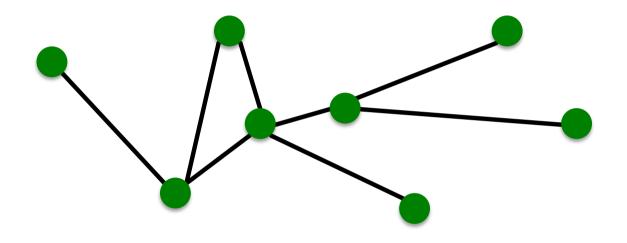


Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Stanford CS224W: Choice of Graph Representation

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Components of a Network



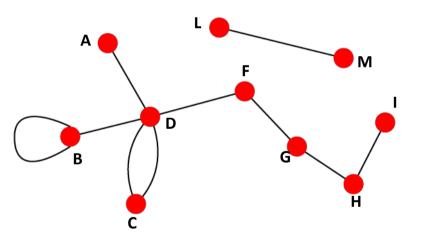
- Objects: nodes, vertices
- Interactions: links, edges
- System: network, graph

N E G(N,E)

Directed vs. Undirected Graphs

Undirected

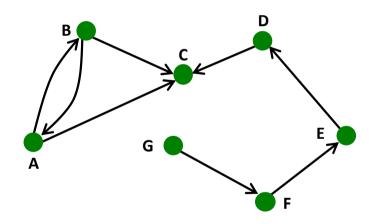
 Links: undirected (symmetrical, reciprocal)



- Examples:
 - Collaborations
 - Friendship on Facebook

Directed

 Links: directed (arcs)

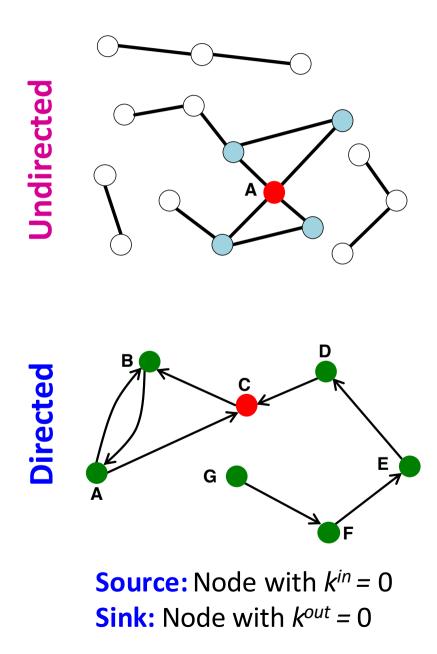


- Examples:
 - Phone calls
 - Following on Twitter

Heterogeneous Graphs

- A heterogeneous graph is defined as
 G = (V, E, R, T)
 - Nodes with node types $v_i \in V$
 - Edges with relation types $(v_i, r, v_j) \in E$
 - Node type $T(v_i)$
 - Relation type $r \in R$

Node Degrees



Node degree, k_i: the number of edges adjacent to node *i* $k_{4} = 4$ Avg. degree: $\overline{k} = \langle k \rangle = \frac{1}{N} \mathop{\text{a}}_{i=1}^{N} k_i = \frac{2E}{N}$ In directed networks we define an in-degree and out-degree. The (total) degree of a node is the sum of in- and out-degrees.

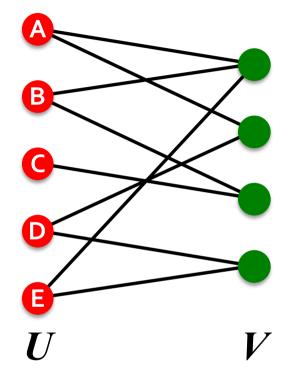
$$k_{C}^{in} = 2 \qquad k_{C}^{out} = 1 \qquad k_{C} = 3$$
$$\overline{k} = \frac{E}{N} \qquad \overline{k}^{in} = \overline{k}^{out}$$

Bipartite Graph

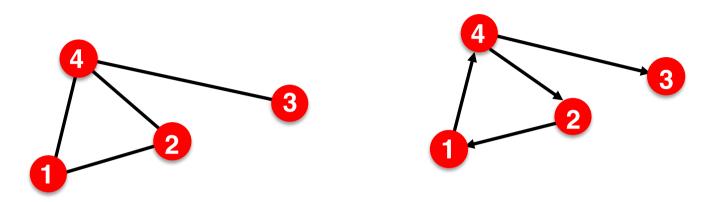
Bipartite graph is a graph whose nodes can be divided into two disjoint sets U and V such that every link connects a node in U to one in V; that is, U and V are independent sets

Examples:

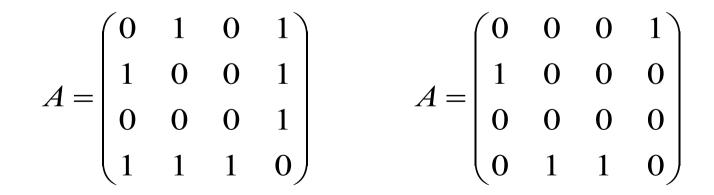
- Authors-to-Papers (they authored)
- Actors-to-Movies (they appeared in)
- Users-to-Movies (they rated)
- Recipes-to-Ingredients (they contain)
- "Folded" networks:
 - Author collaboration networks
 - Movie co-rating networks



Representing Graphs: Adjacency Matrix



 $A_{ij} = 1$ if there is a link from node *i* to node *j* $A_{ii} = 0$ otherwise



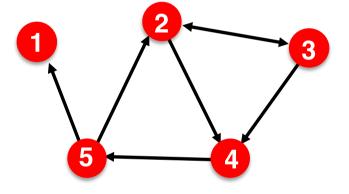
Note that for a directed graph (right) the matrix is not symmetric.

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Representing Graphs: Adjacency list

Adjacency list:

- Easier to work with if network is
 - Large
 - Sparse
- Allows us to quickly retrieve all neighbors of a given node
 - **1**:
 - 2:3,4
 - **3**: 2*,* 4
 - 4:5
 - 5: 1, 2



Summary

Machine learning with Graphs

Applications and use cases

Different types of tasks:

- Node level
- Edge level
- Graph level

Choice of a graph representation:

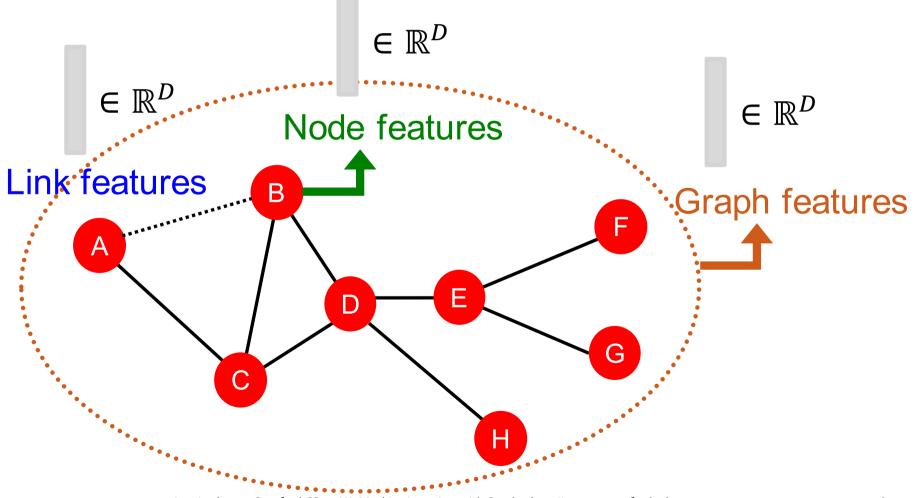
 Directed, undirected, bipartite, weighted, adjacency matrix

Stanford CS224W: Traditional Methods for Machine Learning in Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Traditional ML Pipeline

- Design features for nodes/links/graphs
- Obtain features for all training data



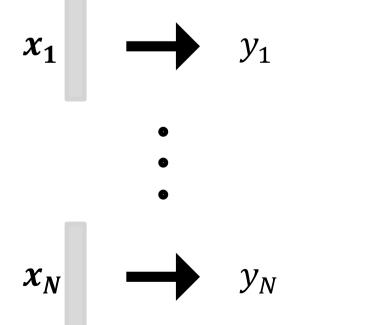
Traditional ML Pipeline

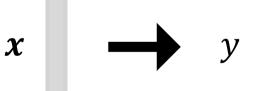
Train an ML model:

- Random forest
- SVM
- Neural network, etc.

Apply the model:

Given a new
 node/link/graph, obtain
 its features and make a
 prediction

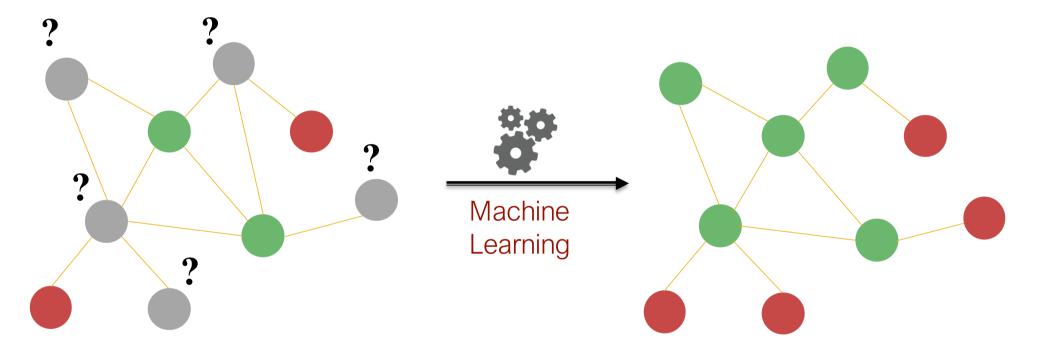




Stanford CS224W: Node-Level Tasks and Features

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Node-Level Tasks



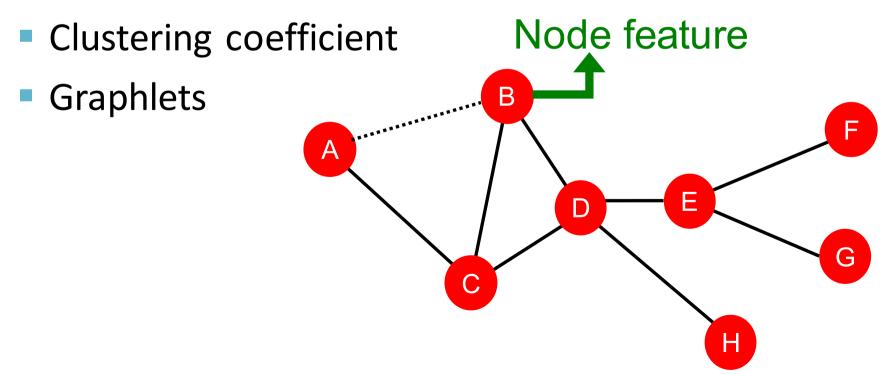
Node classification

ML needs features.

Node-Level Features: Overview

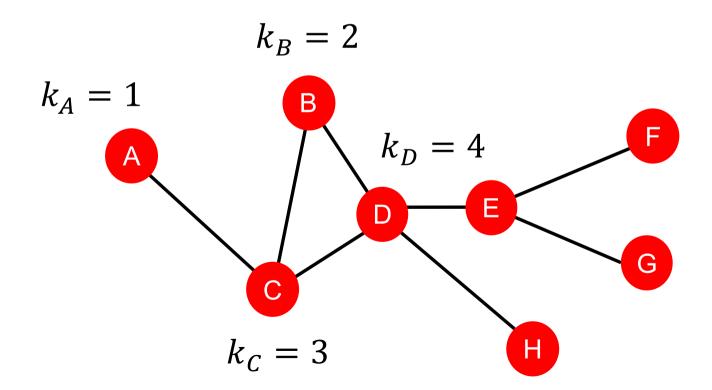
Goal: Characterize the structure and position of a node in the network:

- Node degree
- Node centrality



Node Features: Node Degree

The degree k_v of node v is the number of edges (neighboring nodes) the node has.
 Treats all neighboring nodes equally.



Node Features: Node Centrality

- Node degree counts the neighboring nodes without capturing their importance.
- Node centrality c_v takes the node importance in a graph into account
- Different ways to model importance:
 - Eigenvector centrality
 - Betweenness centrality
 - Closeness centrality
 - and many others...

Node Centrality (2)

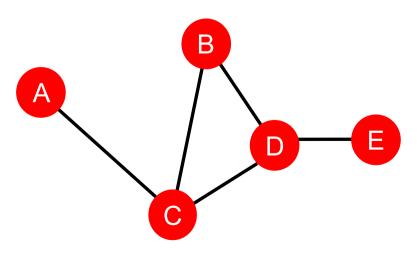
Betweenness centrality:

A node is important if it lies on many shortest paths between other nodes.

 $c_v = \sum_{v=1}^{\infty} \frac{\#(\text{shortest paths betwen } s \text{ and } t \text{ that contain } v)}{\#(\text{shortest paths between } s \text{ and } t)}$

Example:

 $S \neq 12 \neq t$



 $c_A = c_B = c_E = 0$ $c_{c} = 3$ $(A-\underline{C}-B, A-\underline{C}-D, A-\underline{C}-D-E)$

Node Centrality (3)

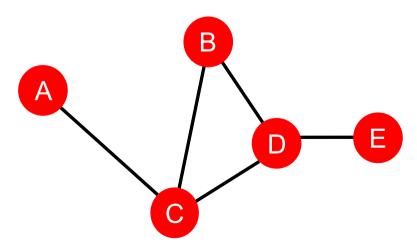
Closeness centrality:

 A node is important if it has small shortest path lengths to all other nodes.

1

 $c_v = \frac{1}{\sum_{u \neq v} \text{shortest path length between } u \text{ and } v}$

Example:

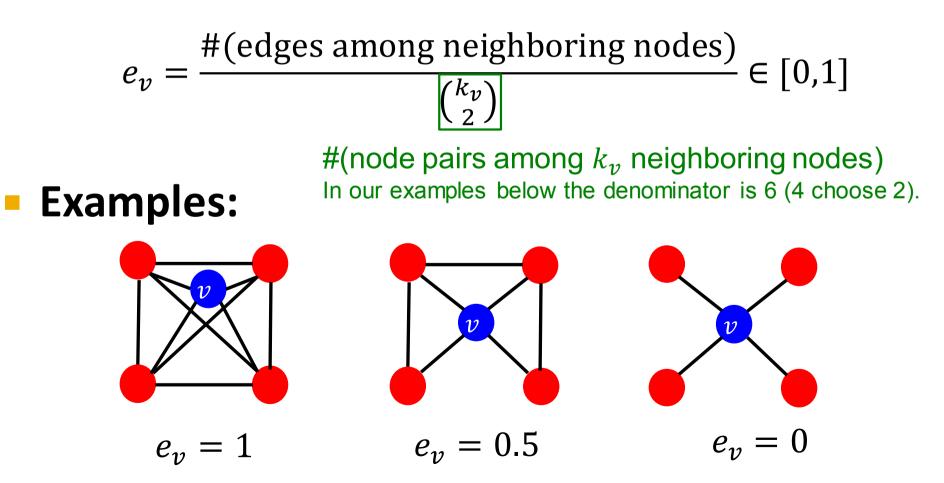


 $c_A = 1/(2 + 1 + 2 + 3) = 1/8$ (A-C-B, A-C, A-C-D, A-C-D-E)

 $c_D = 1/(2 + 1 + 1 + 1) = 1/5$ (D-C-A, D-B, D-C, D-E)

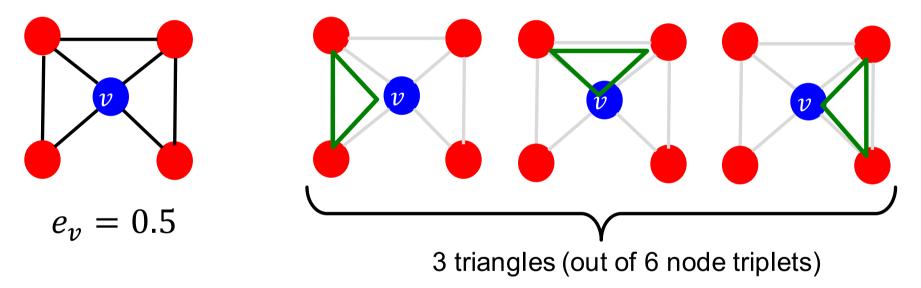
Node Features: Clustering Coefficient

Measures how connected v's neighboring nodes are:



Node Features: Graphlets

 Observation: Clustering coefficient counts the #(triangles) in the ego-network



 We can generalize the above by counting #(pre-specified subgraphs, i.e., graphlets).

