
Recurrent Neural Networks
Sequential modeling



Sequence order is important: 

● overall it defines the meaning of the data
● each event in the sequence depends on the previous 

events

Sequential modeling
Sequential data: Text, Speech, Music, Movies, Stock prices, DNA, Earthquakes, ...



Sequential modeling: prediction
prices xt≥0 at time t

For a trader to do well in the stock 
market on day  t  he should want to 
predict  xt via xt∼p(xt|xt−1,…x1).

Problem: the number of inputs,  
xt−1,…x1 increases with the amount of 
data that we encounter 

We will need an approximation to make this computationally tractable: 

● Autoregressive models: autoregressive models & latent autoregressive models
● Hidden Markov Models



Sequential modeling: Autoregressive models
Two strategies:

Autoregressive (αυτοπαλινδρόμηση): use only T observations xt∼p(xt|xt−1,…xt-T).  
The number of arguments is always the same. Perform regression on themselves.  
For discrete objects such as words we use a classifier rather than a regressor.

Latent Autoregressive Models: keep some summary ht of the past observations 
around and update that in addition to the actual prediction. Estimate  xt|xt−1,ht−1  
and moreover update ht=g(ht,xt) . Neural Networks with memoryful hidden layers 
are LAMs. Moreover the “summary” is the hidden layer status.  



Sequential modeling: Hidden Markov Models
Whenever the approximation p(xt|xt−1,…xt-T) = p(xt|xt−1,…x1) is accurate we say that 
the sequence satisfies a Markov condition. For T=1 we have a first order Markov 
model. 

● Have a discrete one-of-N hidden state. 
● Transitions between states are stochastic and 

controlled by a transition matrix. 
● The outputs produced by a state are stochastic.
● Memoryful models, time-cost to infer the hidden state 

distribution.

 



Sequential modeling: Autoregressive models
Vanilla AR: the output variable depends linearly on its own previous values and on 
a stochastic term 

(Deep) Feed-forward NN AR extension

These generalize AR models by using one or more layers of non-linear hidden 
units. Memoryless models: limited word-memory window; hidden state cannot 
be used efficiently



Sequential modeling: Autoregressive FF models
prediction with embedding = 4

Poor prediction performance. Deep 
architecture does not help

Reason: we use predictions instead of real 
data and errors build up



Recurrent Neural Networks
Recurrent NN have hidden layers with loops

This loop “summarizes” the past (memoryful)

Recurrent -> Ανατροφοδοτούμενα ή Επαναληπτικά

Recurrent NN ≠ Recursive (Αναδρομικά) ΝΝ. 

A recursive neural network is more like a hierarchical network where there is really 
no time aspect to the input sequence but the input has to be processed 
hierarchically in a tree fashion.



Recurrent Neural Networks
An unrolled Recurrent Neural Network













Language Modeling
Assuming the words in a text of length T are in turn  w1,w2,…,wT. Given such a 
sequence, the goal of a language model is to estimate the probability 
p(w1,w2,…,wT).

p(Statistics,is,fun,.)=p(Statistics)p(is|Statistics)p(fun|Statistics,is)p(.|Statistics,is,fun).

Very useful

● Generate meaningful text. Draw wt∼p(wt|wt−1,…w1)
● Speech-to-text translation. Evaluate ‘to recognize speech’ vs ‘to wreck a nice 

beach’ 
● Document summarization. Evaluate ‘dog bites man’ vs ‘man bites dog’,
● Improve the infamous autocorrector!



Language Modeling
Estimate probabilities using large corpora (e.g. Wikipedia, Project  Gutenberg etc.) 
and keep count of all occurrences and co-occurrences (n-grams)

Many problems

● must store all frequencies
● longer n-grams are much less frequent and probabilities tend to zero. Long 

word sequences are almost certain to be novel (0 probability)
● we ignore the meaning of words: ‘cookie’ and ‘biscuit’ should occur in related 

contexts
● Deep learning methods can be good at language modeling



Text preprocessing
1. Tokenization. “He left!” should be 3 tokens: “He”, “left”, “!” (NLTK tokenizer)
2. Remove infrequent words. For example keep the 7997 most frequent words 

of the corpus. Reserve one special token UNKNOWN_TOKEN for the rest of 
words

3. Add special start and end tokens. Prepend a special SENTENCE_START 
token, and append a special SENTENCE_END token to each sentence (total 
8000 tokens)

