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Training single-layer perceptron
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How to determine MLP parameters
• MLPs can realize logical connectives

• We crafted parameters (weights and biases) 
carefully to realize desired connectives

• However, crafting parameters is difficult
• We are sometimes unsure of the internal logic 

associating input and output variables

• Find parameters automatically from data
• We are interested in determining parameters 

from data describing pairs of inputs and outputs
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Supervised learning (training)
• We have a supervision data

• 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁 ,𝑦𝑦𝑁𝑁 } (𝑁𝑁 instances)

• Find parameters such that they can predict 
training instances as correctly as possible

• We assume generalization
• If the parameters predict training instances well, 
they will work for unseen instances
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Supervised learning for single-layer NNs
• For simplicity, we include a bias term 𝑏𝑏 in 𝒘𝒘 hereafter

• Redefine 𝒙𝒙(new) = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑 , 1 ⊺, 𝒘𝒘(new) = 𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤d, 𝑏𝑏 ⊺

• Then, 𝒘𝒘(new) ⋅ 𝒙𝒙 new = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯+ 𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑 + 𝑏𝑏 (original form)

• We introduce a new notation to distinguish a computed 
output �𝑦𝑦 from the gold output 𝑦𝑦 in the supervision data
• 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁,𝑦𝑦𝑁𝑁 } (𝑁𝑁 instances)
• We distinguish two kinds of outputs hereafter

• �𝑦𝑦: the output computed (predicted) by the model (perceptron) for the input
• 𝑦𝑦: the true (gold) output for the input in the supervision data

• Training: find 𝒘𝒘 such that,
∀𝑛𝑛 ∈ {1, … ,𝑁𝑁}:𝑔𝑔(𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛) = 𝑦𝑦𝑛𝑛
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Perceptron algorithm (Rosenblatt, 1957)
1. 𝒘𝒘 = 0
2. Repeat:
3. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷
4. �𝑦𝑦 ⟵ 𝑔𝑔 𝒘𝒘 ⋅ 𝒙𝒙𝒏𝒏
5. if �𝑦𝑦 ≠ 𝑦𝑦𝑛𝑛 then:
6. if 𝑦𝑦𝑛𝑛 = 1 then:
7. 𝒘𝒘⟵ 𝒘𝒘 + 𝜂𝜂𝒙𝒙𝑛𝑛
8. else:
9. 𝒘𝒘⟵ 𝒘𝒘− 𝜂𝜂𝒙𝒙𝑛𝑛
10. Until no instance updates 𝒘𝒘
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𝜂𝜂 (0 < 𝜂𝜂) is the learning rate



Exercise: Train an SLP to realize OR
• Convert the truth table into training data

• Initialize the weight vector 𝒘𝒘 = 0
• Apply the perceptron algorithm to find 𝒘𝒘

• Fix 𝜂𝜂 = 1 in the exercise
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𝑥𝑥1 𝑥𝑥2 𝑦𝑦
0 0 0
0 1 1
1 0 1
1 1 1

𝐷𝐷 =

0 0 1 ⊺, 0 ,
0 1 1 ⊺, 1 ,
1 0 1 ⊺, 1 ,
1 1 1 ⊺, 1



Updating weights for OR
• Data: 𝐷𝐷 = 0 0 1 ⊺, 0 , 0 1 1 ⊺, 1 , 1 0 1 ⊺, 1 , 1 1 1 ⊺, 1
• Initialization: 𝒘𝒘 = 0 0 0 ⊺

• Iteration #1: choose (𝒙𝒙4,𝑦𝑦4) = 1 1 1 ⊺, 1
• Classification: �𝑦𝑦 = 𝑔𝑔 𝒘𝒘 ⋅ 𝒙𝒙4 = 𝑔𝑔 0 = 0 ≠ 𝑦𝑦4
• Update: 𝒘𝒘 ← 𝒘𝒘 + 𝒙𝒙4 = 1 1 1 ⊺

• Iteration #2: choose (𝒙𝒙1,𝑦𝑦1) = 0 0 1 ⊺, 0
• Classification: �𝑦𝑦 = 𝑔𝑔 𝒘𝒘 ⋅ 𝒙𝒙1 = 𝑔𝑔 1 = 1 ≠ 𝑦𝑦1
• Update: 𝒘𝒘 ← 𝒘𝒘− 𝒙𝒙1 = 1 1 0 ⊺

• Terminate (the weight 𝒘𝒘 classifies all instances correctly)
• 𝒙𝒙 = 0 0 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 0 0 1 ⊺ = 0
• 𝒙𝒙 = 0 1 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 0 1 1 ⊺ = 1
• 𝒙𝒙 = 1 0 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 1 0 1 ⊺ = 1
• 𝒙𝒙 = 1 1 1 ⊺: 𝑦𝑦 = 𝑔𝑔 1 1 0 1 1 1 ⊺ = 1
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We chose the 
instances in 

the order that 
minimizes the 

required 
number of 
updates



Why perceptron algorithm learns
• Suppose the parameter 𝒘𝒘 misclassifies (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛)

• If 𝑦𝑦𝑛𝑛 = 1 then:
• Update the weight vector 𝒘𝒘𝒘 ⟵ 𝒘𝒘 + 𝒙𝒙𝑛𝑛
• If we classify 𝒙𝒙𝑛𝑛 again with the updated weights 𝒘𝒘𝒘 :

• 𝒘𝒘′ ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘 + 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛 + 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 ≥ 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛
• The dot product was increased (more likely to be classified as 1)