Node-Level Feature: Summary

- We have introduced different ways to obtain node features.
- They can be categorized as:
 - Importance-based features:
 - Node degree
 - Different node centrality measures
 - Structure-based features:
 - Node degree
 - Clustering coefficient
 - Graphlet count vector

Node-Level Feature: Summary

- Importance-based features: capture the importance of a node in a graph
 - Node degree:
 - Simply counts the number of neighboring nodes
 - Node centrality:
 - Models importance of neighboring nodes in a graph
 - Different modeling choices: eigenvector centrality, betweenness centrality, closeness centrality
- Useful for predicting influential nodes in a graph
 - Example: predicting celebrity users in a social network

Node-Level Feature: Summary

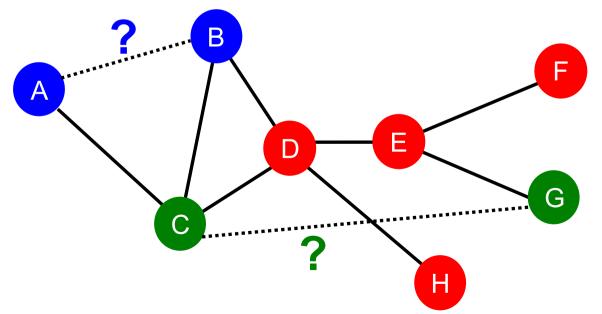
- Structure-based features: Capture topological properties of local neighborhood around a node.
 - Node degree:
 - Counts the number of neighboring nodes
 - Clustering coefficient:
 - Measures how connected neighboring nodes are
 - Graphlet degree vector:
 - Counts the occurrences of different graphlets
- Useful for predicting a particular role a node plays in a graph:
 - Example: Predicting protein functionality in a protein-protein interaction network.

Stanford CS224W: Link Prediction Task and Features

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Link-Level Prediction Task: Recap

- The task is to predict **new links** based on the existing links.
- At test time, node pairs (with no existing links) are ranked, and top K node pairs are predicted.
- The key is to design features for a pair of nodes.



Link Prediction as a Task

Two formulations of the link prediction task:

1) Links missing at random:

Remove a random set of links and then aim to predict them

2) Links over time:

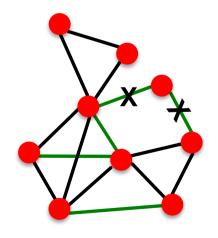
- Given G[t₀, t'₀] a graph defined by edges up to time t'₀, output a ranked list L of edges (not in G[t₀, t'₀]) that are predicted to appear in time G[t₁, t'₁]
- $G[t_0, t'_0]$ $G[t_1, t'_1]$

- Evaluation:
 - n = |E_{new}|: # new edges that appear during the test period [t₁, t₁']
 - Take top n elements of L and count correct edges
 Interlaskover, Stanford (\$224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Link Prediction via Proximity

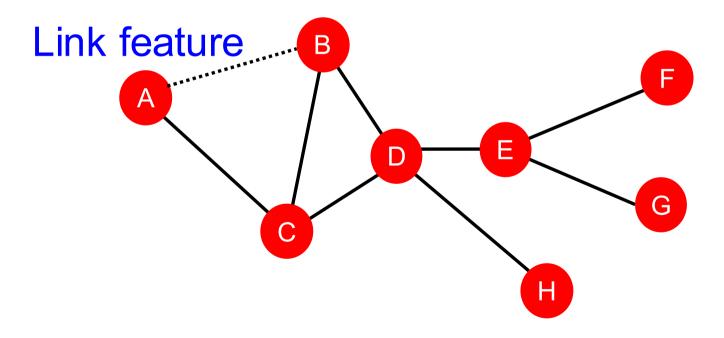
Methodology:

- For each pair of nodes (x,y) compute score c(x,y)
 - For example, c(x,y) could be the # of common neighbors of x and y
- Sort pairs (x,y) by the decreasing score c(x,y)
- Predict top n pairs as new links
- See which of these links actually appear in G[t₁, t'₁]



Link-Level Features: Overview

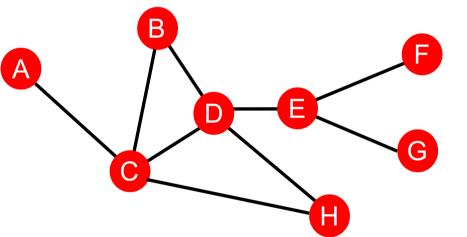
- Distance-based feature
- Local neighborhood overlap
- Global neighborhood overlap



Distance-Based Features

Shortest-path distance between two nodes

Example:



 $S_{BH} = S_{BE} = S_{AB} = 2$ $S_{BG} = S_{BF} = 3$

- However, this does not capture the degree of neighborhood overlap:
 - Node pair (B, H) has 2 shared neighboring nodes, while pairs (B, E) and (A, B) only have 1 such node.

Local Neighborhood Overlap

Captures # neighboring nodes shared between two nodes v_1 and v_2 :

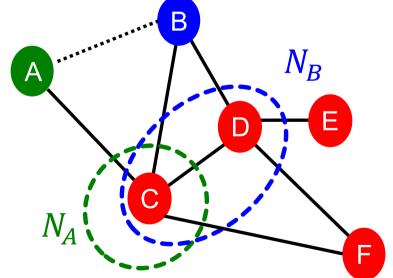
- Common neighbors: $|N(v_1) \cap N(v_2)|$
 - Example: $|N(A) \cap N(B)| = |\{C\}| = 1$
- Jaccard's coefficient: $\frac{|N(v_1) \cap N(v_2)|}{|N(v_1) \cup N(v_2)|}$

• Example:
$$\frac{|N(A) \cap N(B)|}{|N(A) \cup N(B)|} = \frac{|\{C\}|}{|\{C,D\}|} = \frac{1}{2}$$

Adamic-Adar index:

$$\sum_{u \in N(v_1) \cap N(v_2)} \frac{1}{\log(k_u)}$$

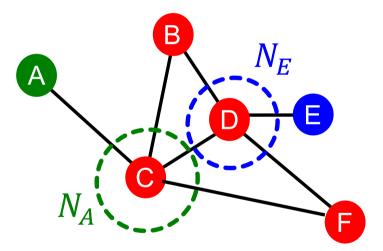
• Example:
$$\frac{1}{\log(k_C)} = \frac{1}{\log 4}$$



Global Neighborhood Overlap

Limitation of local neighborhood features:

 Metric is always zero if the two nodes do not have any neighbors in common.



$$N_A \cap N_E = \phi$$
$$|N_A \cap N_E| = 0$$

 However, the two nodes may still potentially be connected in the future.

Global neighborhood overlap metrics resolve the limitation by considering the entire graph.

Global Neighborhood Overlap

- Katz index: count the number of walks of all lengths between a given pair of nodes.
- Q: How to compute #walks between two nodes?
- Use powers of the graph adjacency matrix!

Link-Level Features: Summary

Distance-based features:

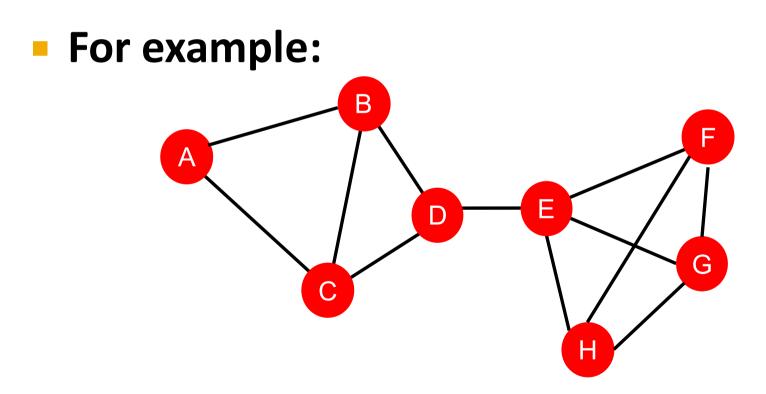
- Uses the shortest path length between two nodes but does not capture how neighborhood overlaps.
- Local neighborhood overlap:
 - Captures how many neighboring nodes are shared by two nodes.
 - Becomes zero when no neighbor nodes are shared.
- Global neighborhood overlap:
 - Uses global graph structure to score two nodes.
 - Katz index counts #walks of all lengths between two nodes.

Stanford CS224W: Graph-Level Features and Graph Kernels

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Graph-Level Features

Goal: We want features that characterize the structure of an entire graph.



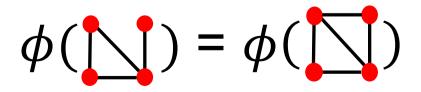
Graph-Level Features: Overview

- Graph Kernels: Measure similarity between two graphs:
 - Graphlet Kernel [1]
 - Weisfeiler-Lehman Kernel [2]
 - Other kernels are also proposed in the literature (beyond the scope of this lecture)
 - Random-walk kernel
 - Shortest-path graph kernel
 - And many more...

[1] Shervashidze, Nino, et al. "Efficient graphlet kernels for large graph comparison." Artificial Intelligence and Statistics. 2009.[2] Shervashidze, Nino, et al. "Weisfeiler-lehman graph kernels." Journal of Machine Learning Research 12.9 (2011).

Graph Kernel: Key Idea

- Goal: Design graph feature vector $\phi(G)$
- Key idea: Bag-of-Words (BoW) for a graph
 - Recall: BoW simply uses the word counts as features for documents (no ordering considered).
 - Naïve extension to a graph: Regard nodes as words.
 - Since both graphs have 4 red nodes, we get the same feature vector for two different graphs...



Graph Kernel: Key Idea

What if we use Bag of node degrees? Deg1: • Deg2: • Deg3: • $\phi(1) = \operatorname{count}(1) = [1, 2, 1]$ Obtains different features for different graphs! $\phi(1) = \operatorname{count}(1) = [0, 2, 2]$

 Both Graphlet Kernel and Weisfeiler-Lehman (WL) Kernel use Bag-of-* representation of graph, where * is more sophisticated than node degrees!

Today's Summary

Traditional ML Pipeline

- Hand-crafted feature + ML model
- Hand-crafted features for graph data

Node-level:

Node degree, centrality, clustering coefficient, graphlets

Link-level:

- Distance-based feature
- Iocal/global neighborhood overlap

Graph-level:

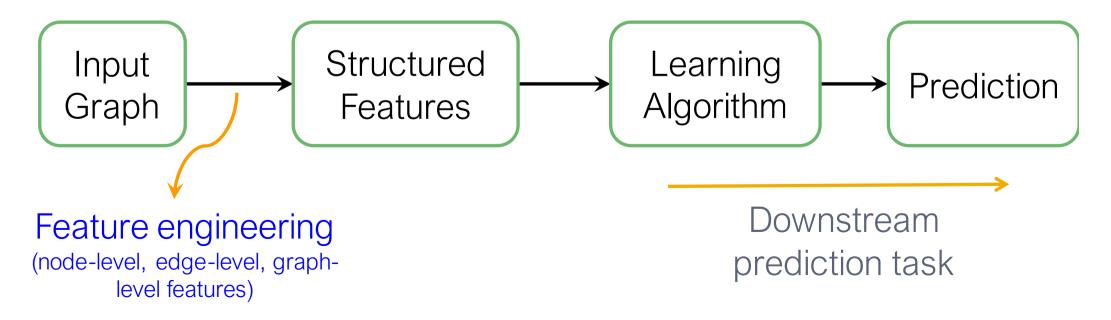
Graphlet kernel, WL kernel

Stanford CS224W: Node Embeddings

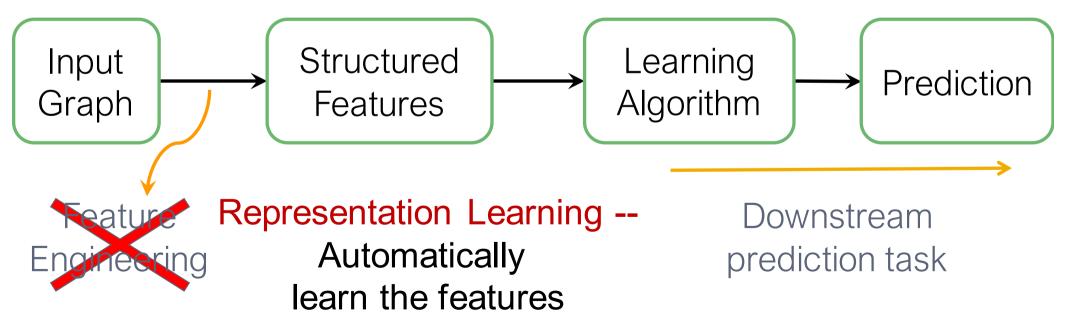
CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Traditional ML for Graphs

Given an input graph, extract node, link and graph-level features, learn a model (SVM, neural network, etc.) that maps features to labels.

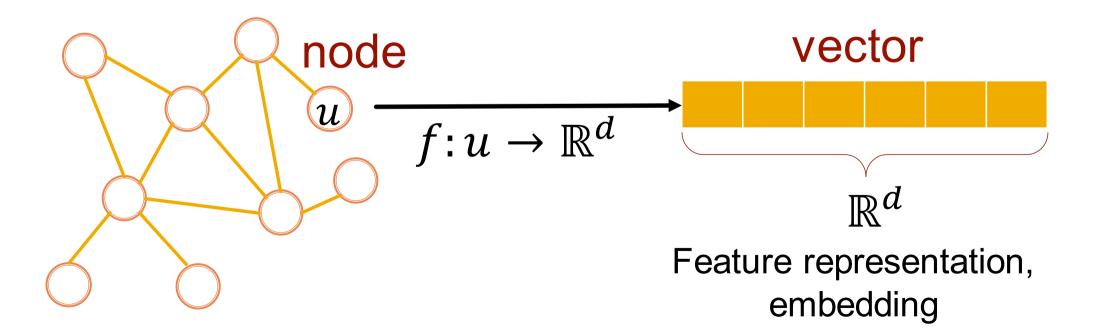


Graph Representation Learning alleviates the need to do feature engineering every single time.



