DeepMind

Optimization for Machine Learning

James Martens

6

UCL x DeepMind Lectures

Plan for this Lecture

1 Intro and motivation 2 Gradient descent **3** Momentum methods

4 2nd-order methods 5 Stochastic optimization

6

Intro and motivation

Motivation

- Optimization algorithms are the basic engine behind deep learning methods that enable models to learn from data by adapting their **parameters**
- They solve the problem of the minimization of an **objective function** that measures the mistakes made by the model
 - e.g. prediction error (classification), negative reward (reinforcement learning)
- Work by making a sequence of small incremental changes to model parameters that are each guaranteed to reduce the objective by some small amount

Basic notation

- Parameters:
 - $heta \in \mathrm{R}^n$ dimension
- Real-valued objective function : $h(\theta)$
- Goal of optimization:

$$\theta^* = \argmin_{\theta} h(\theta)$$

Example: neural network training objective

• The standard neural network training objective is given by:

$$h(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i, \theta))$$

where:

 $\ell(y,z)\, \text{is a loss function measuring}$ disagreement between $y\, \text{and }z$

and

 $f(x,\theta)$ is a neural network function taking input x and outputing some prediction

Gradient descent

Gradient descent: definition

• Basic gradient descent iteration:

$$\theta_{k+1} = \theta_k - \alpha_k \nabla h(\theta_k)$$

Learning rate: α_k (aka "step size")

Gradient:
$$abla h(heta) = 0$$

Intuition: gradient descent is "steepest descent"

$$\theta_{k+1} = \theta_k - \alpha_k \nabla h(\theta_k)$$

- Gradient direction $\nabla h(\theta)$ gives greatest reduction in $h(\theta)$ per unit of change* in $. \theta$
- If $h(\theta)$ is "sufficiently smooth", and learning rate small, gradient will keep pointing down-hill over the region in which we take our step

Intuition: gradient descent is minimizing a local approximation

• 1st-order Taylor series for $h(\theta)$ around current θ is:

 $h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d$

- For small enough ${}_{d}$ this will be a reasonable approximation
- Gradient update computed by minimizing this within a sphere of radius $_{r}$:

 $-\alpha \nabla h(\theta) = \underset{d:\|d\| \le r}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d \right)$

where

 $r = \alpha \|\nabla h(\theta)\|$

The problem with gradient descent visualized: the 2D "narrow valley" example

Convergence theory: technical assumptions

• h(heta) has Lipschitz continuous derivatives (i.e. is "Lipschitz smooth"):

 $\|
abla h(heta) -
abla h(heta')\| \leq L \| heta - heta'\|$ (an **upper bound** on the curvature)

- $h(\theta)$ is strongly convex (perhaps only near minimum): $h(\theta + d) \ge h(\theta) + \nabla h(\theta)^\top d + \frac{\mu}{2} ||d||^2$ (a lower bound on the curvature)
- And for now: Gradients are computed exactly (i.e. not stochastic)

Convergence theory: upper bounds

If previous conditions hold and we take $\alpha_k = \frac{2}{L+\mu}$: $h(\theta_k) - h(\theta^*) \leq \frac{L}{2} \left(\frac{\kappa-1}{\kappa+1}\right)^{2k} \|\theta_0 - \theta^*\|^2$ where $\kappa = L/\mu$.

Number of iterations to achieve $h(\theta_k) - h(\theta^*) \le \epsilon$ is

$$k \in \mathcal{O}\left(\kappa \log \frac{1}{\epsilon}\right)$$

Convergence theory: useful in practice?

- Issues with bounds such as this one:
 - too pessimistic (they must cover worst-case examples)
 - some assumptions too strong (e.g. convexity)
 - other assumptions too weak (real problems have additional useful structure)
 - rely on crude measures of objective (e.g. condition numbers)
 - usually focused on asymptotic behavior
- The design/choice of an optimizer should always be informed by **practice** more than anything else. But theory can help guide the way and build intuitions.