• If 𝑦𝑦𝑛𝑛 = 0 then:
• Update the weight vector 𝒘𝒘′ ⟵ 𝒘𝒘− 𝒙𝒙𝑛𝑛
• If we classify 𝒙𝒙𝑛𝑛 again with the updated weights 𝒘𝒘𝒘 :

• 𝒘𝒘′ ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘− 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 = 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛 − 𝒙𝒙𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 ≤ 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛
• The dot product was decreased (more likely to be classified as 0)

• The algorithm updates the parameter 𝒘𝒘 to the 
direction where it will classify (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) more correctly

Feedforward Neural Network (I) 33



Extending the algorithm to MLPs 
• The perceptron algorithm:

• Can find SLP parameters for linearly-separable data
• Does not terminate with linearly-inseparable data

• This is because of the limitation of SLPs
• We must force to terminate the algorithm with incomplete parameters 

• Extending the algorithm to MLPs is non trivial
• We have no training data for hidden states
• The famous argument of Minsky and Papert (1969)

• Two new ideas: sigmoid and backpropagation
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Single layer perceptron
with sigmoid function
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Activation function: step → sigmoid
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Sigmoid function: ℝ → (0,1)

𝜎𝜎(𝑎𝑎) =
1

1 + 𝑒𝑒−𝑎𝑎

Step function: ℝ → {0,1}

𝑔𝑔(𝑎𝑎) = �1 (if 𝑎𝑎 > 0)
0 (otherwise)

• Yields binary outputs
• Unusable for multi-class classification

• Indifferentiable at zero
• With zero gradients

• Yields continuous scores
• Usable for multi-class classification

• Differentiable at all points
• With mostly non-zero gradients

• Useful for gradient descent

lim
𝑎𝑎→∞

𝜎𝜎(𝑎𝑎) = 1

lim
𝑎𝑎→−∞

𝜎𝜎(𝑎𝑎) = 0



General form with sigmoid
• Single layer NN with sigmoid function

�𝑦𝑦 = 𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 =
1

1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙
• Given an input 𝒙𝒙 ∈ ℝ𝑑𝑑 , it computes an output �𝑦𝑦 ∈ (0,1)

by using the parameter 𝒘𝒘 ∈ ℝ𝑑𝑑

• This is also known as logistic regression
• We can interpret �𝑦𝑦 as the conditional probability 𝑃𝑃 1 𝒙𝒙

where an input is classified to 1 (positive category)
• Rule to classify an input to 1:

�𝑦𝑦 > 0.5 ⟺ 1
1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙 > 1

2 ⟺𝒘𝒘 ⋅ 𝒙𝒙 > 0

• The classification rule is the same as the linear models
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Example: logical AND
• The same parameter in the previous example

�𝑦𝑦 = 𝜎𝜎 𝑎𝑎 ,𝑎𝑎 = 𝑥𝑥1 + 𝑥𝑥2 − 1.5

• The outputs are acceptable, but
• 𝑃𝑃 𝑥𝑥1 ∧ 𝑥𝑥2 = 1|𝑥𝑥1 = 1, 𝑥𝑥2 = 1 is not so high (62.2%)
• Room for improving 𝒘𝒘 so that it yields 𝑦𝑦 → 1 (100%) for 

positives (true) and 𝑦𝑦 → 1 (0%) for negatives (false)
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𝑥𝑥1 𝑥𝑥2 𝒚𝒚 = 𝑥𝑥1 ∧ 𝑥𝑥2 𝑎𝑎 �𝑦𝑦 = 𝜎𝜎(𝑎𝑎)

0 0 0 -1.5 0.182
0 1 0 -0.5 0.378
1 0 0 -0.5 0.378
1 1 1 0.5 0.622



Instance-wise likelihood
• We introduce instance-wise likelihood, to measure 

how well the parameters reproduce (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛)
𝑝𝑝𝑛𝑛 =

�𝑦𝑦𝑛𝑛 (if 𝑦𝑦𝑛𝑛 = 1)
1 − �𝑦𝑦𝑛𝑛 (otherwise)

• Likelihood is a probability representing the ‘fitness’ of 
the parameters to the training data
• We want to increase the likelihood by changing 𝒘𝒘

Feedforward Neural Network (I) 39

𝑥𝑥1 𝑥𝑥2 𝑦𝑦 = 𝑥𝑥1 ∧ 𝑥𝑥2 𝑎𝑎 �𝑦𝑦 = 𝜎𝜎(𝑎𝑎) 𝑝𝑝

0 0 0 -1.5 0.182 1 − �𝑦𝑦 = 0.818
0 1 0 -0.5 0.378 1 − �𝑦𝑦 = 0.622
1 0 0 -0.5 0.378 1 − �𝑦𝑦 = 0.622
1 1 1 0.5 0.622 �𝑦𝑦 = 0.622

1
1
1
1

Parameters of AND: �𝑦𝑦 = 𝜎𝜎 𝑎𝑎 ,𝑎𝑎 = 𝑥𝑥1 + 𝑥𝑥2 − 1.5



Likelihood on the training data
• We assume that all instances in the training data 
are i.i.d. (independent and identically distributed)

• We define likelihood as a joint probability on data,

𝐿𝐿𝐷𝐷 𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛

• When the training data 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁,𝑦𝑦𝑁𝑁 } is 
fixed, likelihood is a function of the parameters 𝒘𝒘

• Let us maximize 𝐿𝐿𝐷𝐷 𝒘𝒘 by changing 𝒘𝒘
• This is called Maximum Likelihood Estimation (MLE)
• The maximizer 𝒘𝒘∗ reproduces the training data well
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Training as a minimization problem
• Products of (0,1) values often cause underflow 
• Use log-likelihood, the logarithm of the likelihood, instead