Graph Representation Learning

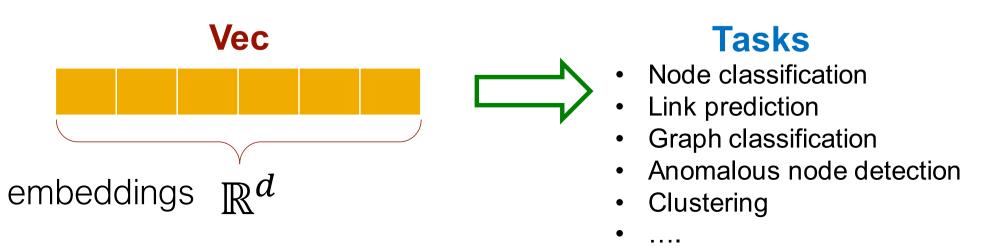
Goal: Efficient task-independent feature learning for machine learning with graphs!



Why Embedding?

Task: Map nodes into an embedding space

- Similarity of embeddings between nodes indicates their similarity in the network. For example:
 - Both nodes are close to each other (connected by an edge)
- Encode network information
- Potentially used for many downstream predictions

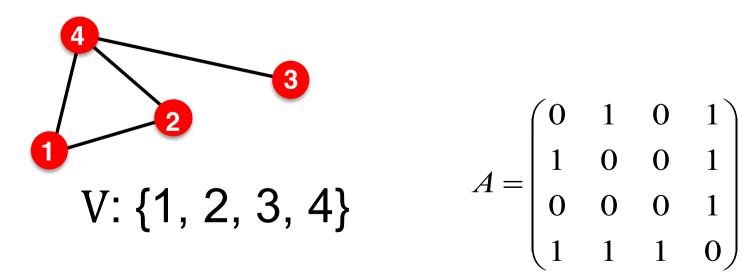


Stanford CS224W: Node Embeddings: Encoder and Decoder

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

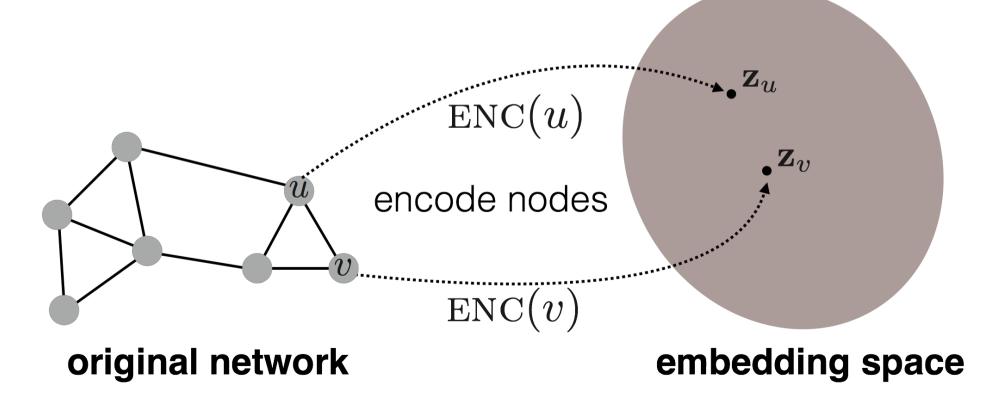
Assume we have a graph G:

- V is the vertex set.
- A is the adjacency matrix (assume binary).
- For simplicity: No node features or extra information is used

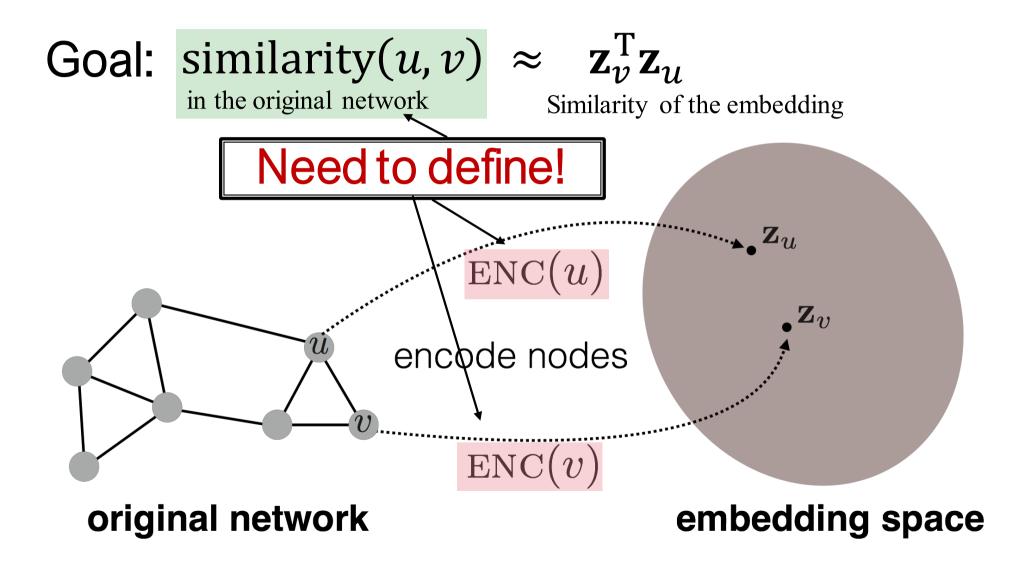


Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the graph



Embedding Nodes



Learning Node Embeddings

- **Encoder** maps from nodes to embeddings 1.
- **Define a node similarity function** (i.e., a 2. measure of similarity in the original network)
- **Decoder DEC** maps from embeddings to the 3. similarity score
- **Optimize the parameters of the encoder so** 4. that: $\mathbf{DEC}(\mathbf{z}_{n}^{\mathrm{T}}\mathbf{z}_{n})$

similarity $(u, v) \approx \mathbf{z}_{v}^{\mathrm{T}} \mathbf{z}_{v}$

in the original network

Similarity of the embedding

Two Key Components

- Encoder: maps each node to a low-dimensional vector d-dimensional $ENC(v) = z_v$ embedding node in the input graph
- Similarity function: specifies how the relationships in vector space map to the relationships in the original network similarity $(u, v) \approx \mathbf{z}_v^T \mathbf{z}_u$ Decoder

Similarity of u and v in the original network

dot product between node embeddings

"Shallow" Encoding

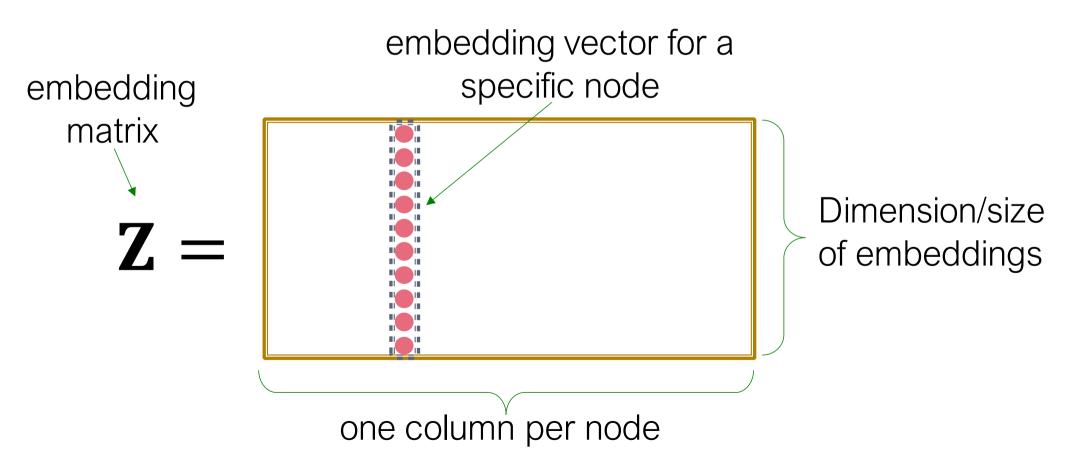
Simplest encoding approach: Encoder is just an embedding-lookup

$$ENC(v) = \mathbf{z}_{v} = \mathbf{Z} \cdot v$$

 $\mathbf{Z} \in \mathbb{R}^{d \times |\mathcal{V}|} \quad \begin{array}{l} \text{matrix, each column is a node} \\ \text{embedding [what we learn / optimize]} \\ v \in \mathbb{I}^{|\mathcal{V}|} \quad \begin{array}{l} \text{indicator vector, all zeroes} \\ \text{except a one in column} \\ \text{indicating node } v \end{array}$

"Shallow" Encoding

Simplest encoding approach: **encoder is just an embedding-lookup**



"Shallow" Encoding

Simplest encoding approach: Encoder is just an embedding-lookup

Each node is assigned a unique embedding vector (i.e., we directly optimize the embedding of each node)

Many methods: DeepWalk, node2vec

Framework Summary

Encoder + Decoder Framework

- Shallow encoder: embedding lookup
- Parameters to optimize: **Z** which contains node embeddings \mathbf{z}_u for all nodes $u \in V$
- We will cover deep encoders (GNNs) in Lecture 6
- **Decoder:** based on node similarity.
- Objective: maximize z_v^T z_u for node pairs (u, v) that are similar

How to Define Node Similarity?

- Key choice of methods is how they define node similarity.
- Should two nodes have a similar embedding if they...
 - are linked?
 - share neighbors?
 - have similar "structural roles"?
- We will now learn node similarity definition that uses random walks, and how to optimize embeddings for such a similarity measure.

Note on Node Embeddings

- This is unsupervised/self-supervised way of learning node embeddings.
 - We are **not** utilizing node labels
 - We are **not** utilizing node features
 - The goal is to directly estimate a set of coordinates (i.e., the embedding) of a node so that some aspect of the network structure (captured by DEC) is preserved.
- These embeddings are task independent
 - They are not trained for a specific task but can be used for any task.

Stanford CS224W: Random Walk Approaches for Node Embeddings

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

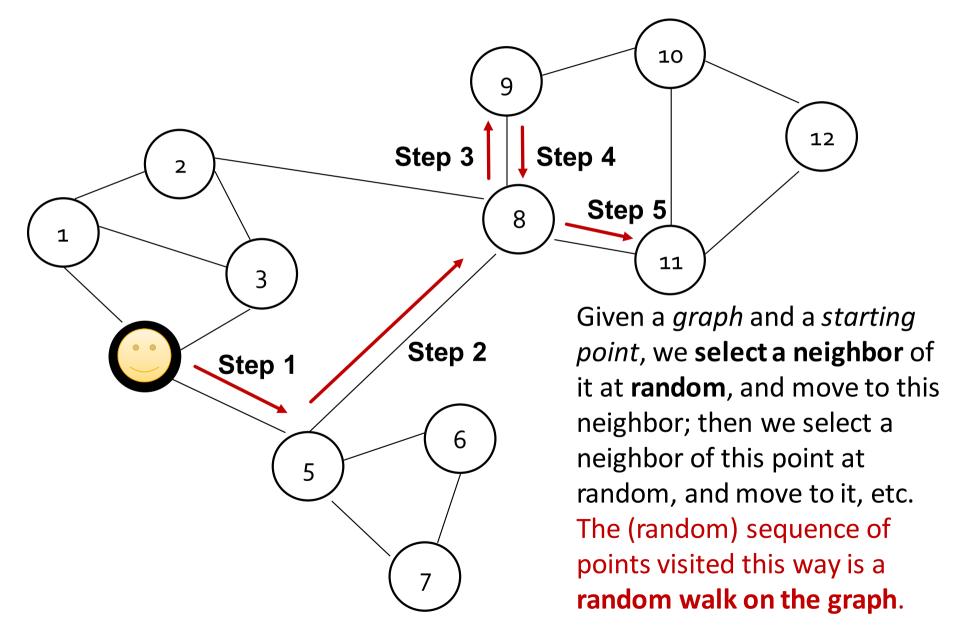
Notation

- Vector z_u:
 - The embedding of node u (what we aim to find).
- **Probability** $P(v | \mathbf{z}_u)$: \bigcirc Our model prediction based on \mathbf{z}_u
 - The (predicted) probability of visiting node v on random walks starting from node u.

Non-linear functions used to produce predicted **probabilities**

- Softmax function:
 - Turns vector of *K* real values (model predictions) into *K* probabilities that sum to 1: $\sigma(\mathbf{z})[i] = \frac{e^{\mathbf{z}[i]}}{\sum_{i=1}^{K} e^{\mathbf{z}[j]}}$
- **Sigmoid** function:
 - S-shaped function that turns real values into the range of (0, 1). Written as $S(x) = \frac{1}{1+e^{-x}}$.

Random Walk



probability that u $\mathbf{Z}_{u}^{\mathrm{T}}\mathbf{Z}_{v} \approx \text{and } v \text{ co-occur on a}$ random walk over the graph

Random-Walk Embeddings

1. Estimate probability of visiting node v on a random walk starting from node u using some random walk strategy R_{α}

2. Optimize embeddings to encode these random walk statistics: \mathbf{z}_i

Similarity in embedding space (Here: dot product= $cos(\theta)$) encodes random walk "similarity" $P_R(v|u)$

 $\propto P_R(v|u)$

 θ

 \mathbf{Z}_{j}

Why Random Walks?

- Expressivity: Flexible stochastic definition of node similarity that incorporates both local and higher-order neighborhood information Idea: if random walk starting from node *u* visits *v* with high probability, *u* and *v* are similar (high-order multi-hop information)
- Efficiency: Do not need to consider all node pairs when training; only need to consider pairs that co-occur on random walks

Feature Learning as Optimization

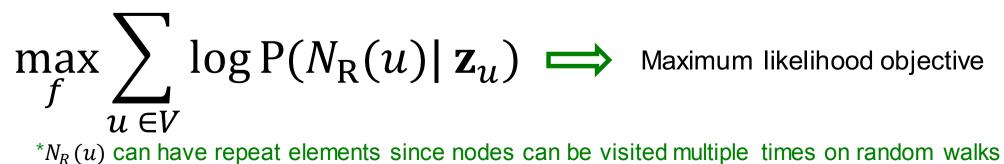
• Given
$$G = (V, E)$$
,

- Our goal is to learn a mapping $f: u \to \mathbb{R}^d$: $f(u) = \mathbf{z}_u$
- Log-likelihood objective: $\max_{f} \sum_{u \in V} \log P(N_{R}(u) | \mathbf{z}_{u})$
 - $N_R(u)$ is the neighborhood of node u by strategy R
- Given node u, we want to learn feature
 representations that are predictive of the nodes
 in its random walk neighborhood N_R(u).

9/28/2021

- Run short fixed-length random walks starting from each node *u* in the graph using some random walk strategy *R*.
- 2. For each node u collect $N_R(u)$, the multiset^{*} of nodes visited on random walks starting from u.
- 3. Optimize embeddings according to: Given node u, predict its neighbors $N_{\rm R}(u)$.