4. Use One-hot encoding for each sentence
the sky is blue

the 1 0 0 0

sky 0 1 0 0

is 0 0 1 0

blue 0 0 0 1* special tokens will be included in the encoding 

Better: use Word2Vec embeddings



Κάτι πιο εκφραστικό: Word2Vec embeddings













Ο ανάστροφος πίνακας του C’ 
έχει διαστάσεις |V| x m

Aν πάρουμε το one-hot 
διάνυσμα για τη λέξη Neymar 
(διαστάσεις 1 x |V|) με άσσο 
μόνο στη λέξη Neymar και τον 
πολλαπλασιάσουμε με τον 
προηγούμενο πίνακα θα 
πάρουμε ένα διάνυσμα 1 x m 
που είναι πλέον το embedding 
για τη λέξη Neymar

Όταν στην είσοδο του RNN 
εμφανίζεται η λέξη Neymar, Αντί 
του one-hot encoding 
διαστάσεων |V| με άσσο μόνο 
στο Neymar, θα εισάγουμε το 
πυκνό πλέον διάνυσμα 1 x m 
του embedding

 







A concrete RNN example

sky

is blue

the

sky

is

Expected output y (supervised training at 
each time step)

Task: learn a language model 
e.g. predict next word

The diagram shows an unrolled 
RNN. By unrolling we simply 
mean that we write out the 
network for the complete 
sequence. For example, if the 
sequence we care about is a 
sentence of 5 words, the 
network would be unrolled into 
a 5-layer neural network, one 
layer for each word.

Since the all the weights (U,V,W) are shared 
for all time steps we can treat sequences 
(sentences) of different length



A concrete RNN example



A concrete RNN example
● Vocabulary size C = 8000
● Hidden layer size H = 100

Total parameters (weights) = 2HC + H2. In the case of C=8000 and H=100 that’s 
1,610,000



Forward pass

● We store all states st => longer sentences need more memory.
● At each step we output probabilities for all words in the vocabulary to be the 

next word => use softmax to get the most probable at each step



Backpropagation Through Time

Error (or loss) e.g. cross-entropy (y: true labels) 

We typically treat the full 
sequence (sentence) as one 
training example, so the total 
error is just the sum of the errors 
at each time step (word). For SGD we need to calculate the gradients 

for all the weights V,U,W.  Like we sum up 
the errors, we also sum up the gradients at 
each time step for one training example:



Backpropagation Through Time
To calculate these gradients we use the chain rule of 
differentiation. We will use E3 as an example. 

For V,        only depends on the values at the current 
time step                 (z3=Vs3)

For W (and U) the calculation depends on the previous 
steps                            but 

We need to apply the chain rule again                                  .        is a chain rule in 
itself                   so we can rewrite it as  



Backpropagation Through Time
BPTT is just a standard backpropagation on an unrolled 
RNN with the only difference is that we sum up the 
gradients for W at each time step.

Because W is used in every step up 
to the output we care about, we 
need to backpropagate gradients 
from t=3 through the network all the 
way to t=0

[Williams & Zipser 1995]



Backpropagation Through Time

● We use gradient accumulators 
for V,W,U

● Bishops delta rule
● In practice many people 

truncate the backpropagation 
to a few steps.



Limitations of RNNs
● In principle, recurrent networks are capable of learning long distance 

dependencies.
● In practice, standard gradient-based learning algorithms do not perform 

very well. 
○ Bengio et al. (1994) – the ‘vanishing gradient’ problem.
○ Mikolov & Bengio (2013) - the ‘exploding gradient’ problem. “Clipping” solution
○ The gradient is a product of Jacobian matrices, each associated with a step in the

forward computation. This can become very small or very large quickly.

● Nevertheless, the repeating cell structure is powerful
● Today, there are several methods available for training recurrent neural 

networks that avoids these problems. 
○ LSTMs, optimisation with small gradients, careful weight initialisations, …



The Vanishing Gradient problem
The tanh and sigmoid functions have derivatives of 0 at both ends. 

Thus, with small values in the matrix and multiple matrix 
multiplications the gradient values are shrinking exponentially fast, 
eventually vanishing completely after a few time steps. 

Gradient contributions from “far away” steps become zero, and the 
state at those steps doesn’t contribute to what you are learning: You 
end up not learning long-range dependencies. 