𝐿𝐿𝐿𝐿𝐷𝐷 𝒘𝒘 = log𝐿𝐿𝐷𝐷 𝒘𝒘 = log�
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛 = �
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• In mathematical optimization, we usually consider a 
minimization problem instead of maximization

• We define an objective function 𝐸𝐸𝐷𝐷(𝒘𝒘) by using the 
negative of the log-likelihood

𝐸𝐸𝐷𝐷 𝒘𝒘 = −𝐿𝐿𝐿𝐿𝐷𝐷 𝒘𝒘 = −�
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• 𝐸𝐸𝐷𝐷 𝒘𝒘 is called a loss function or error function
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Training as a minimization problem
• Given the training data 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁 ,𝑦𝑦𝑁𝑁 }, 
find 𝒘𝒘∗ as the minimization problem,

𝒘𝒘∗ = argmin
𝒘𝒘

𝐸𝐸𝐷𝐷 𝒘𝒘 = argmin
𝒘𝒘

�
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 ,

𝑙𝑙𝑛𝑛 = − log𝑝𝑝𝑛𝑛 =
− log �𝑦𝑦𝑛𝑛 (if 𝑦𝑦𝑛𝑛 = 1)

− log 1 − �𝑦𝑦𝑛𝑛 (otherwise) = −𝑦𝑦𝑛𝑛 log �𝑦𝑦𝑛𝑛 − (1 − 𝑦𝑦𝑛𝑛) log(1 − �𝑦𝑦𝑛𝑛)
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𝐸𝐸𝐷𝐷 𝒘𝒘

𝒘𝒘𝒘𝒘∗



Stochastic Gradient Descent (SGD)
• The objective function is the sum of losses of instances,

𝐸𝐸𝐷𝐷 𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛

• We can use Stochastic Gradient Descent (SGD) and its 
variants (e.g., Adam) for minimizing 𝐸𝐸𝐷𝐷 𝒘𝒘

• SGD Algorithm (𝑇𝑇 is the number of updates)
1. Initialize 𝒘𝒘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷

5. 𝒘𝒘⟵ 𝒘𝒘− 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘
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Exercise: compute the gradient
• Prove:

𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘

=
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

= �𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛

by computing the gradients 𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

, 𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

, 𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

• Here:
• 𝑙𝑙𝑛𝑛 = −𝑦𝑦𝑛𝑛 log �𝑦𝑦𝑛𝑛 − (1 − 𝑦𝑦𝑛𝑛) log(1 − �𝑦𝑦𝑛𝑛) ,

• �𝑦𝑦𝑛𝑛 = 𝜎𝜎 𝑎𝑎𝑛𝑛 = 1
1+𝑒𝑒−𝑎𝑎𝑛𝑛

,

• 𝑎𝑎𝑛𝑛 = 𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛
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Answer: compute the gradients
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𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

= −
𝑦𝑦𝑛𝑛
�𝑦𝑦𝑛𝑛
−

1 − 𝑦𝑦𝑛𝑛
1 − �𝑦𝑦𝑛𝑛

⋅ −1 =
−𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛 + �𝑦𝑦𝑛𝑛(1 − 𝑦𝑦𝑛𝑛)

�𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛
=

�𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛
�𝑦𝑦𝑛𝑛(1 − �𝑦𝑦𝑛𝑛)

,

𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

= −1 ⋅
1

1 + 𝑒𝑒−𝑎𝑎𝑛𝑛 2 ⋅ 𝑒𝑒
−𝑎𝑎𝑛𝑛 ⋅ −1 =

1
1 + 𝑒𝑒−𝑎𝑎𝑛𝑛

⋅
𝑒𝑒−𝑎𝑎𝑛𝑛

1 + 𝑒𝑒−𝑎𝑎𝑛𝑛
= �𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛 ,

𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝒙𝒙𝑛𝑛

Therefore,

𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘

=
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕 �𝑦𝑦𝑛𝑛

𝜕𝜕 �𝑦𝑦𝑛𝑛
𝜕𝜕𝑎𝑎𝑛𝑛

𝜕𝜕𝑎𝑎𝑛𝑛
𝜕𝜕𝒘𝒘

=
�𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛

�𝑦𝑦𝑛𝑛(1 − �𝑦𝑦𝑛𝑛)
⋅ �𝑦𝑦𝑛𝑛 1 − �𝑦𝑦𝑛𝑛 ⋅ 𝒙𝒙𝑛𝑛 = �𝑦𝑦𝑛𝑛 − 𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛



SGD for training SLP
1. Initialize 𝒘𝒘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷
5. �𝑦𝑦𝑛𝑛 ⟵ 𝜎𝜎(𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛)

6. 𝒘𝒘⟵ 𝒘𝒘− 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘

= 𝒘𝒘 + 𝜂𝜂𝑡𝑡 𝑦𝑦𝑛𝑛 − �𝑦𝑦𝑛𝑛 𝒙𝒙𝑛𝑛
# If 𝑦𝑦𝑛𝑛 = �𝑦𝑦𝑛𝑛, no need for updating 𝒘𝒘
# If 𝑦𝑦𝑛𝑛 = 1 and �𝑦𝑦𝑛𝑛 < 1, add 𝒙𝒙𝑛𝑛 scaled by 1 − �𝑦𝑦𝑛𝑛 to 𝒘𝒘
# If 𝑦𝑦𝑛𝑛 = 0 and 0 < �𝑦𝑦𝑛𝑛, subtract 𝒙𝒙𝑛𝑛 scaled by �𝑦𝑦𝑛𝑛 to 𝒘𝒘
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The algorithm is the same as perceptron except for using 
the error 𝑦𝑦𝑛𝑛 − �𝑦𝑦𝑛𝑛 for weighting the amount of an update