9/28/2021



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Equivalently,

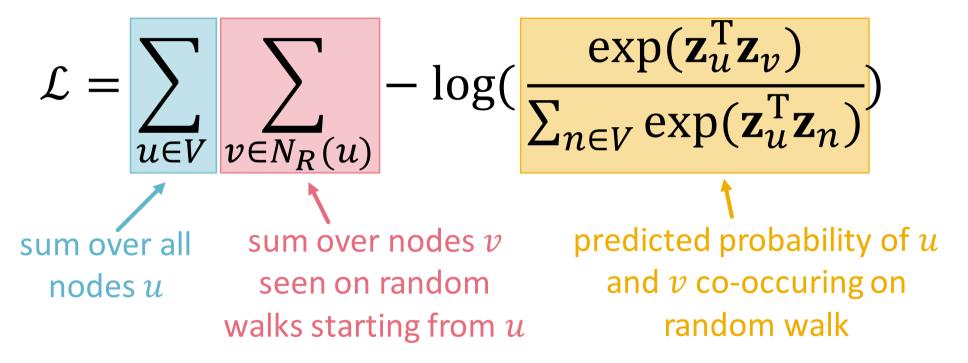
$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

- Intuition: Optimize embeddings z_u to maximize the likelihood of random walk co-occurrences.
- Parameterize $P(v|\mathbf{z}_u)$ using softmax:

$$P(v|\mathbf{z}_u) = \frac{\exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_v)}{\sum_{n \in V} \exp(\mathbf{z}_u^{\mathrm{T}} \mathbf{z}_n)}$$

Why softmax? We want node v to be most similar to node u(out of all nodes n). Intuition: $\sum_{i} \exp(x_i) \approx \max_{i} \exp(x_i)$

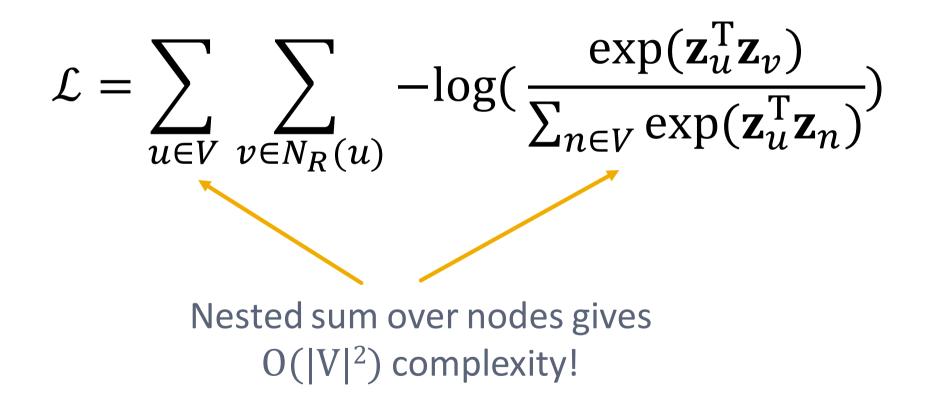
Putting it all together:



Optimizing random walk embeddings =

Finding embeddings \mathbf{z}_u that minimize \mathbf{L}

But doing this naively is too expensive!



Stochastic Gradient Descent

After we obtained the objective function, how do we optimize (minimize) it?

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

• Gradient Descent: a simple way to minimize \mathcal{L} :

- Initialize z_u at some randomized value for all nodes u.
- Iterate until convergence:
 - For all u, compute the derivative $\frac{\partial \mathcal{L}}{\partial z_u}$.

 η : learning rate

• For all u, make a step in reverse direction of derivative: $z_u \leftarrow z_u - \eta \frac{\partial \mathcal{L}}{\partial z_u}$.

Stochastic Gradient Descent

- Stochastic Gradient Descent: Instead of evaluating gradients over all examples, evaluate it for each individual training example.
 - Initialize z_u at some randomized value for all nodes u.
 - Iterate until convergence: $\mathcal{L}^{(u)} = \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$

• Sample a node u, for all v calculate the derivative $\frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$.

• For all
$$v$$
, update: $z_v \leftarrow z_v - \eta \frac{\partial \mathcal{L}^{(u)}}{\partial z_v}$.

Random Walks: Summary

- 1. Run **short fixed-length** random walks starting from each node on the graph
- 2. For each node u collect $N_R(u)$, the multiset of nodes visited on random walks starting from u.
- 3. Optimize embeddings using Stochastic Gradient Descent:

$$\mathcal{L} = \sum_{u \in V} \sum_{v \in N_R(u)} -\log(P(v|\mathbf{z}_u))$$

We can efficiently approximate this using negative sampling!

How should we randomly walk?

- So far we have described how to optimize embeddings given a random walk strategy R
- What strategies should we use to run these random walks?
 - Simplest idea: Just run fixed-length, unbiased random walks starting from each node (i.e., <u>DeepWalk from Perozzi et al., 2013</u>)
 - The issue is that such notion of similarity is too constrained

How can we generalize this?

Reference: Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD.

Summary so far

 Core idea: Embed nodes so that distances in embedding space reflect node similarities in the original network.

Different notions of node similarity:

- Naïve: similar if two nodes are connected
- Neighborhood overlap (covered in Lecture 2)
- Random walk approaches (covered today)

How to Use Embeddings

How to use embeddings z_i of nodes:

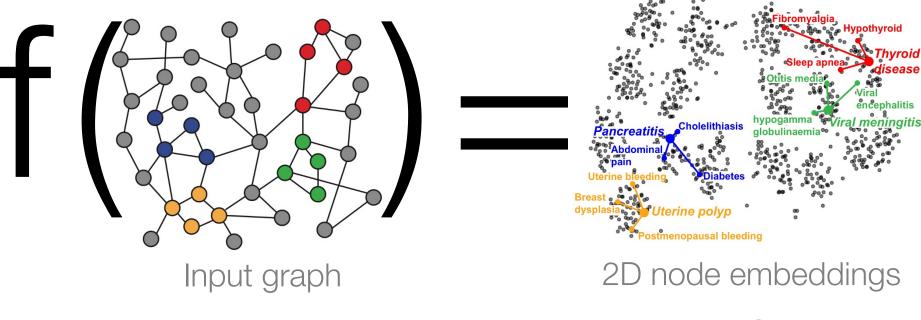
- Clustering/community detection: Cluster points Z_i
- Node classification: Predict label of node i based on z_i
- Link prediction: Predict edge (i, j) based on (z_i, z_j)
 - Where we can: concatenate, avg, product, or take a difference between the embeddings:
 - Concatenate: $f(\mathbf{z}_i, \mathbf{z}_j) = g([\mathbf{z}_i, \mathbf{z}_j])$
 - Hadamard: $f(\mathbf{z}_i, \mathbf{z}_j) = g(\mathbf{z}_i * \mathbf{z}_j)$ (per coordinate product)
 - Sum/Avg: $f(\mathbf{z}_i, \mathbf{z}_j) = g(\mathbf{z}_i + \mathbf{z}_j)$
 - Distance: $f(\mathbf{z}_i, \mathbf{z}_j) = g(||\mathbf{z}_i \mathbf{z}_j||_2)$
- Graph classification: Graph embedding Z_G via aggregating node embeddings or anonymous random walks.
 Predict label based on graph embedding Z_G.

Stanford CS224W: Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Recap: Node Embeddings

 Intuition: Map nodes to *d*-dimensional embeddings such that similar nodes in the graph are embedded close together



How to <u>learn</u> mapping function *f*?

Today: Deep Graph Encoders

 Today: We will now discuss deep learnig methods based on graph neural networks (GNNs):

 $ENC(v) = \begin{array}{c} multiple layers of \\ non-linear transformations \\ based on graph structure \end{array}$

 Note: All these deep encoders can be combined with node similarity functions defined in the Lecture 3.

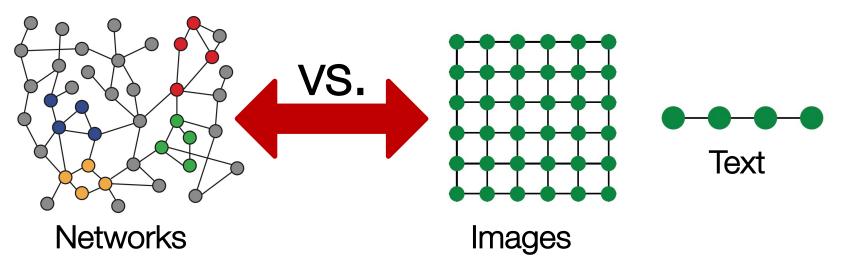
Tasks on Networks

Tasks we will be able to solve:

- Node classification
 - Predict a type of a given node
- Link prediction
 - Predict whether two nodes are linked
- Community detection
 - Identify densely linked clusters of nodes
- Network similarity
 - How similar are two (sub)networks

But networks are far more complex!

 Arbitrary size and complex topological structure (i.e., no spatial locality like grids)



- No fixed node ordering or reference point
- Often dynamic and have multimodal features

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W: Deep Learning for Graphs

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

Setup

Assume we have a graph G:

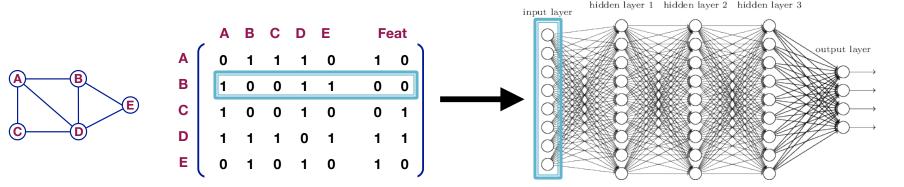
- V is the vertex set
- A is the adjacency matrix (assume binary)
- $X \in \mathbb{R}^{m \times |V|}$ is a matrix of **node features**
- v: a node in V; N(v): the set of neighbors of v.

Node features:

- Social networks: User profile, User image
- Biological networks: Gene expression profiles, gene functional information
- When there is no node feature in the graph dataset:
 - Indicator vectors (one-hot encoding of a node)
 - Vector of constant 1: [1, 1, ..., 1]

A Naïve Approach

Join adjacency matrix and features Feed them into a deep neural net:

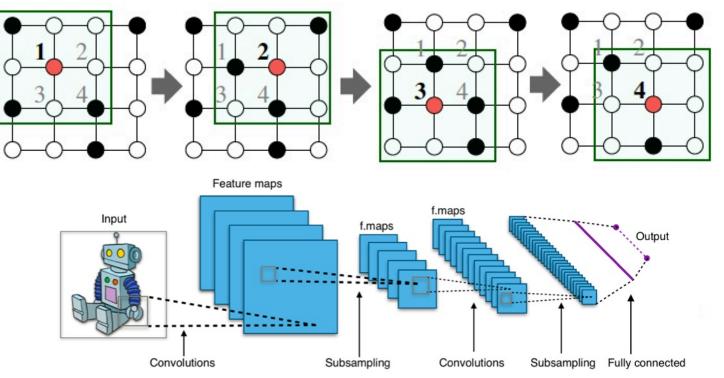


Issues with this idea:

- Problems: O(|V|) parameters
- Huge number of parameters $\mathcal{O}(N)$ Not applicable to graphs of different sizes No inductive learning possible Sensitive to node ordering

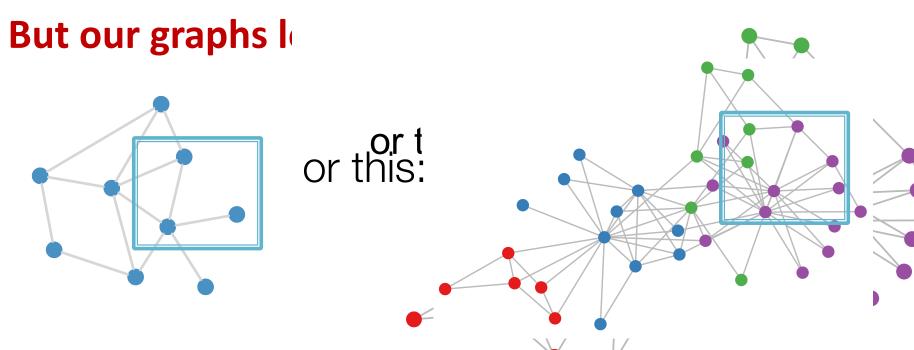
Idea: Convolutional Networks

CNN on an image:



Goal is to generalize convolutions beyond simple lattices Leverage node features/attributes (e.g., text, images)

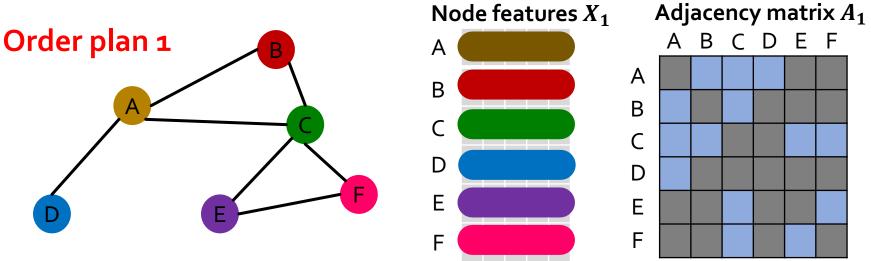
Real-World Graphs



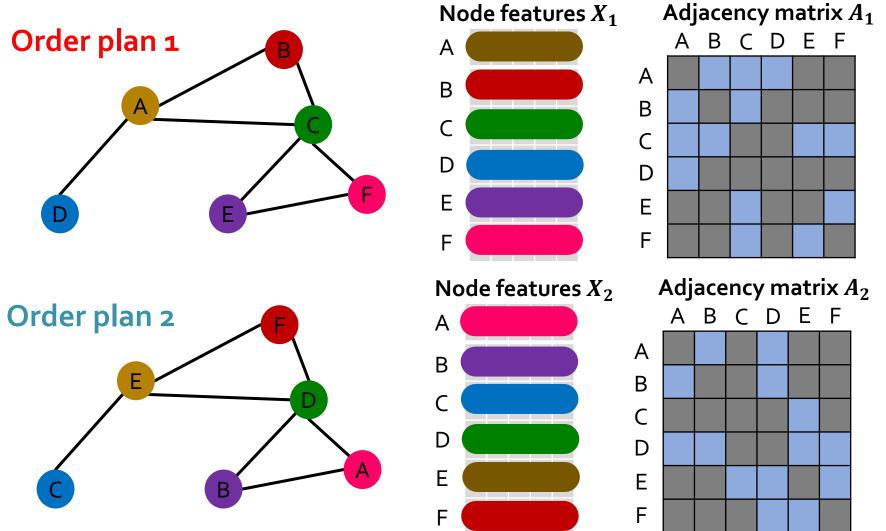
- There is no fixed notion of locality or sliding window on the graph
- Graph is permutation invariant

- Graph does not have a canonical order of the nodes!
- We can have many different order plans.

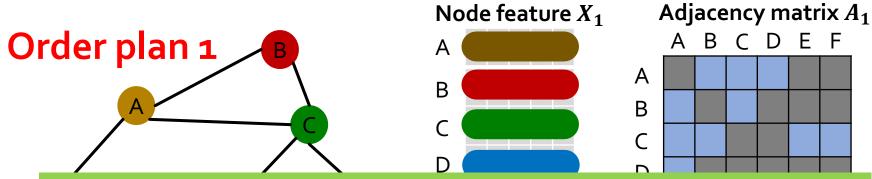
Graph does not have a canonical order of the nodes!



Graph does not have a canonical order of the nodes!



Graph does not have a canonical order of the nodes!

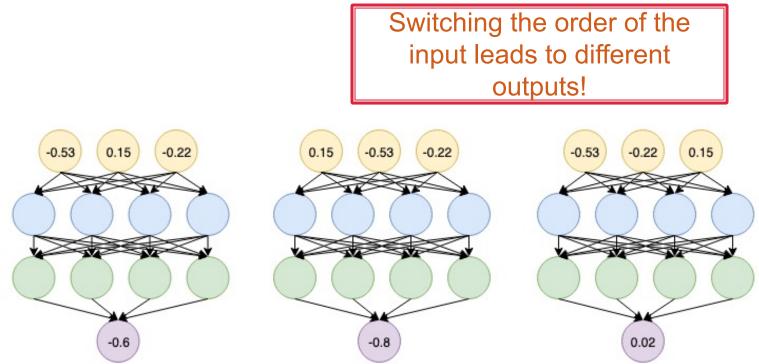


Graph and node representations should be the same for Order plan 1 and Order plan 2

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Graph Neural Network Overview

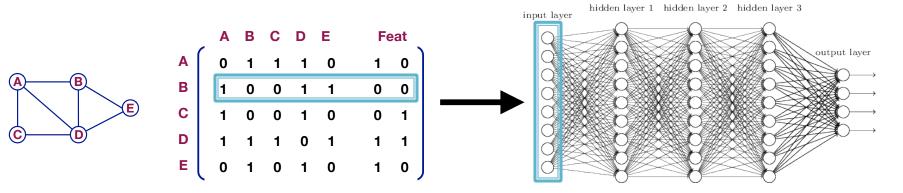
Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant? No.