Momentum methods

The momentum method

- Motivation:
 - the gradient has a tendency to flip back and forth as we take steps when the learning rate is large
 - e.g. the narrow valley example
- The key idea:
 - accelerate movement along directions that point consistently down-hill across many consecutive iterations (i.e. have low curvature)
- How?
 - $\circ~$ treat current solution for $\theta~$ like a "ball" rolling along a "surface" whose height is given by $h(\theta)$, subject the force of gravity

Credit: Devinsupertramp via youtube.com

Defining equations for momentum

• Classical Momentum:

• Nesterov's variant:

$$v_{k+1} = \eta_k v_k - \nabla h(\theta_k + \alpha_k \eta_k v_k) \qquad v_0 = 0$$
$$\theta_{k+1} = \theta_k + \alpha_k v_{k+1}$$

Narrow 2D valley example revisited

Gradient descent with large learning rate

Gradient descent with small learning rate

Momentum method

Upper bounds for Nesterov's momentum variant

Given objective $h(\theta)$ satisfying same technical conditions as before, and careful choice of α_k and η_k , Nesterov's momentum method satisfies:

$$h(\theta_k) - h(\theta^*) \le L\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa}}\right)^k \|\theta_0 - \theta^*\|^2 \qquad \kappa = \frac{L}{\mu}$$

Number of iterations to achieve $h(\theta_k) - h(\theta^*) \le \epsilon$:

$$k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$$

Convergence theory: 1st-order methods and *lower bounds*

• A **first-order method** is one where updates are linear combinations of observed gradients. i.e.:

 $\theta_{k+1} - \theta_k = d \in \text{Span}\{\nabla h(\theta_0), \nabla h(\theta_1), \dots, \nabla h(\theta_k)\}$

- Included:
 - gradient descent
 - momentum methods
 - conjugate gradients (CG)
- Not included:
 - preconditioned gradient descent / 2nd-order methods

Lower bounds (cont.)

Assume number of steps is greater than the dimension n (it usually is). Then, there is example objective satisfying previous conditions for which:

$$h(\theta_k) - h(\theta^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|\theta_0 - \theta^*\|^2 \qquad \kappa = L/\mu$$

Number of iterations to achieve $h(\theta_k) - h(\theta^*) \le \epsilon$:

$$k \in \Omega\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$$

Comparison of iteration counts

To achieve $h(\theta_k) - h(\theta^*) \le \epsilon$ the number of iterations k satisfies:

- (Worst-case) lower bound for 1st-order methods: $k \in \Omega\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$
- Upper bound for gradient descent: $k \in \mathcal{O}\left(\kappa \log \frac{1}{\epsilon}\right)$
- Upper bound for GD w/ Nesterov's momentum: $k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$

2nd-order methods

The problem with 1st-order methods

• For any 1st-order method, the number of steps needed to converge grows with "condition number":

- This will be very large for some problems (e.g. certain deep architectures)
- 2nd-order methods can improve (or even eliminate) this dependency

Derivation of Newton's method

• Approximate $h(\theta)$ by its 2nd-order Taylor series around current θ :

 $h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$

• Minimize this local approximation to obtain:

 $d = -H(\theta)^{-1} \nabla h(\theta)$

• Update current iterate with this:

$$\theta_{k+1} = \theta_k - H(\theta)^{-1} \nabla h(\theta_k)$$

The 2D narrow valley example revisited (again)

Comparison to gradient descent

Maximum allowable global learning rate for GD to avoid divergence:

$$lpha = 1/L$$
 L is maximum curvature aka "Lipschitz constant"

• Gradient descent implicitly minimizes a bad approximation of 2nd-order Taylor series:

$$h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$$
$$\approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} (LI) d$$

• LI is too pessimistic / conservative an approximation of $H(\theta)$! Treats all directions as having max curvature.