Regularization
• MLE often causes over-fitting

• When the training data is linearly separable

𝒘𝒘 → ∞ as �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 → 0

• Subject to be affected by noises in the training data

• We use regularization (MAP estimation)
• We introduce a penalty term when 𝒘𝒘 becomes large
• The loss function with an L2 regularization term:

𝐸𝐸 𝒘𝒘 = �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 + 𝐶𝐶 𝒘𝒘 2

• 𝐶𝐶 is the hyper parameter to control the trade-off between 
over/under fitting
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Multi-class classification

Feedforward Neural Network (II) 5



• We extend binary classification to multi-class
• Assign a weight vector 𝒘𝒘𝑦𝑦 for every category 𝑦𝑦
• Extend Perceptron algorithm to multi-class classification
• Extend sigmoid function to softmax
• Again, automatic differentiation is useful for SGD training

• Try ReLU as an activation function of internal layers

• Dropout realizes model averaging in a simple way

Feedforward Neural Network (II) 2



Handwritten recognition (MNIST; LeCun+ 1998)

Feedforward Neural Network (II) 3

4 1 0 5

6 2 8 5
We want to classify an input image into 10 categories (digits)



Image representation
• An image (28 x 28 

pixels, grayscale) is 
represented by a 28 x 
28 matrix.

• The original dataset 
represents a brightness 
in an 8-bit integer ([0, 
255]).

• In this lecture, a 
brightness is 
normalized within the 
range of [0, 1].

Feedforward Neural Network (II) 4



Multi-class classification
and perceptron algorithm

Feedforward Neural Network (II) 5



General form: linear multi-class classification

�𝑦𝑦 = argmax
𝑦𝑦∈𝒴𝒴

𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙

Feedforward Neural Network (II) 6

Input: 𝒙𝒙 ∈ ℝ𝑑𝑑Output: �𝑦𝑦 ∈ 𝒴𝒴

Parameter: weight 𝒘𝒘𝑦𝑦 ∈ ℝ𝑑𝑑

(prepared for every category)

Set of possible categories 
for the input

(𝑑𝑑: number of dimension)



Represent an image with a vector
• We simply use the brightness of each pixel as an input 

vector by flattening a 2D matrix into a 1D vector
• A 28 × 28 matrix into a vector of 784 (= 28 × 28) dimension
• A more sophisticated method (e.g., Convolutional Neural 

Network) will be presented later
• Even this simple treatment surprisingly works well

Feedforward Neural Network (II) 7
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Linear multi-class classification

Feedforward Neural Network (II) 8

𝒙𝒙 ⋅ 𝒘𝒘0 = −1.24

𝒙𝒙 ⋅ 𝒘𝒘1 = −4.30

𝒙𝒙 ⋅ 𝒘𝒘2 = −0.68

𝒙𝒙 ⋅ 𝒘𝒘3 = +3.62

𝒙𝒙 ⋅ 𝒘𝒘4 = −5.61

𝒙𝒙 ⋅ 𝒘𝒘5 = −1.94

𝒙𝒙 ⋅ 𝒘𝒘6 = −5.56

𝒙𝒙 ⋅ 𝒘𝒘7 = −6.86

𝒙𝒙 ⋅ 𝒘𝒘8 = −0.08

𝒙𝒙 ⋅ 𝒘𝒘9 = −3.69
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Training for multi-class classifier
• A training set consists of 𝑁𝑁 instances:

• 𝐷𝐷 = { 𝒙𝒙1,𝑦𝑦1 , … , 𝒙𝒙𝑁𝑁 ,𝑦𝑦𝑁𝑁 }

• We assume generalization: if weight vectors 𝒘𝒘𝑦𝑦
predict training instances correctly, it will work 
for unseen instances 

• Find the weight vectors 𝒘𝒘𝑦𝑦 such that they can 
predict training instances as correctly as possible
• Ideally, �𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛 for all 𝑛𝑛 ∈ 1,𝑁𝑁 in the training data

Feedforward Neural Network (II) 9

𝒙𝒙𝑛𝑛: the 𝑛𝑛-th instance in the training data
𝑦𝑦𝑛𝑛 : the category for the 𝑛𝑛-th instance



Perceptron algorithm for multi-class
(Collins, 2002)

1. 𝒘𝒘𝑦𝑦 = 0 for all 𝑦𝑦 ∈ 𝒴𝒴
2. Repeat:
3. (𝒙𝒙,𝑦𝑦) ⟵ Random sample from the training data 𝐷𝐷
4. �𝑦𝑦 ⟵ argmax

𝑦𝑦∈𝒴𝒴
𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙

5. if �𝑦𝑦 ≠ 𝑦𝑦 then: (incorrect prediction)
6. 𝒘𝒘𝑦𝑦 ⟵ 𝒘𝒘𝑦𝑦 + 𝒙𝒙 (𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙 will be larger)
7. 𝒘𝒘�𝑦𝑦 ⟵ 𝒘𝒘�𝑦𝑦 − 𝒙𝒙 (𝒘𝒘�𝑦𝑦 ⋅ 𝒙𝒙 will be smaller)
8. Until no instance updates 𝒘𝒘𝑦𝑦