Graph Neural Network Overview

X

Are other neural network architectures, e.g., MLPs, permutation invariant / equivariant? **NO.**



Problems:

Huge number of parameterst 6 No ive MLP approach

Α

No inductive learning possible graphs!

Graph Neural Network Overview

X

Are any neural_network architecture, e.g.,

Α

Next: Design graph neural networks that are permutation invariant / equivariant by passing and aggregating information from neighbors!

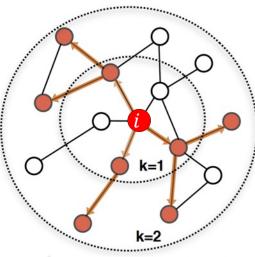
• No inductive learning possible

Pro

[Kipf and Welling, ICLR 2017] Graph Convolutional Networks

Idea: Node's neighborhood defines a computation graph

 $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$



Determine node computation graph Propagate and transform information

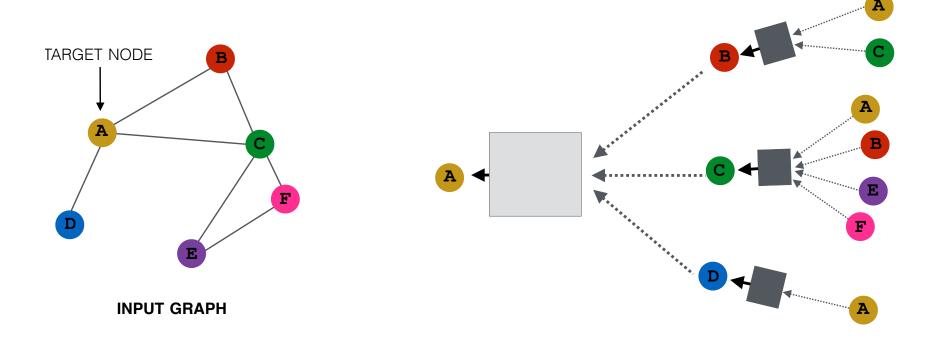
aggregator

aggregator

Learn how to propagate information across the graph to compute node features

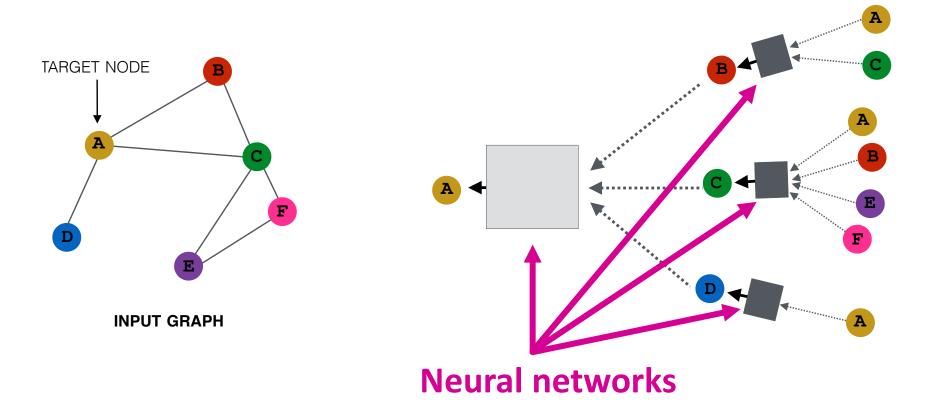
Idea: Aggregate Neighbors

Key idea: Generate node embeddings based on local network neighborhoods



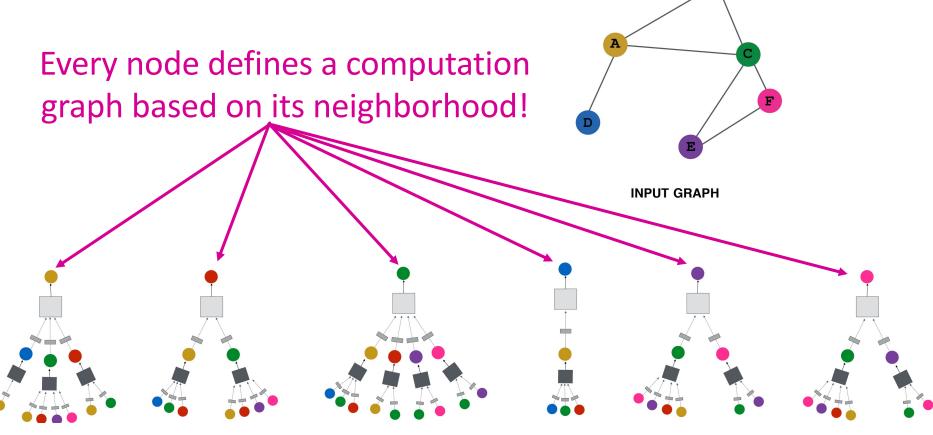
Idea: Aggregate Neighbors

Intuition: Nodes aggregate information from their neighbors using neural networks



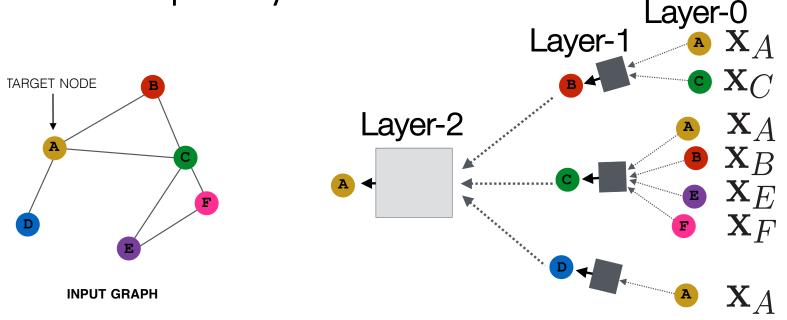
Idea: Aggregate Neighbors

 Intuition: Network neighborhood defines a computation graph



Deep Model: Many Layers

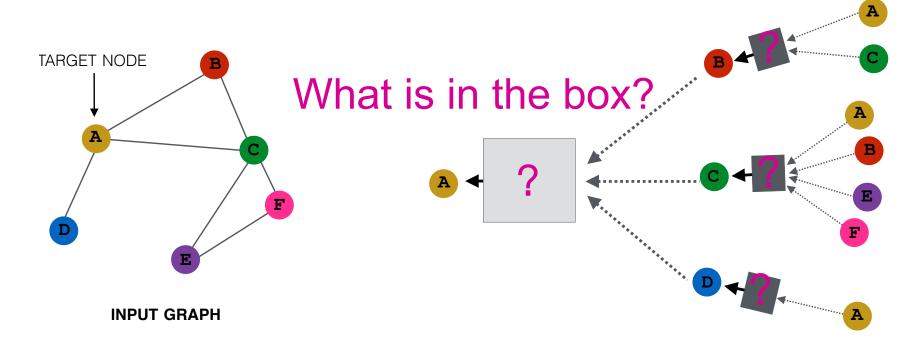
- Model can be of arbitrary depth:
 - Nodes have embeddings at each layer
 - Layer-0 embedding of node v is its input feature, x_v
 - Layer-k embedding gets information from nodes that are k hops away



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

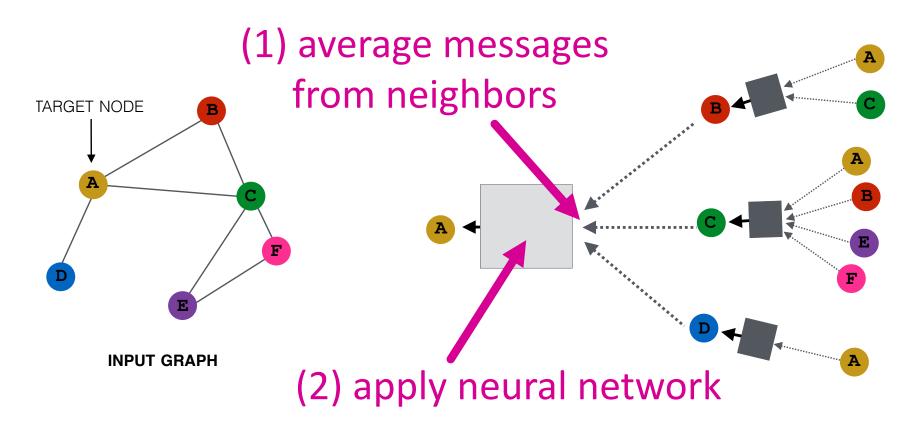
Neighborhood Aggregation

 Neighborhood aggregation: Key distinctions are in how different approaches aggregate information across the layers



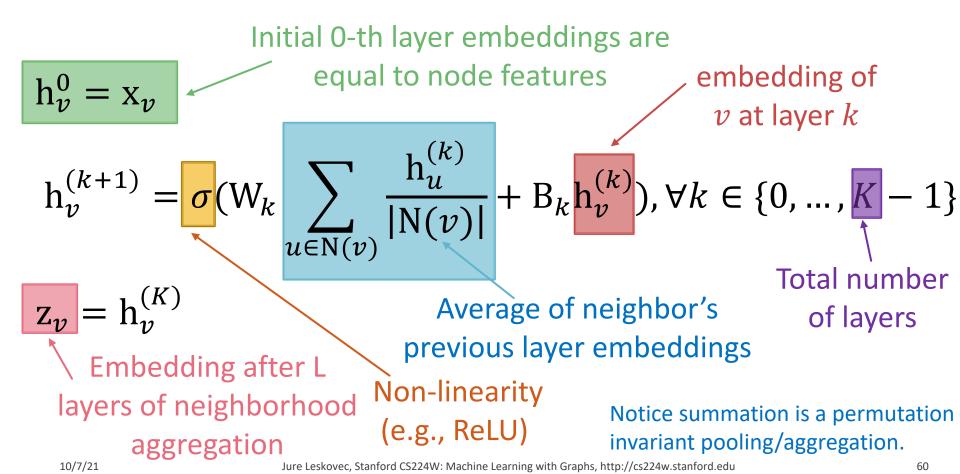
Neighborhood Aggregation

 Basic approach: Average information from neighbors and apply a neural network

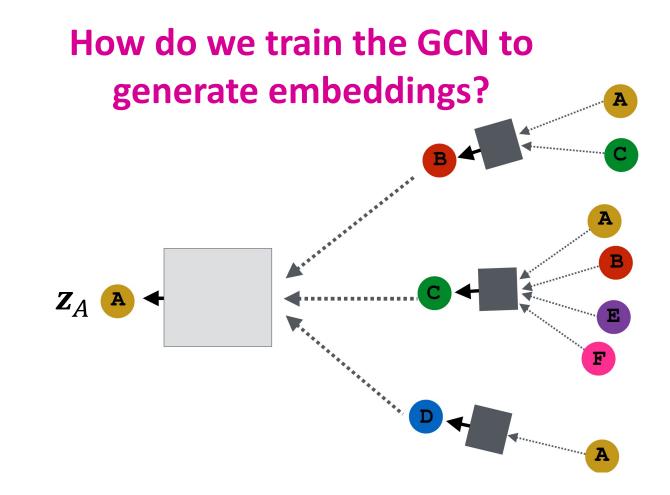


The Math: Deep Encoder

Basic approach: Average neighbor messages and apply a neural network

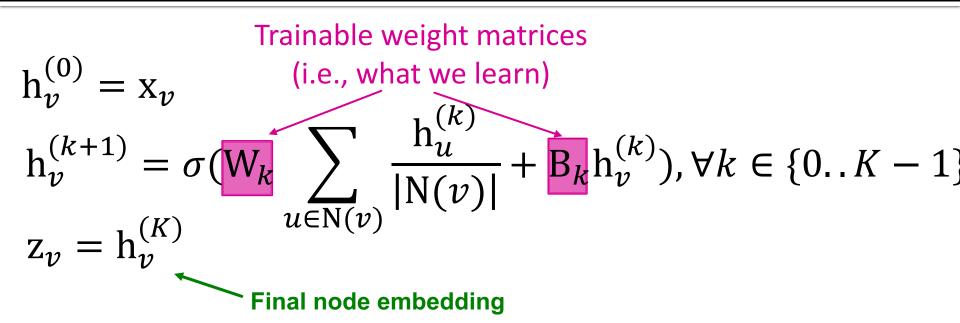


Training the Model



Need to define a loss function on the embeddings.

Model Parameters



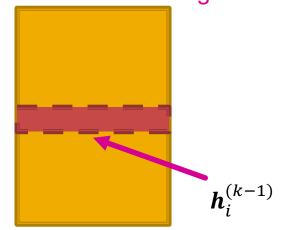
We can feed these **embeddings into any loss function** and run SGD to **train the weight parameters**

h^k_v: the hidden representation of node v at layer k
W_k: weight matrix for neighborhood aggregation
B_k: weight matrix for transforming hidden vector of self

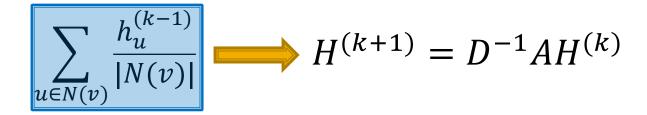
Matrix Formulation (1)

- Many aggregations can be performed efficiently by (sparse) matrix operations
- Let $H^{(k)} = [h_{1_k}^{(k)} \dots h_{|V|}^{(k)}]^T$ Then: $\sum_{u \in N_u} h_u^{(k)} = A_{v_i} H^{(k)}$
- Let D be diagonal matrix where $D_{v,v} = \text{Deg}(v) = |N(v)|$
 - The inverse of $D: D^{-1}$ is also diagonal: $D_{v,v}^{-1} = 1/|N(v)|$

Matrix of hidden embeddings $H^{(k-1)}$



Therefore,



Matrix Formulation (2)

Re-writing update function in matrix form:

 $H^{(k+1)} = \sigma(\tilde{A}H^{(k)}W_k^{\mathrm{T}} + H^{(k)}B_k^{\mathrm{T}})$ where $\tilde{A} = D^{-1}A$

- Red: neighborhood aggregation
- Blue: self transformation
- In practice, this implies that efficient sparse matrix multiplication can be used (\tilde{A} is sparse)
- Note: not all GNNs can be expressed in matrix form, when aggregation function is complex

 $H^{(k)} = [h_1^{(k)} \dots h_{|\mathcal{V}|}^{(k)}]^T$

How to Train A GNN

- Node embedding z_v is a function of input graph
- Supervised setting: we want to minimize the loss
 L (see also Slide 15):

$$\min_{\Theta} \mathcal{L}(\mathbf{y}, f(\mathbf{z}_v))$$

- y: node label
- L could be L2 if y is real number, or cross entropy if y is categorical
- Unsupervised setting:
 - No node label available
 - Use the graph structure as the supervision!