Breakdown of local quadratic approximation and how to deal with it

- Quadratic approximation of objective is only trustworthy in a local region around current $\boldsymbol{\theta}$
- Gradient descent (implicitly) approximates the curvature everywhere by its global max (and so doesn't have this problem)
- Newton's method uses $H(\theta)$, which may become an underestimate in the region we are taking our update step

Solution: Constrain update d to lie in a "trust region" R around, where approximation remains "good enough"

Trust-regions and "damping"

• If we take $R = \{d: \|d\|_2 \le r\}$ then computing

$$\underset{d \in R}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$

- is often equivalent to $-(H(\theta) + \lambda I)^{-1} \nabla h(\theta) = \operatorname*{arg\,min}_{d} \left(h(\theta) + \nabla h(\theta)^\top d + \frac{1}{2} d^\top (H(\theta) + \lambda I) d \right)$ for some λ .
- λ depends on r in a complicated way, but we can just work with λ directly

Alternative curvature matrices

 $H(\theta)$ does not necessarily give the best quadratic approximation for optimization. Different replacements for $H(\theta)$ could produce:

A more global approximation

A more conservative approximation

Alternative curvature matrices (cont.)

- The most important family of related examples includes:
 - Generalized Gauss-Newton matrix (GGN)
 - Fisher information matrix
 - "Empirical Fisher"
- Nice properties:
 - always positive semi-definite (i.e. no negative curvature)
 - give parameterization invariant updates in small learning rate limit (unlike Newton's method!)
 - work much better in practice for neural net optimization

Barrier to application of 2nd-order methods for neural networks

- For neural networks, $heta \in {\rm I\!R}^n$ can have 10s of millions of dimensions
- We simply cannot compute and store an $n\times n$ matrix, let alone invert it!
- To use 2nd-order methods, we must simplify the curvature matrix's

 computation,
 - storage,
 - \circ and inversion

This is typically done by approximating the matrix with a simpler form.

Diagonal approximations

The simplest approximation: include only the diagonal entries of curvature matrix (setting the rest to zero)

Properties:

- Inversion and storage cost: $\mathcal{O}(n)$
- Computational costs depends on form of original matrix (ranges from easy to hard)
- Unlikely to be accurate, but can compensate for basic scaling differences between parameters

Used (with a square root) in RMS-prop and Adam methods to approximate Empirical Fisher matrix

Block-diagonal approximations

Another option is to take only include certain diagonal blocks.

For neural nets, a block could correspond to:

- weights on connections going into a given unit
- weights on connections going out of a given unit
- all the weights for a given layer

Properties:

- Storage cost: $\mathcal{O}(bn)$ (assuming b imes b block size)
- Inversion cost: $\dot{\mathcal{O}}(b^2 n)$
- Similar difficulty to computing diagonal
- Can only be realistically applied for small block sizes

Well-known example developed for neural nets: TONGA

Kronecker-product approximations

- Block-diagonal approximation of GGN/Fisher where blocks correspond to network layers
- Approximate each block as Kronecker product of two small matrices:

$$A \otimes C = \begin{bmatrix} [A]_{1,1}C & \cdots & [A]_{1,k}C \\ \vdots & \ddots & \vdots \\ [A]_{k,1}C & \cdots & [A]_{k,k}C \end{bmatrix}$$

- Storage and computation cost: $\mathcal{O}(n)^*$
- Cost to apply inverse: $\mathcal{O}(b^{0.5}n)$ (uses $(A\otimes C)^{-1}=A^{-1}\otimes C^{-1}$)
- Used in current most powerful neural net optimizer (K-FAC)

5

Stochastic methods

Motivation for stochastic methods

• Typical objectives in machine learning are an average over training cases of case-specific losses:

$$h(\theta) = \frac{1}{m} \sum_{i=1}^{m} h_i(\theta)$$

• m can be **very** big, and so computing the gradient gets expensive:

$$\nabla h(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla h_i(\theta)$$

Mini-batching

- Fortunately there is often significant statistical overlap between $h_i(heta)$'s
- Early in learning, when "coarse" features of the data are still being learned, most $\nabla h_i(\theta)$'s will look similar
- Idea: randomly subsample a "mini-batch" of training cases $S \subset \{1,2,...,m\}$ of size $b \ll m$, and estimate gradient as:

$$\widetilde{\nabla}h(\theta) = \frac{1}{b} \sum_{i \in S} \nabla h_i(\theta)$$

Stochastic gradient descent (SGD)