Feedforward Neural Network (II) 10



Summary and notes
• Given an input 𝒙𝒙, a linear multi-class classifier compute a 

score for every category 𝑦𝑦 as an inner product 𝒘𝒘𝑦𝑦 ⋅ 𝒙𝒙
• 𝒘𝒘𝑦𝑦 presents a weight vector for the category 𝑦𝑦

• It predicts a category �𝑦𝑦 for the input yielding the highest 
score among the possible categories 𝒴𝒴

• Weight vectors 𝒘𝒘𝑦𝑦 can be trained by an extension of 
Perceptron algorithm to multi-class (structured perceptron)
• Again, we cannot use it for multi-layer neural networks

• Let’s consider SGD for training multi-class classifiers

Feedforward Neural Network (II) 12



Multi-class classification
with softmax function

Feedforward Neural Network (II) 13



Training multi-class classifiers with SGD

• In order to train binary classifiers using SGD, 
we had to change the activation function 
from step to sigmoid

• What is the activation function for multi-
class classification corresponding to 
sigmoid function?

• Answer: softmax function

Feedforward Neural Network (II) 14



Softmax function: Definition
• Given a vector 𝒂𝒂 ∈ ℝ𝑚𝑚, softmax 𝜎𝜎:ℝ𝑚𝑚 → ℝ𝑚𝑚 yields,

𝜎𝜎 𝒂𝒂 𝑖𝑖 =
exp(𝑎𝑎𝑖𝑖)

∑𝑘𝑘=1𝑚𝑚 exp(𝑎𝑎𝑘𝑘)
• Here 𝜎𝜎 𝒂𝒂 𝑖𝑖 denotes the 𝑖𝑖-th element of the value of 𝜎𝜎 𝒂𝒂
• We use the same notation 𝜎𝜎 (do not confuse with sigmoid)

• A result of softmax function satisfies,
∀𝑘𝑘: 𝜎𝜎 𝒂𝒂 𝑘𝑘 > 0,

�
𝑘𝑘=1

𝑚𝑚

𝜎𝜎 𝒂𝒂 𝑘𝑘 = 1
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Softmax function: Interpretation
• Intuitively, softmax function converts scores for 𝑚𝑚
caetgories 𝒂𝒂 ∈ ℝ𝑚𝑚 into a probability distribution
• In binary classification, sigmoid function converts a 

score to a probability

Feedforward Neural Network (II) 16
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Single-layer NNs for multi-class classification

• Given an input 𝒙𝒙 ∈ ℝ𝑑𝑑 , a single-layer NN for 
multi-class classification yields a probability 
distribution over 𝐾𝐾 categories �𝒚𝒚 ∈ ℝ𝐾𝐾 ,

�𝒚𝒚 = 𝜎𝜎 𝒂𝒂 ,𝒂𝒂 = 𝑊𝑊𝒙𝒙

• Here, 𝑊𝑊 ∈ ℝ𝐾𝐾×𝑑𝑑 is a weight matrix
• 𝑊𝑊 can be seen as a mapping: ℝ𝑑𝑑 → ℝ𝐾𝐾

• Let 𝒘𝒘𝑖𝑖 denote the 𝑖𝑖-th row vector of the matrix 𝑊𝑊
• The score for the category 𝑖𝑖 is computed by 𝑎𝑎𝑖𝑖 = 𝒘𝒘𝑖𝑖 ⋅ 𝒙𝒙

Feedforward Neural Network (II) 17



An example with softmax function

Feedforward Neural Network (II) 18

𝒙𝒙 ⋅ 𝒘𝒘𝟎𝟎 = −1.24

𝒙𝒙 ⋅ 𝒘𝒘𝟏𝟏 = −4.30

𝒙𝒙 ⋅ 𝒘𝒘𝟐𝟐 = −0.68

𝒙𝒙 ⋅ 𝒘𝒘𝟑𝟑 = +3.62

𝒙𝒙 ⋅ 𝒘𝒘𝟒𝟒 = −5.61

𝒙𝒙 ⋅ 𝒘𝒘𝟓𝟓 = −1.94

𝒙𝒙 ⋅ 𝒘𝒘𝟔𝟔 = −5.56

𝒙𝒙 ⋅ 𝒘𝒘𝟕𝟕 = −6.86

𝒙𝒙 ⋅ 𝒘𝒘𝟖𝟖 = −0.08

𝒙𝒙 ⋅ 𝒘𝒘𝟗𝟗 = −3.69
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Supervision data for multi-class
• We have a supervision data

• 𝐷𝐷 = { 𝒙𝒙1,𝒚𝒚1 , … , 𝒙𝒙𝑁𝑁 ,𝒚𝒚𝑁𝑁 } (𝑁𝑁 instances)

• Input
• 𝒙𝒙𝑛𝑛 = 𝑥𝑥𝑛𝑛1, 𝑥𝑥𝑛𝑛2, … , 𝑥𝑥𝑛𝑛𝑑𝑑 ⊺ ∈ ℝ𝑑𝑑

• Output (changed from the previous notation)
• 𝒚𝒚𝑛𝑛 = 𝑦𝑦𝑛𝑛1,𝑦𝑦𝑛𝑛2, … ,𝑦𝑦𝑛𝑛𝐾𝐾 ⊺ ∈ ℝ𝐾𝐾 (one-hot vector)

Feedforward Neural Network (II) 19

𝒚𝒚 = 0,0,0,1,0,0,0,0,0,0 ⊺
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Instance-wise likelihood
• We introduce instance-wise likelihood to measure 
how well the parameters reproduce (𝒙𝒙𝑛𝑛,𝒚𝒚𝑛𝑛)