Vanishing gradients aren’t exclusive to RNNs. They also happen in 
deep Feedforward Neural Networks. It’s just that RNNs tend to be 
very deep (as deep as the sentence length in our case), which 
makes the problem a lot more common.



Long Short Term Memory networks (LSTM)
Hochreiter & Schmidhuber (1997)

All recurrent neural networks have the 
form of a chain of repeating modules of 
neural network.

In standard RNNs, this repeating module 
is a single tanh layer.

In LSTMs repeating module has four 
layers instead of one.

RNN

LSTM



The cell state and three gates
The key to LSTMs is the cell state, the horizontal line running through 
the top of the diagram. It runs straight down the entire chain, with only 
some minor linear interactions. It’s very easy for information to just flow 
along it unchanged.

The LSTM does have the ability to remove or add information to the cell 
state, carefully regulated by structures called gates.

Gates are a way to optionally let information through. They are 
composed out of a sigmoid neural net layer and a pointwise 
multiplication operation. The sigmoid layer outputs numbers between 
zero and one, describing how much of each component should be let 
through. A value of zero means “let nothing through,” while a value of 
one means “let everything through!”

An LSTM has three of these gates, to protect and control the cell state.



The first step is to decide what information we’re going to throw away from the cell state. 

This decision is made by a sigmoid layer called the “forget gate layer.” 

It looks at ht−1 and xt, and outputs a number between 0 and 1 for each number in the cell state Ct−1. 

A 1 represents “keep this” while a 0 represents “completely get rid of this.”

Forget gate



The next step is to decide what new information to store in the cell state. This has two parts: 

First, a sigmoid layer called the “input gate layer” decides which values will be updated. 

Next, a tanh layer creates a vector of new candidate values, C~t, that could be added to the state. 

In the next step, we combine these two to create an update to the state.

Input gate



We now update the old cell state, Ct−1, into the new cell state Ct. 

We multiply the old state by ft, forgetting the things we decided to forget earlier. 

Then we add it∗C~t. This is the new candidate values, scaled by how much we decided to update each state 
value.

Cell state
update



Finally, we decide what we’re going to output. This output will be based on our cell state, but will be a filtered 
version. 

First, we run a sigmoid layer over ht-1 which decides what parts of the cell state we’re going to output. 

Then, we put the cell state through tanh (to push the values to be between −1 and 1) and multiply it by the 
output of the sigmoid gate, so that we only output the parts we decided to.

Overall weights to learn: Wf, Wi, Wc, Wo

Output



We add “peephole connections.” This means that we let the gate layers look at the cell state.

[Gers & Schmidhuber (2000)]

Variants: “Peephole” LSTMs



GRUs combine the forget and input gates into a single “update gate.” 

It also merges the cell state and hidden state.

The resulting model is simpler than standard LSTM models, and has been growing increasingly popular.

[Cho, et al. (2014)]

● Many more LSTM variants, many hyperparameters, empirical evaluation

Variants: Gated Recurrent Unit (GRU)



Deep RNNs and LSTMs

● Each layer learns higher level features
● For recurrent architectures the depth is usually low (2-4)

Deep LSTM



Bidirectional RNNs and LSTMs

● We split the input and train two networks in reverse order
● We concatenate the hidden layers outputs at each step to calculate outputs

[Graves 2005]



Applications of sequence modeling: Text Generation
● Input sequence is of same 

type (words) as output 
sequence.

● We take a sample of next 
words and decide with 
argmax or we take top-k 
probable words and select 
one at random or perform 
random multinomial 
experiments with the 
respective probabilities

● Repeat for next word

● the RNN hidden layers learn and 
store the language model



● character - level generation

Karpathy: The Unreasonable Effectiveness of 
Recurrent Neural Networks





Applications of sequence modeling
Input can be different modality than the output.

Encode input in hidden state, decode in output 

One to many, many to many, many to one schemes

● Image captioning
● Map unsegmented connected handwriting to strings.
● Map sequences of acoustic signals to sequences of phonemes.
● Translate sentences from one language into another one.





































Mikolov - Karpathy

Director of AI at Tesla Neural Networks for the Autopilot Facebook AI Research. Previously Google Brain



Historical notice
"Simple Recurrent Networks" (SRN) are old

● Elman networks [1990]
● Jordan networks [1997]
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