• Stochastic gradient descent (SGD) replaces $\nabla h(\theta)$ with its mini-batch estimate $\widetilde{\nabla} h(\theta)$, giving:

$$\theta_{k+1} = \theta_k - \alpha_k \widetilde{\nabla} h(\theta_k)$$

- To ensure convergence, need to do one of the following:
 - \circ Decay learning rate: $lpha_k = 1/k$
 - Use "Polyak averaging": $\overline{\theta}_k = \frac{1}{k+1} \sum_{i=0}^k \theta_i$ or $\overline{\theta}_k = (1-\beta)\theta_k + \beta \overline{\theta}_{k-1}$
 - Slowly increase the mini-batch size during optimization

Convergence of stochastic methods

- Stochastic methods converge slower than corresponding non-stochastic versions
- Asymptotic rate for SGD with Polyak averaging:

Gradient estimate covariance matrix

$$E[h(\theta_k)] - h(\theta^*) \in \frac{1}{2k} \operatorname{tr} \left(H(\theta^*)^{-1} \Sigma \right) + \mathcal{O} \left(\frac{1}{k^2} \right)$$

• Iterations to converge:

$$k \in \mathcal{O}\left(\operatorname{tr}\left(H(\theta^*)^{-1}\Sigma\right)\frac{1}{\epsilon}\right)$$

VS

 $k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$

Stochastic 2nd-order and momentum methods

- Mini-batch gradients estimates can be used with 2nd-order and momentums methods too
- Curvature matrices estimated stochastically using decayed averaging over multiple steps
- No stochastic optimization method that sees the same amount of data can have better **asymptotic** convergence speed than SGD with Polyak averaging
- But... **pre-asymptotic** performance usually matters more in practice. So stochastic 2nd-order and momentum methods can still be useful if:
 - the loss surface curvature is bad enough and/or
 - the mini-batch size is large enough

Experiments on deep convnets

experiment

- Adam
- K-FAC + momentum
- Momentum

Details

- Mini-batch size of 512
- Imagenet dataset
- 100 layer deep convolutional net without skips or batch norm
- Carefully initialized parameters

Conclusions / Summary

- Optimization methods:
 - enable learning in models by adapting parameters to minimize some objective
 - main engine behind neural networks
- 1st-order methods (gradient descent):
 - take steps in direction of "steepest descent"
 - run into issues when curvature varies strongly in different directions
- Momentum methods:
 - use principle of momentum to accelerate along directions of lower curvature
 - obtain "optimal" convergence rates for 1st-order methods

Conclusions / Summary

• 2nd-order methods:

- improve convergence in problems with bad curvature, even more so than momentum methods
- require use of trust-regions/damping to work well
- also require the use of curvature matrix approximations to be practical in high dimensions (e.g. for neural networks)
- Stochastic methods:
 - use "mini-batches" of data to estimate gradients
 - asymptotic convergence is slower
 - pre-asymptotic convergence can be sped up using 2nd-order methods and/or momentum

Thank you

Questions

References and further reading

Solid introductory texts on optimization:

- Numerical Optimization (Nocedal & Wright)
- Introductory Lectures on Convex Optimization: A Basic Course (Nesterov)

Further reading for those interested in neural network optimization:

- Optimization Methods for Large-Scale Machine Learning (Bottou et al)
- The Importance of Initialization and Momentum in Deep Learning (Sutskever et al.)
- New insights and perspectives on the natural gradient method (Martens)
- Optimizing Neural Networks with Kronecker-factored Approximate Curvature (Martens & Grosse)
- Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model (Zhang et al.)