𝑝𝑝𝑛𝑛 = �
𝑘𝑘=1

𝐾𝐾
�𝑦𝑦𝑛𝑛𝑘𝑘 (if 𝑦𝑦𝑛𝑛𝑘𝑘 = 1)
1 (if 𝑦𝑦𝑛𝑛𝑘𝑘 = 0) = �

𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑛𝑛𝑘𝑘
𝑦𝑦𝑛𝑛𝑘𝑘

• The probability of the true label estimated by the model

Feedforward Neural Network (II)
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Likelihood on the training data
• We assume that all instances in the training data 
are i.i.d. (independent and identically distributed)

• We define likelihood as a joint probability on data,

𝐿𝐿𝐷𝐷 𝑊𝑊 = �
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛

• When the training data 𝐷𝐷 = { 𝒙𝒙1,𝒚𝒚1 , … , 𝒙𝒙𝑁𝑁 ,𝒚𝒚𝑁𝑁 } is 
fixed, likelihood is a function of the parameters 𝑊𝑊

• Let us maximize 𝐿𝐿𝐷𝐷 𝑊𝑊 by changing 𝑊𝑊
• This is called Maximum Likelihood Estimation (MLE)
• The maximizer 𝑊𝑊∗ reproduces the training data well
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Training as a minimization problem
• Products of (0,1) values often cause underflow 
• Use log-likelihood, the logarithm of the likelihood, instead

𝐿𝐿𝐿𝐿𝐷𝐷 𝑊𝑊 = log𝐿𝐿𝐷𝐷 𝑊𝑊 = log�
𝑛𝑛=1

𝑁𝑁

𝑝𝑝𝑛𝑛 = �
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• In mathematical optimization, we usually consider a 
minimization problem instead of maximization

• We define an objective function 𝐸𝐸𝐷𝐷(𝑊𝑊) by using the 
negative of the log-likelihood

𝐸𝐸𝐷𝐷 𝑊𝑊 = −𝐿𝐿𝐿𝐿𝐷𝐷 𝑊𝑊 = −�
𝑛𝑛=1

𝑁𝑁

log𝑝𝑝𝑛𝑛

• 𝐸𝐸𝐷𝐷 𝑊𝑊 is called a loss function or error function
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Training as a minimization problem
• Given the training data 𝐷𝐷 = { 𝒙𝒙1,𝒚𝒚1 , … , 𝒙𝒙𝑁𝑁 ,𝒚𝒚𝑁𝑁 }, 
find 𝑊𝑊∗ as the minimization problem,

𝑊𝑊∗ = argmin
𝑊𝑊

𝐸𝐸𝐷𝐷 𝑊𝑊 = argmin
𝑊𝑊

�
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛 ,

𝑙𝑙𝑛𝑛 = − log𝑝𝑝𝑛𝑛 = − log�
𝑘𝑘=1

𝐾𝐾

�𝑦𝑦𝑛𝑛𝑘𝑘
𝑦𝑦𝑛𝑛𝑘𝑘 = −�

𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑛𝑛𝑘𝑘 log �𝑦𝑦𝑛𝑛𝑘𝑘

Feedforward Neural Network (II) 23
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Stochastic Gradient Descent (SGD)
• The objective function is the sum of losses of instances,

𝐸𝐸𝐷𝐷 𝑊𝑊 = �
𝑛𝑛=1

𝑁𝑁

𝑙𝑙𝑛𝑛

• We can use Stochastic Gradient Descent (SGD) and its 
variants (e.g., Adam) for minimizing 𝐸𝐸𝐷𝐷 𝑊𝑊

• SGD Algorithm (𝑇𝑇 is the number of updates)
1. For every 𝑘𝑘, initialize 𝒘𝒘𝑘𝑘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷

5. ∀𝑘𝑘: 𝒘𝒘𝑘𝑘 ⟵ 𝒘𝒘𝑘𝑘 − 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘𝑘𝑘
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Exercise: compute the gradient
• Prove (we omit the instance index 𝑛𝑛 for simplicity):

𝜕𝜕𝑙𝑙
𝜕𝜕𝒘𝒘𝑖𝑖

=
𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

𝜕𝜕𝑎𝑎𝑖𝑖
𝜕𝜕𝒘𝒘𝑖𝑖

= �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝒙𝒙

by computing the gradients 𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

and 𝜕𝜕𝑎𝑎𝑖𝑖
𝜕𝜕𝒘𝒘𝑖𝑖

• Here:

𝑙𝑙 = −�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘 log �𝑦𝑦𝑘𝑘 ,

�𝑦𝑦𝑖𝑖 = 𝜎𝜎 𝑎𝑎𝑖𝑖 =
exp(𝑎𝑎𝑖𝑖)

∑𝑘𝑘=1𝐾𝐾 exp(𝑎𝑎𝑘𝑘)
,

𝑎𝑎𝑖𝑖 = 𝒘𝒘𝑖𝑖 ⋅ 𝒙𝒙
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Answer: compute the gradients
• Because it is easy to find 𝜕𝜕𝑎𝑎𝑖𝑖

𝜕𝜕𝒘𝒘𝑖𝑖
= 𝒙𝒙, we concentrate on 𝜕𝜕𝑙𝑙

𝜕𝜕𝑎𝑎𝑖𝑖
,

𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

= −�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘
𝜕𝜕 log �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

= −�
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
𝜕𝜕 �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖
𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑎𝑎𝑖𝑖