Unsupervised Training

"Similar" nodes have similar embeddings

$$\mathcal{L} = \sum_{z_u, z_v} \operatorname{CE}(y_{u,v}, \operatorname{DEC}(z_u, z_v))$$

• Where $y_{u,v} = 1$ when node u and v are similar

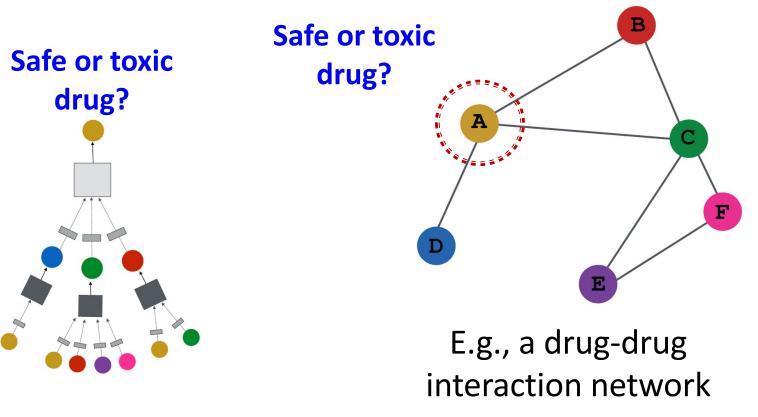
CE is the cross entropy (Slide 16)

 DEC is the decoder such as inner product (Lecture 4)
 Node similarity can be anything from Lecture 3, e.g., a loss based on:

- Random walks (node2vec, DeepWalk, struc2vec)
- Matrix factorization
- Node proximity in the graph

Supervised Training

Directly train the model for a supervised task (e.g., node classification)

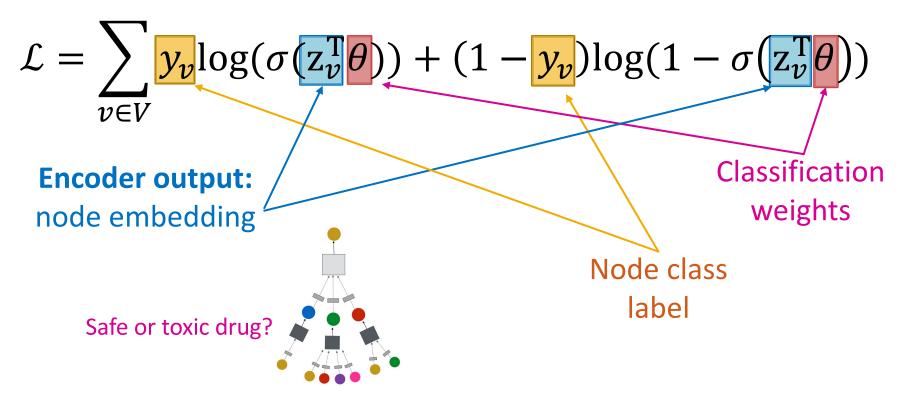


Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

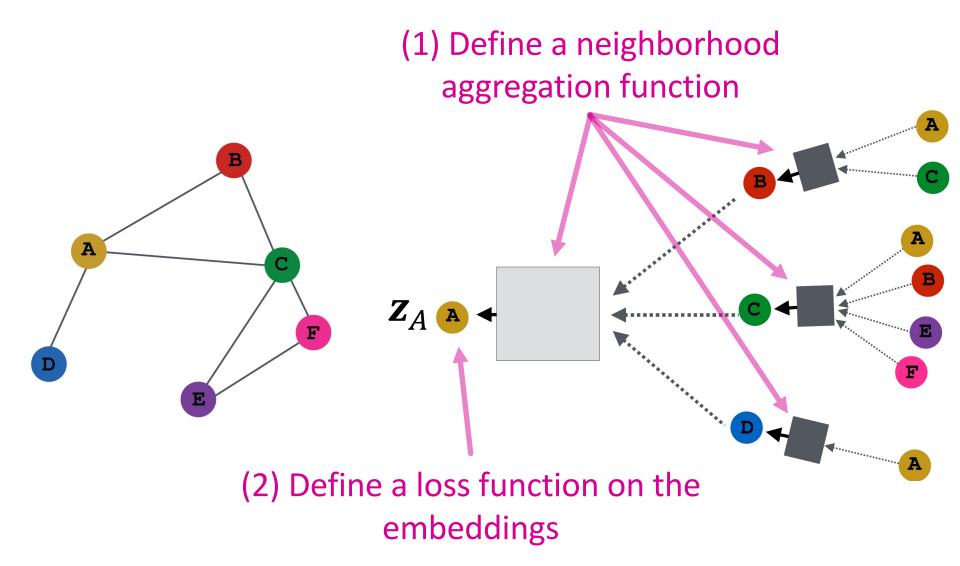
Supervised Training

Directly train the model for a supervised task (e.g., node classification)

Use cross entropy loss (Slide 16)

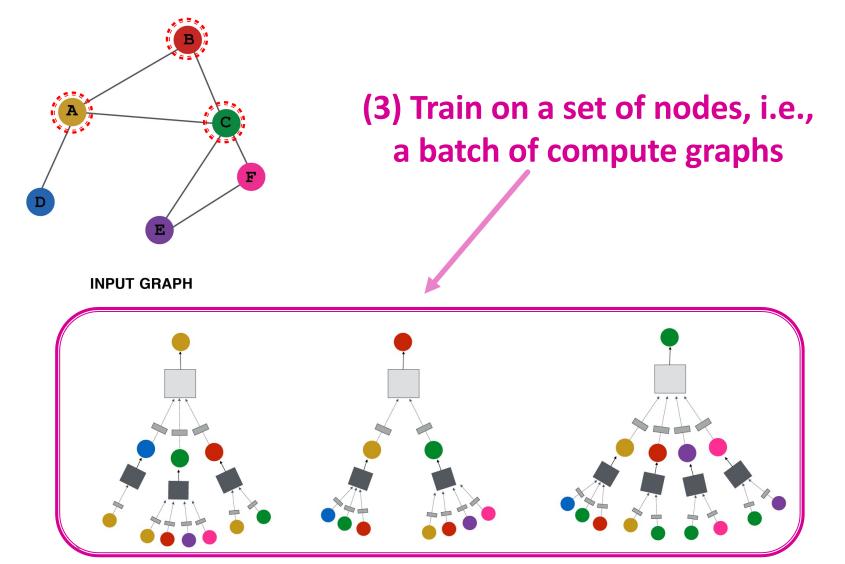


Model Design: Overview



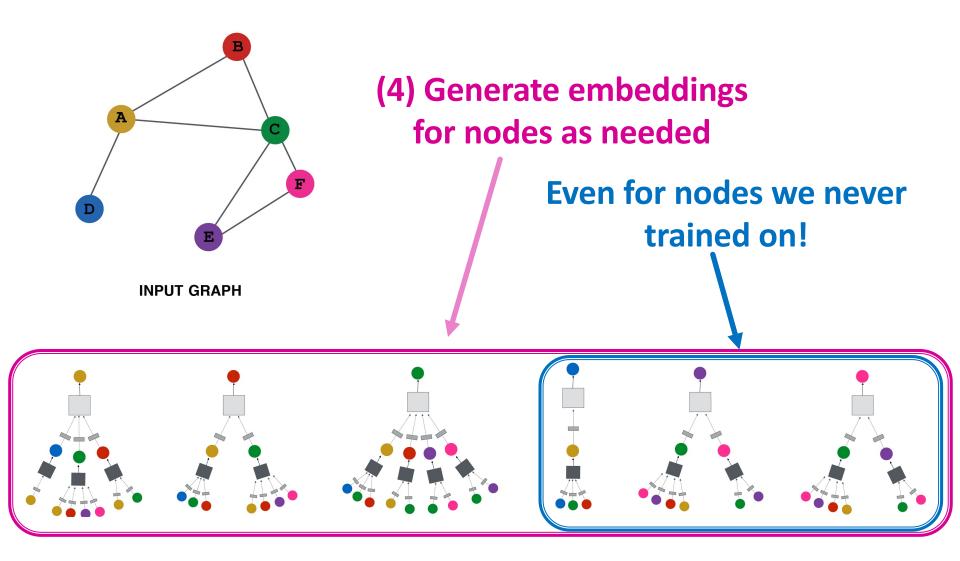
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Design: Overview



Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Model Design: Overview

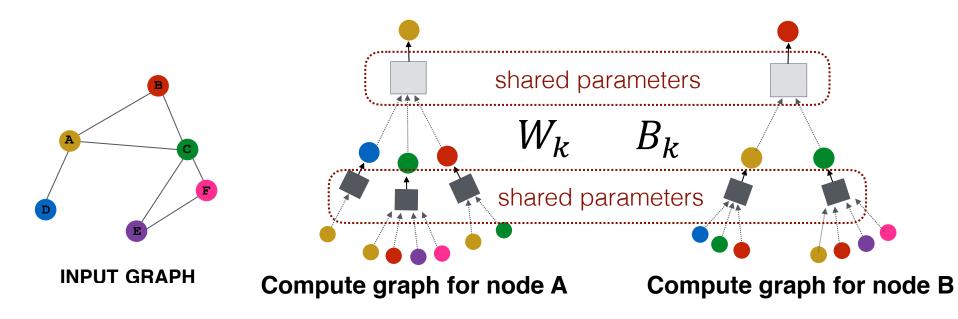


Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

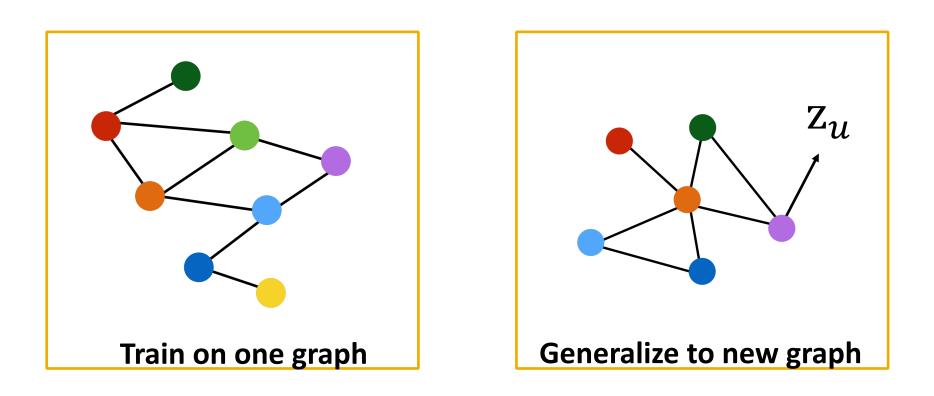
Inductive Capability

The same aggregation parameters are shared for all nodes:

The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!



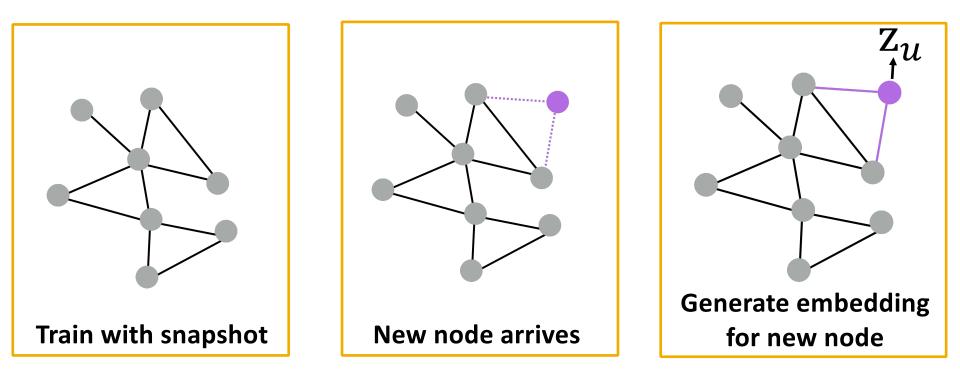
Inductive Capability: <u>New Graphs</u>



Inductive node embedding \rightarrow Generalize to entirely unseen graphs

E.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: <u>New Nodes</u>



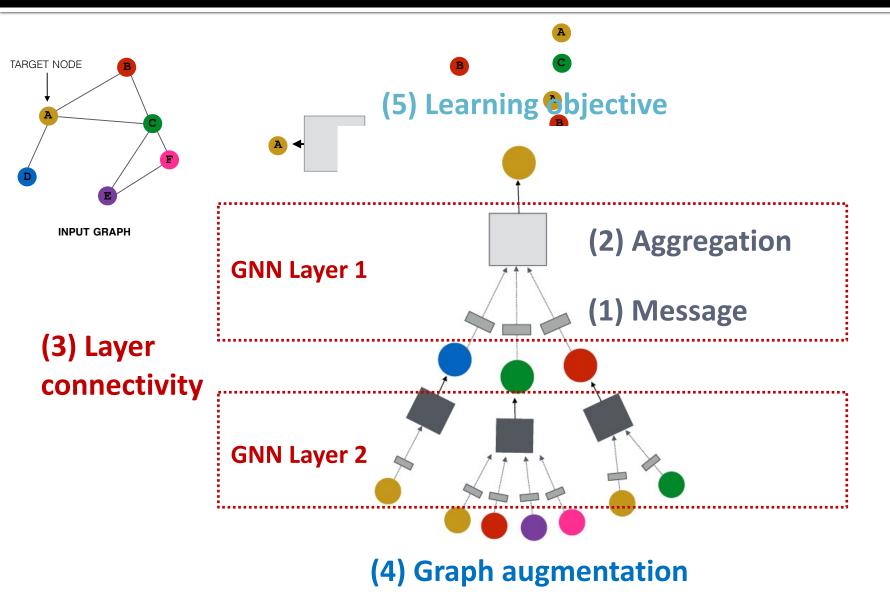
- Many application settings constantly encounter previously unseen nodes:
- E.g., Reddit, YouTube, Google Scholar
 Need to generate new embeddings "on the fly"

Stanford CS224W: A General Perspective on Graph Neural Networks

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu

J. You, R. Ying, J. Leskovec. Design Space of Graph Neural Networks, NeurIPS 2020

GNN Framework: Summary



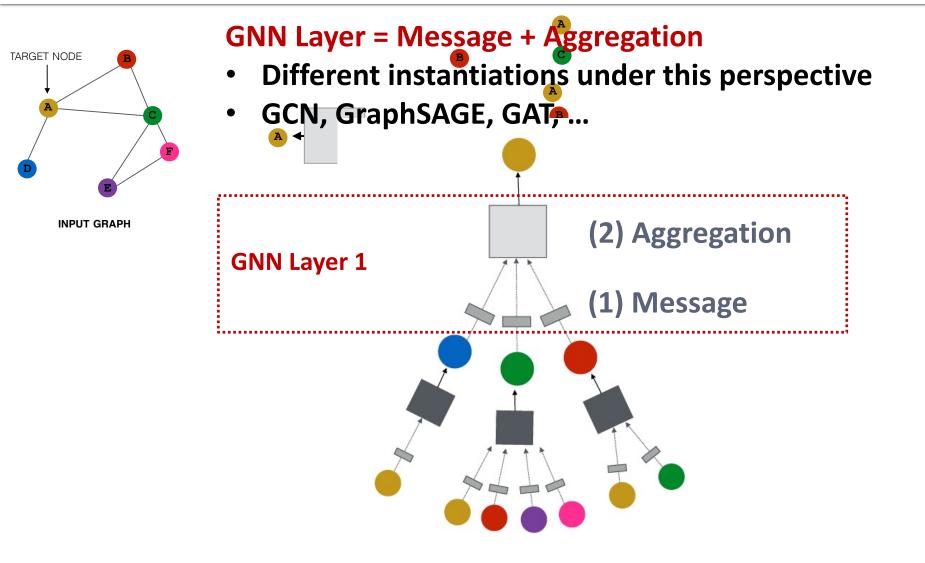
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Stanford CS224W: A Single Layer of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