−�
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
𝜕𝜕 �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

• The first term is,
−𝑦𝑦𝑖𝑖

1
�𝑦𝑦𝑖𝑖
𝜕𝜕 �𝑦𝑦𝑖𝑖
𝜕𝜕𝑎𝑎𝑖𝑖

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖

𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖

exp 𝑎𝑎𝑖𝑖
∑𝑘𝑘=1𝐾𝐾 exp 𝑎𝑎𝑘𝑘

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖

exp 𝑎𝑎𝑖𝑖 Σ − exp 𝑎𝑎𝑖𝑖 exp 𝑎𝑎𝑖𝑖
Σ2

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖

exp 𝑎𝑎𝑖𝑖
Σ

Σ − exp 𝑎𝑎𝑖𝑖
Σ

= −𝑦𝑦𝑖𝑖
1
�𝑦𝑦𝑖𝑖
�𝑦𝑦𝑖𝑖 1 − �𝑦𝑦𝑖𝑖 = −𝑦𝑦𝑖𝑖 1 − �𝑦𝑦𝑖𝑖 = −𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖 �𝑦𝑦𝑖𝑖

• The second term is,
−�

𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
𝜕𝜕 �𝑦𝑦𝑘𝑘
𝜕𝜕𝑎𝑎𝑖𝑖

= −�
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘

𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖

exp 𝑎𝑎𝑘𝑘
∑𝑘𝑘′=1
𝐾𝐾 exp 𝑎𝑎𝑘𝑘′

= −�
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘

0 − exp 𝑎𝑎𝑘𝑘 exp 𝑎𝑎𝑖𝑖
Σ2

= �
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘
1
�𝑦𝑦𝑘𝑘
�𝑦𝑦𝑘𝑘 �𝑦𝑦𝑖𝑖 = �

𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘 �𝑦𝑦𝑖𝑖

• Therefore,
𝜕𝜕𝑙𝑙
𝜕𝜕𝑎𝑎𝑖𝑖

= −𝑦𝑦𝑖𝑖 + 𝑦𝑦𝑖𝑖 �𝑦𝑦𝑖𝑖 + �
𝑘𝑘≠𝑖𝑖

𝑦𝑦𝑘𝑘 �𝑦𝑦𝑖𝑖 = −𝑦𝑦𝑖𝑖 + �𝑦𝑦𝑖𝑖 �
𝑘𝑘=1

𝐾𝐾

𝑦𝑦𝑘𝑘 = −𝑦𝑦𝑖𝑖 + �𝑦𝑦𝑖𝑖
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Σ = �
𝑘𝑘=1

𝐾𝐾

exp 𝑎𝑎𝑘𝑘When 𝑓𝑓 𝑥𝑥 = 𝑔𝑔(𝑥𝑥)
ℎ(𝑥𝑥)

, 𝑓𝑓𝑓 𝑥𝑥 = 𝑔𝑔′ 𝑥𝑥 ℎ 𝑥𝑥 −𝑔𝑔 𝑥𝑥 ℎ′ 𝑥𝑥
ℎ 𝑥𝑥 2



SGD for training SLP
1. For every 𝑘𝑘, initialize 𝒘𝒘𝑘𝑘 with random values
2. for 𝑡𝑡 ⟵ 1 to 𝑇𝑇:
3. 𝜂𝜂𝑡𝑡 ⟵ 1/𝑡𝑡
4. (𝒙𝒙𝑛𝑛,𝑦𝑦𝑛𝑛) ⟵ a random sample from 𝐷𝐷
5. �𝑦𝑦𝑛𝑛 ⟵ 𝜎𝜎(𝒘𝒘 ⋅ 𝒙𝒙𝑛𝑛)

6. ∀𝑘𝑘: 𝒘𝒘𝑘𝑘 ⟵ 𝒘𝒘𝑘𝑘 − 𝜂𝜂𝑡𝑡
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝒘𝒘𝑘𝑘

= 𝒘𝒘𝑘𝑘 + 𝜂𝜂𝑡𝑡 𝑦𝑦𝑛𝑛𝑘𝑘 − �𝑦𝑦𝑛𝑛𝑘𝑘 𝒙𝒙𝑛𝑛
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• The algorithm is the same as that for binary classification
• For each category 𝑘𝑘, it updates a weight 𝒘𝒘𝑘𝑘 by the 

amount of the error (𝑦𝑦𝑛𝑛𝑘𝑘 − �𝑦𝑦𝑛𝑛𝑘𝑘) between the true 
probability 𝑦𝑦𝑛𝑛𝑘𝑘 and the estimated probability �𝑦𝑦𝑛𝑛𝑘𝑘



Intuitive example of SGD updates (𝜂𝜂𝑡𝑡 = 1)
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𝒙𝒙 ⋅ 𝒘𝒘𝟎𝟎 = −1.24

𝒙𝒙 ⋅ 𝒘𝒘𝟏𝟏 = −4.30

𝒙𝒙 ⋅ 𝒘𝒘𝟐𝟐 = −0.68

𝒙𝒙 ⋅ 𝒘𝒘𝟑𝟑 = +3.62

𝒙𝒙 ⋅ 𝒘𝒘𝟒𝟒 = −5.61

𝒙𝒙 ⋅ 𝒘𝒘𝟓𝟓 = −1.94

𝒙𝒙 ⋅ 𝒘𝒘𝟔𝟔 = −5.56

𝒙𝒙 ⋅ 𝒘𝒘𝟕𝟕 = −6.86

𝒙𝒙 ⋅ 𝒘𝒘𝟖𝟖 = −0.08

𝒙𝒙 ⋅ 𝒘𝒘𝟗𝟗 = −3.69

0

1

2

3

4

5

6

7

8

9

(0.74%)