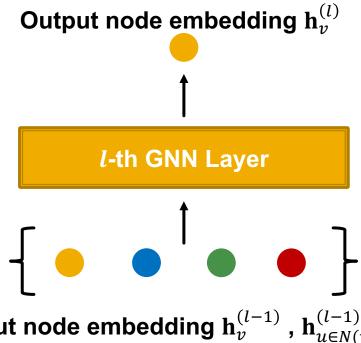
A GNN Layer

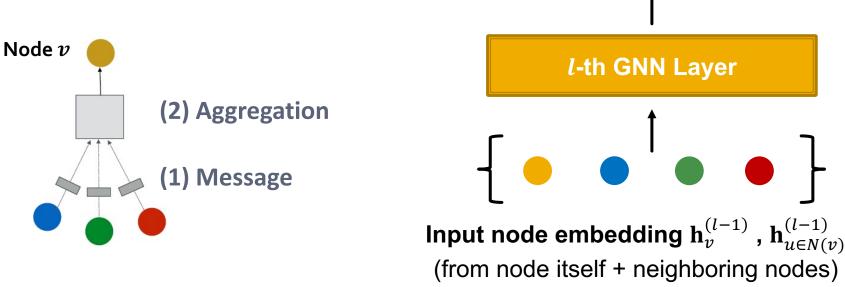


A Single GNN Layer

Idea of a GNN Layer:

- Compress a set of vectors into a single vector
- **Two-step process:**
- (1) Message (2) Aggregation



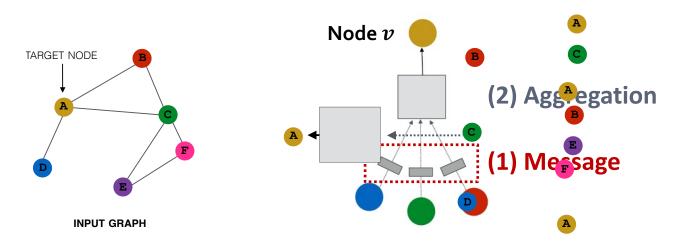


Message Computation

(1) Message computation

- Message function: $\mathbf{m}_{u}^{(l)} = MSG^{(l)}(\mathbf{h}_{u}^{(l-1)})$
 - Intuition: Each node will create a message, which will be sent to other nodes later
 - Example: A Linear layer $\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$

Multiply node features with weight matrix $\mathbf{W}^{(l)}$



Message Aggregation

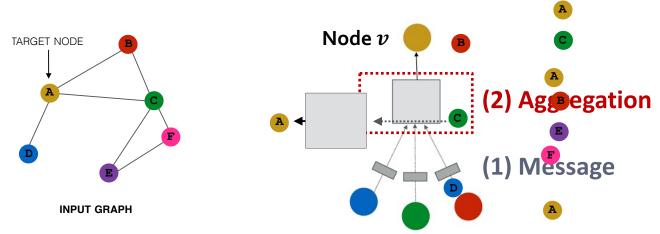
(2) Aggregation

Intuition: Each node will aggregate the messages from node v's neighbors

$$\mathbf{h}_{v}^{(l)} = \mathrm{AGG}^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)$$

• **Example:** $Sum(\cdot)$, $Mean(\cdot)$ or $Max(\cdot)$ aggregator

•
$$\mathbf{h}_{v}^{(l)} = \operatorname{Sum}(\{\mathbf{m}_{u}^{(l)}, u \in N(v)\})$$



Message Aggregation: Issue

- Issue: Information from node v itself could get lost
 - Computation of $\mathbf{h}_v^{(l)}$ does not directly depend on $\mathbf{h}_v^{(l-1)}$
- Solution: Include $\mathbf{h}_{v}^{(l-1)}$ when computing $\mathbf{h}_{v}^{(l)}$
 - (1) Message: compute message from node v itself
 - Usually, a different message computation will be performed

$$\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)} \qquad \mathbf{m}_{v}^{(l)} = \mathbf{B}^{(l)} \mathbf{h}_{v}^{(l-1)}$$

- (2) Aggregation: After aggregating from neighbors, we can aggregate the message from node v itself
 - Via concatenation or summation

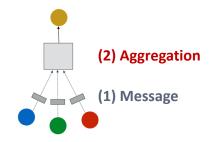
Then aggregate from node itself

$$\mathbf{h}_{v}^{(l)} = \text{CONCAT}\left(\text{AGG}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right), \mathbf{m}_{v}^{(l)}\right)$$
First aggregate from neighbors

A Single GNN Layer

Putting things together:

- (1) Message: each node computes a message $\mathbf{m}_{u}^{(l)} = \mathrm{MSG}^{(l)} \left(\mathbf{h}_{u}^{(l-1)} \right), u \in \{N(v) \cup v\}$
- (2) Aggregation: aggregate messages from neighbors $\mathbf{h}_{v}^{(l)} = AGG^{(l)}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}, \mathbf{m}_{v}^{(l)}\right)$
- Nonlinearity (activation): Adds expressiveness
 - Often written as $\sigma(\cdot)$: ReLU(\cdot), Sigmoid(\cdot), ...
 - Can be added to message or aggregation



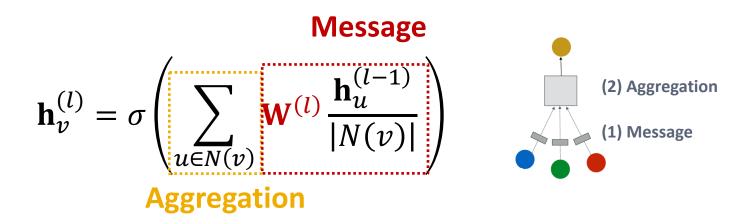
T. Kipf, M. Welling. Semi-Supervised Classification with Graph Convolutional Networks, ICLR 2017

Classical GNN Layers: GCN (1)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\mathbf{W}^{(l)} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$

How to write this as Message + Aggregation?



Classical GNN Layers: GCN (2)

(1) Graph Convolutional Networks (GCN)

$$\mathbf{h}_{v}^{(l)} = \sigma \left(\sum_{u \in N(v)} \mathbf{W}^{(l)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|} \right)$$
(2) Aggregation (1) Message

Message:

• Each Neighbor: $\mathbf{m}_u^{(l)} = \frac{1}{|N(v)|} \mathbf{W}^{(l)} \mathbf{h}_u^{(l-1)}$

Normalized by node degree

(In the GCN paper they use a slightly different normalization)

Aggregation:

Sum over messages from neighbors, then apply activation

•
$$\mathbf{h}_{v}^{(l)} = \sigma\left(\operatorname{Sum}\left(\left\{\mathbf{m}_{u}^{(l)}, u \in N(v)\right\}\right)\right)$$

In GCN graph is assumed to have self-edges that are included in the summation.

Classical GNN Layers: GraphSAGE

(2) GraphSAGE

$$\mathbf{h}_{v}^{(l)} = \sigma\left(\mathbf{W}^{(l)} \cdot \text{CONCAT}\left(\mathbf{h}_{v}^{(l-1)}, \text{AGG}\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)\right)\right)$$

- How to write this as Message + Aggregation?
 - Message is computed within the AGG(·)
 - Two-stage aggregation
 - Stage 1: Aggregate from node neighbors $\mathbf{h}_{N(v)}^{(l)} \leftarrow AGG\left(\left\{\mathbf{h}_{u}^{(l-1)}, \forall u \in N(v)\right\}\right)$
 - Stage 2: Further aggregate over the node itself

$$\mathbf{h}_{v}^{(l)} \leftarrow \sigma \left(\mathbf{W}^{(l)} \cdot \text{CONCAT}(\mathbf{h}_{v}^{(l-1)}, \mathbf{h}_{N(v)}^{(l)}) \right)$$

GraphSAGE Neighbor Aggregation

Mean: Take a weighted average of neighbors

$$AGG = \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{(l-1)}}{|N(v)|}$$
 Message computation

 Pool: Transform neighbor vectors and apply symmetric vector function Mean(·) or Max(·)

$$AGG = Mean(\{MLP(\mathbf{h}_{u}^{(l-1)}), \forall u \in N(v)\})$$

Aggregation Message computation

LSTM: Apply LSTM to reshuffled of neighbors

AGG = LSTM(
$$[\mathbf{h}_{u}^{(l-1)}, \forall u \in \pi(N(v))]$$
)
Aggregation

GraphSAGE: L2 Normalization

• ℓ_2 Normalization:

• Optional: Apply ℓ_2 normalization to $\mathbf{h}_{v}^{(l)}$ at every layer

•
$$\mathbf{h}_{v}^{(l)} \leftarrow \frac{\mathbf{h}_{v}^{(l)}}{\|\mathbf{h}_{v}^{(l)}\|_{2}} \quad \forall v \in V \text{ where } \|u\|_{2} = \sqrt{\sum_{i} u_{i}^{2}} \quad (\ell_{2}\text{-norm})$$

- Without ℓ_2 normalization, the embedding vectors have different scales (ℓ_2 -norm) for vectors
- In some cases (not always), normalization of embedding results in performance improvement
- After ℓ_2 normalization, all vectors will have the same ℓ_2 -norm

Classical GNN Layers: GAT (1)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights

- In GCN / GraphSAGE
 - $\alpha_{vu} = \frac{1}{|N(v)|}$ is the weighting factor (importance) of node *u*'s message to node *v*
 - $\Rightarrow \alpha_{vu}$ is defined **explicitly** based on the structural properties of the graph (node degree)
 - ⇒ All neighbors $u \in N(v)$ are equally important to node v

Classical GNN Layers: GAT (2)

(3) Graph Attention Networks

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Attention weights

Not all node's neighbors are equally important

- Attention is inspired by cognitive attention.
- The attention α_{vu} focuses on the important parts of the input data and fades out the rest.
 - Idea: the NN should devote more computing power on that small but important part of the data.
 - Which part of the data is more important depends on the context and is learned through training.

[Velickovic et al., ICLR 2018; Vaswani et al., NIPS 2017]

Graph Attention Networks

Can we do better than simple neighborhood aggregation?

Can we let weighting factors α_{m} to be learned?

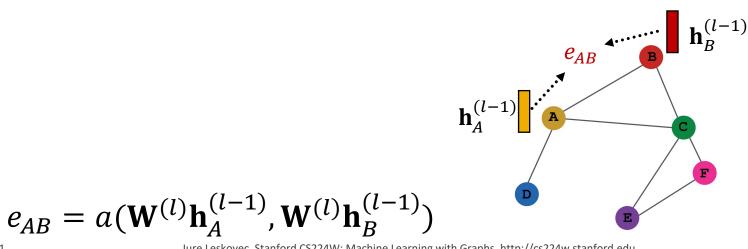
- **Goal:** Specify **arbitrary importance** to different
- neighbors of each node in the graph
 Idea: Compute embedding h^(l)_v of each node in the graph following an attention strategy:
 - Nodes attend over their neighborhoods' message
 - Implicitly specifying different weights to different nodes in a neighborhood

Attention Mechanism (1)

- Let $\alpha_{\nu\nu}$ be computed as a byproduct of an attention mechanism a:
 - (1) Let a compute attention coefficients e_{vu} across pairs of nodes u, v based on their messages:

$$\boldsymbol{e_{vu}} = \boldsymbol{a}(\mathbf{W}^{(l)}\mathbf{h}_{u}^{(l-1)}, \mathbf{W}^{(l)}\boldsymbol{h}_{v}^{(l-1)})$$

• e_{vu} indicates the importance of u's message to node v



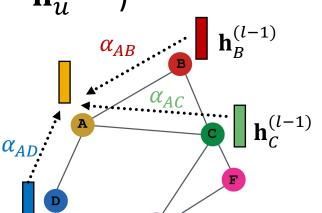
: Machine Learning with Graphs, http://cs224w.stanford.edu

Attention Mechanism (2)

- Normalize e_{vu} into the final attention weight α_{vu}
 - Use the **softmax** function, so that $\sum_{u \in N(v)} \alpha_{vu} = 1$: $\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{k \in N(v)} \exp(e_{vk})}$
- Weighted sum based on the final attention weight
 *α*_{νu}

$$\mathbf{h}_{v}^{(l)} = \sigma(\sum_{u \in N(v)} \alpha_{vu} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)})$$

Weighted sum using α_{AB} , α_{AC} , α_{AD} : $\mathbf{h}_{A}^{(l)} = \sigma(\alpha_{AB}\mathbf{W}^{(l)}\mathbf{h}_{B}^{(l-1)} + \alpha_{AC}\mathbf{W}^{(l)}\mathbf{h}_{C}^{(l-1)} + \alpha_{AD}\mathbf{W}^{(l)}\mathbf{h}_{D}^{(l-1)})$



Attention Mechanism (4)

- Multi-head attention: Stabilizes the learning process of attention mechanism
 - Create multiple attention scores (each replica with a different set of parameters):

$$\begin{split} \mathbf{h}_{v}^{(l)}[1] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{1} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[2] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{2} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \\ \mathbf{h}_{v}^{(l)}[3] &= \sigma(\sum_{u \in N(v)} \alpha_{vu}^{3} \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}) \end{split}$$

- Outputs are aggregated:
 - By concatenation or summation
 - $\mathbf{h}_{v}^{(l)} = AGG(\mathbf{h}_{v}^{(l)}[1], \mathbf{h}_{v}^{(l)}[2], \mathbf{h}_{v}^{(l)}[3])$

Benefits of Attention Mechanism

 Key benefit: Allows for (implicitly) specifying different importance values (α_{vu}) to different neighbors

Computationally efficient:

- Computation of attentional coefficients can be parallelized across all edges of the graph
- Aggregation may be parallelized across all nodes

Storage efficient:

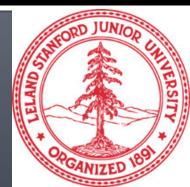
• Sparse matrix operations do not require more than O(V + E) entries to be stored

Fixed number of parameters, irrespective of graph size
 Localized:

- Only attends over local network neighborhoods
 Inductive capability:
 - It is a shared *edge-wise* mechanism
 - It does not depend on the global graph structure

Stanford CS224W: GNN Layers in Practice

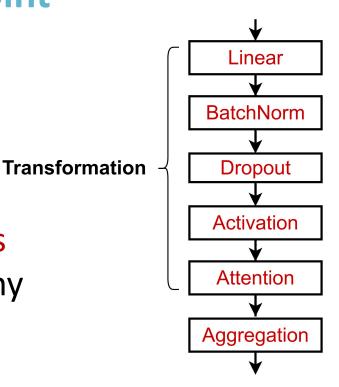
CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



J. You, R. Ying, J. Leskovec. <u>Design Space of Graph Neural Networks</u>, NeurIPS 2020

GNN Layer in Practice

- In practice, these classic GNN layers are a great starting point
 - We can often get better performance by considering a general GNN layer design
 - Concretely, we can include modern deep learning modules that proved to be useful in many domains



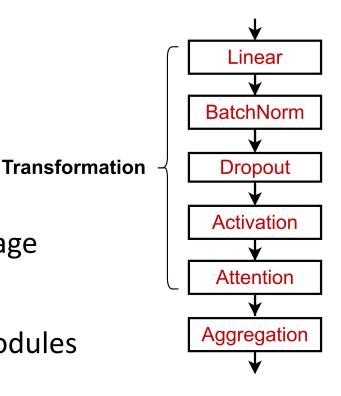
GNN Layer in Practice

- Many modern deep learning modules can be incorporated into a GNN layer
 - Batch Normalization:
 - Stabilize neural network training
 - Dropout:
 - Prevent overfitting
 - Attention/Gating:
 - Control the importance of a message

More:

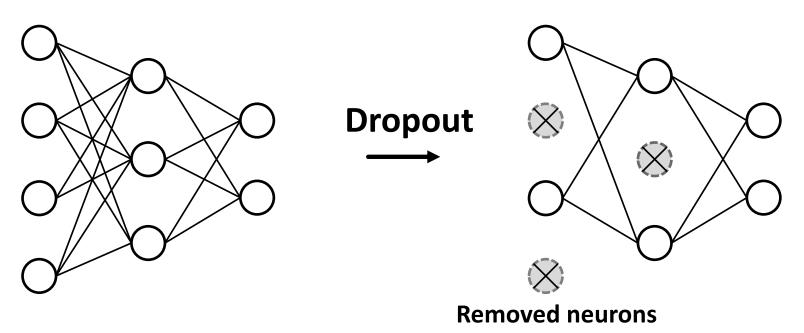
Any other useful deep learning modules

A suggested GNN Layer



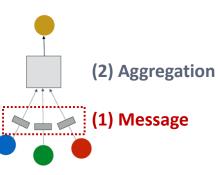
Dropout

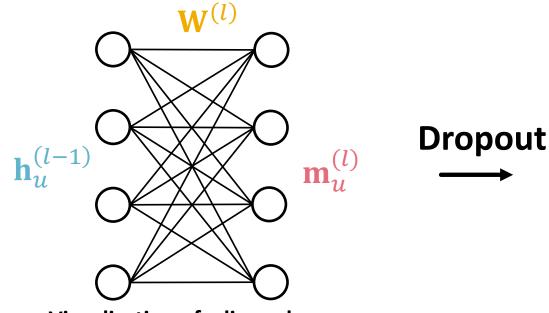
- Goal: Regularize a neural net to prevent overfitting.
 Idea:
 - During training: with some probability p, randomly set neurons to zero (turn off)
 - During testing: Use all the neurons for computation



Dropout for GNNs

- In GNN, Dropout is applied to the <u>linear layer in the message function</u>
 - A simple message function with linear layer: $\mathbf{m}_{u}^{(l)} = \mathbf{W}^{(l)} \mathbf{h}_{u}^{(l-1)}$





Visualization of a linear layer

Activation (Non-linearity)

Apply activation to *i*-th dimension of embedding **x**

- Rectified linear unit (ReLU)
 - $\text{ReLU}(\mathbf{x}_i) = \max(\mathbf{x}_i, 0)$
 - Most commonly used

Sigmoid

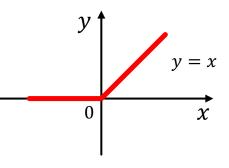
$$\sigma(\mathbf{x}_i) = \frac{1}{1 + e^{-\mathbf{x}_i}}$$

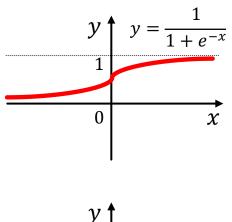
- Used only when you want to restrict the range of your embeddings
- Parametric ReLU

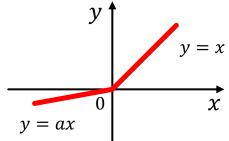
 $PReLU(\mathbf{x}_i) = \max(\mathbf{x}_i, 0) + \frac{a_i}{\min(\mathbf{x}_i, 0)}$

 a_i is a trainable parameter

Empirically performs better than ReLU

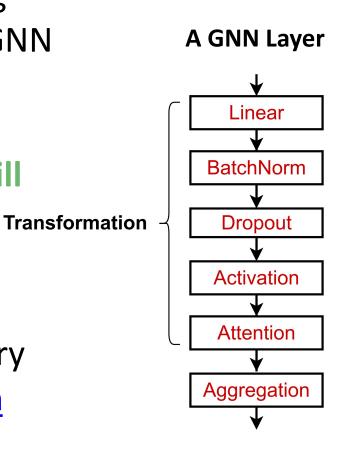






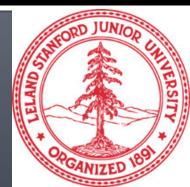
GNN Layer in Practice

- Summary: Modern deep learning modules can be included into a GNN layer for better performance
- Designing novel GNN layers is still an active research frontier! Tr
- Suggested resources: You can explore diverse GNN designs or try out your own ideas in <u>GraphGym</u>

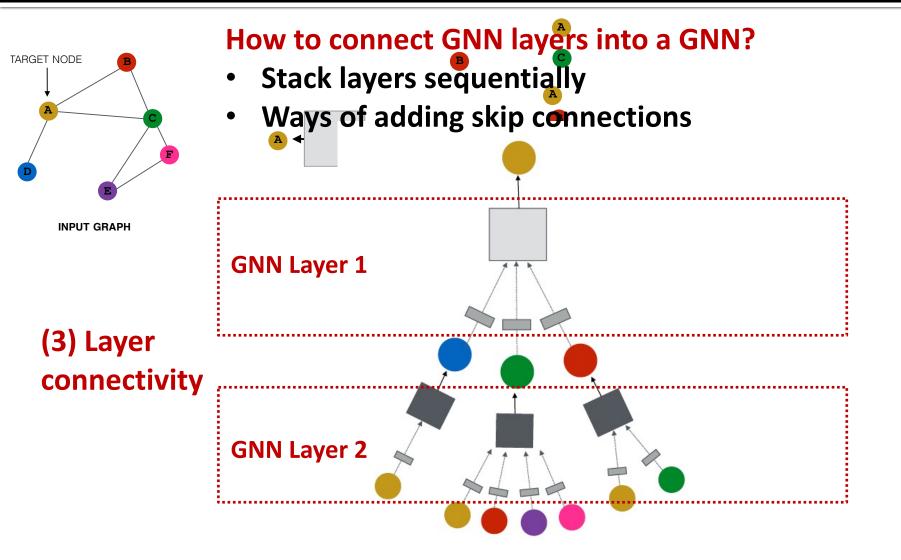


Stanford CS224W: Stacking Layers of a GNN

CS224W: Machine Learning with Graphs Jure Leskovec, Stanford University http://cs224w.stanford.edu



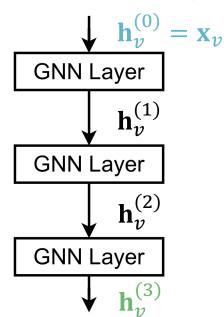
Stacking GNN Layers



Stacking GNN Layers

How to construct a Graph Neural Network?

- The standard way: Stack GNN layers sequentially
- Input: Initial raw node feature x_v
- **Output:** Node embeddings $\mathbf{h}_{v}^{(L)}$ after *L* GNN layers



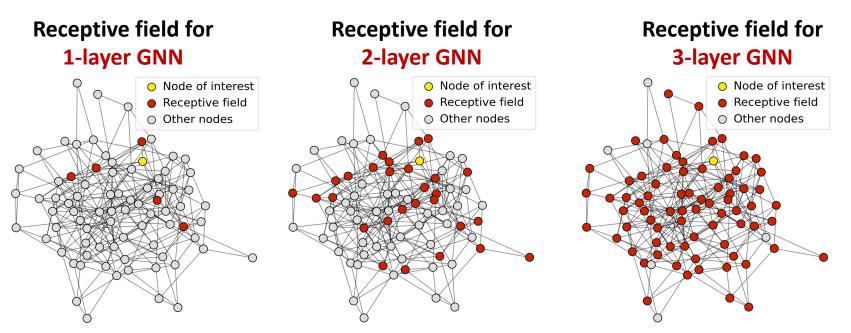
The Over-smoothing Problem

The Issue of stacking many GNN layers

- GNN suffers from the over-smoothing problem
- The over-smoothing problem: all the node embeddings converge to the same value
 - This is bad because we want to use node embeddings to differentiate nodes
- Why does the over-smoothing problem happen?

Receptive Field of a GNN

- Receptive field: the set of nodes that determine the embedding of a node of interest
 - In a K-layer GNN, each node has a receptive field of K-hop neighborhood



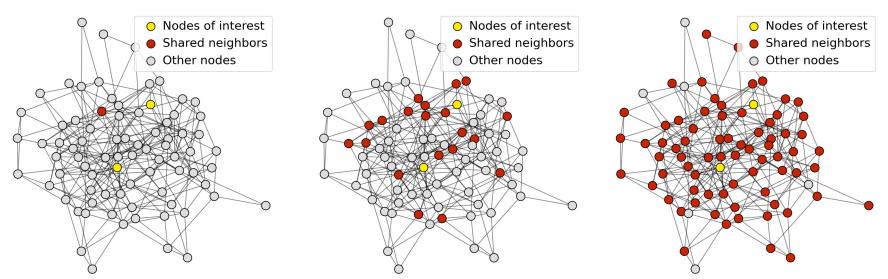
Receptive Field of a GNN

Receptive field overlap for two nodes
 The shared neighbors quickly grows when we increase the number of hops (num of GNN layers)

1-hop neighbor overlap Only 1 node

2-hop neighbor overlap About 20 nodes

3-hop neighbor overlap Almost all the nodes!



Receptive Field & Over-smoothing

- We can explain over-smoothing via the notion of receptive field
 - We knew the embedding of a node is determined by its receptive field
 - If two nodes have highly-overlapped receptive fields, then their embeddings are highly similar
 - Stack many GNN layers → nodes will have highlyoverlapped receptive fields → node embeddings will be highly similar → suffer from the oversmoothing problem

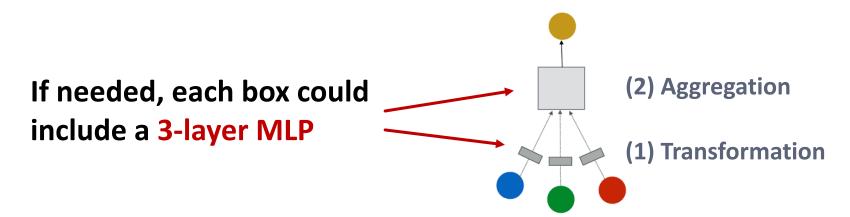
Next: how do we overcome over-smoothing problem?

Design GNN Layer Connectivity

- What do we learn from the over-smoothing problem?
 Lesson 1: Be cautious when adding GNN layers
 - Unlike neural networks in other domains (CNN for image classification), adding more GNN layers do not always help
 - Step 1: Analyze the necessary receptive field to solve your problem. E.g., by computing the diameter of the graph
 - Step 2: Set number of GNN layers L to be a bit more than the receptive field we like. Do not set L to be unnecessarily large!
- Question: How to enhance the expressive power of a GNN, if the number of GNN layers is small?

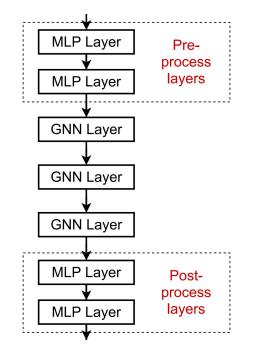
Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 1: Increase the expressive power within each GNN layer
 - In our previous examples, each transformation or aggregation function only include one linear layer
 - We can make aggregation / transformation become a deep neural network!



Expressive Power for Shallow GNNs

- How to make a shallow GNN more expressive?
- Solution 2: Add layers that do not pass messages
 - A GNN does not necessarily only contain GNN layers
 - E.g., we can add MLP layers (applied to each node) before and after GNN layers, as pre-process layers and post-process layers



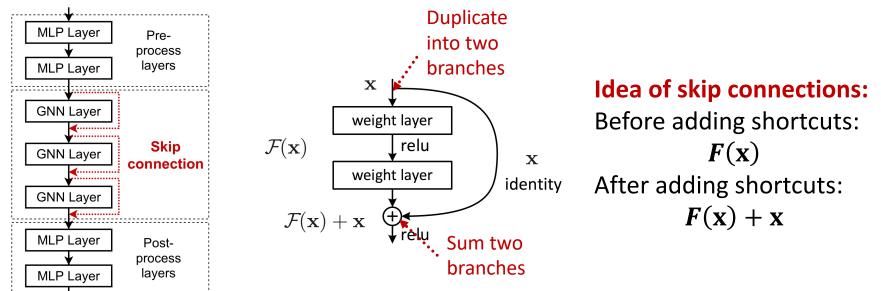
Pre-processing layers: Important when encoding node features is necessary.E.g., when nodes represent images/text

Post-processing layers: Important when reasoning / transformation over node embeddings are needed E.g., graph classification, knowledge graphs

In practice, adding these layers works great!

Design GNN Layer Connectivity

- What if my problem still requires many GNN layers?
 Lesson 2: Add skip connections in GNNs
 - Observation from over-smoothing: Node embeddings in earlier GNN layers can sometimes better differentiate nodes
 - Solution: We can increase the impact of earlier layers on the final node embeddings, by adding shortcuts in GNN

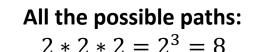


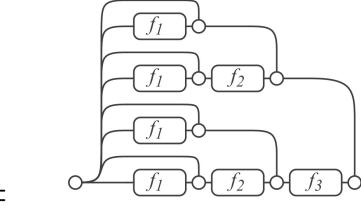
Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Idea of Skip Connections

Why do skip connections work?

- Intuition: Skip connections create a mixture of models
- N skip connections $\rightarrow 2^N$ possible paths
- Each path could have up to N modules
- We automatically get a mixture of shallow GNNs and deep GNNs





(b) Unraveled view of (a)

(a) Conventional 3-block residual network

Residual module

Building block Skip connection

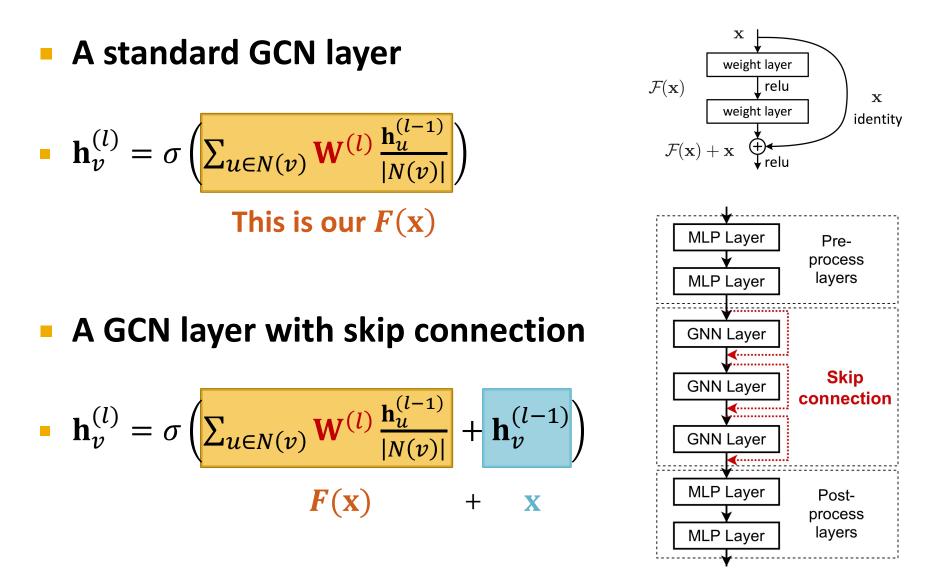
Path 2: skip this module

Path 1: include this module

Veit et al. Residual Networks Behave Like Ensembles of Relatively Shallow Networks, ArXiv 2016

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

Example: GCN with Skip Connections



Other Options of Skip Connections

 Other options: Directly skip to the last layer
 The final layer directly aggregates from the all the node embeddings in the previous layers