(0.03%)

(1.29%)

(95.1%)

(0.01%)

(0.37%)

(0.01%)

(0.00%)

(2.35%)

(0.06%)

−= 0.0074𝒙𝒙

−= 0.0003𝒙𝒙

−= 0.0129𝒙𝒙

+= 0.0490𝒙𝒙

−= 0.0001𝒙𝒙

−= 0.0037𝒙𝒙

−= 0.0001𝒙𝒙

−= 0.0000𝒙𝒙

−= 0.0235𝒙𝒙

−= 0.0006𝒙𝒙



Computing the loss with mini-batch
• Single-batch

• Mini-batch (parallelizable in GPU)
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𝒙𝒙 𝑊𝑊 �𝒚𝒚×𝜎𝜎( ) =

𝑋𝑋 𝑊𝑊 �𝑌𝑌×𝜎𝜎( ) =

1

𝑚𝑚

𝑑𝑑

𝑑𝑑

𝐾𝐾

𝐾𝐾

𝑑𝑑

𝑑𝑑

𝐾𝐾

𝐾𝐾
1

𝑚𝑚

𝒚𝒚
𝐾𝐾

1

𝑌𝑌

𝐾𝐾

𝑚𝑚

𝑙𝑙 = −𝒚𝒚 ⋅ log �𝒚𝒚

𝑙𝑙 = −
1
𝑚𝑚�

𝑛𝑛=1

𝑚𝑚

𝒚𝒚𝑛𝑛 ⋅ log �𝒚𝒚𝑛𝑛



Mini-batch training
• Most DL frameworks implement mini-batch 
training by increasing the order of tensors:
• For example, 𝑑𝑑 → (m × 𝑑𝑑)

• Increasing the batch size (𝑚𝑚) may:
• Speed up time required for an epoch with parallelization
• Decrease the number of parameter updates (1/𝑚𝑚)

• This paper (Goyal+ 2017) recommends:
• When the minibatch size is multiplied by 𝑘𝑘, multiply the 

learning rate by 𝑘𝑘

Feedforward Neural Network (II) 31



Summary and notes
• 𝐾𝐾-class classification is realized by changing the 
dimension of an output layer to 𝐾𝐾

• Softmax yields a probability distribution �𝒚𝒚 ∈ ℝ𝐾𝐾

• The loss function compares a model output �𝒚𝒚
with an one-hot vector of a true category 𝒚𝒚

• Again, automatic differentiation is also useful for 
training multi-class NNs

• A single-layer NN with softmax activation 
function is also known as multi-class logistic 
regression and maximum entropy modeling
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Generic form of
Feedforward Neural Networks
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Designing feedforward neural networks
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Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ2

𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ2×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ2

𝑥𝑥1 → ℎ1
(0)

𝑥𝑥2 → ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) ← 𝑦𝑦1

𝑎𝑎1
(3)

• The number of layers
• The numbers of dimensions of hidden layers
• An activation function for each layer
• A loss function

Σ 𝑔𝑔(3) ℎ2
(3) ← 𝑦𝑦2

𝑎𝑎1
(3)



Cross entropy loss
• For binary classification
𝑙𝑙(𝑎𝑎, 𝑦𝑦) = −𝑦𝑦 log𝜎𝜎(𝑎𝑎) − (1 − 𝑦𝑦) log 1 − 𝜎𝜎 𝑎𝑎

• For multi-class classification
𝑙𝑙 𝒂𝒂,𝑦𝑦 = −𝑎𝑎𝑦𝑦 + log�

𝑘𝑘

exp(𝑎𝑎𝑘𝑘)

• Cross entropy
𝐻𝐻 𝑝𝑝, 𝑞𝑞 = −�

𝑘𝑘

𝑝𝑝 𝑘𝑘 log 𝑞𝑞 𝑘𝑘
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True probability distribution
(1 for true category; 0 otherwise)

Predicted probability distribution



Mean Squared Error (MSE) loss
• Used for regression

𝑙𝑙 𝒂𝒂,𝒚𝒚 =
1
2

𝒚𝒚 − 𝒂𝒂 2
2
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Training multi-layer neural networks
and back propagation
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Generic notation for multi-layer NNs
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Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ
𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ1×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ

𝑥𝑥1 = ℎ1
(0)

𝑥𝑥2 = ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) = �𝒚𝒚

𝑎𝑎1
(3)

• The 𝑙𝑙–th layer (𝑙𝑙 ∈ 1, … , 𝐿𝐿 ) consists of:
• Input: 𝒉𝒉(𝑙𝑙−1) ∈ ℝ𝑑𝑑𝑙𝑙−1 (𝒉𝒉(0) = 𝒙𝒙)
• Output: 𝒉𝒉(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙 (𝒉𝒉(𝐿𝐿) = �𝒚𝒚)
• Weight: 𝑊𝑊(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙×𝑑𝑑𝑙𝑙−1

• Activation function: 𝑔𝑔(𝑙𝑙)

• Activation: 𝒂𝒂(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙

𝑊𝑊(𝑙𝑙) = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙

Please accept the notational conflict between 
an instance-wise loss 𝑙𝑙𝑛𝑛 and a layer number 𝑙𝑙𝒉𝒉(𝑙𝑙) = 𝑔𝑔(𝑙𝑙)(𝑊𝑊(𝑙𝑙)𝒉𝒉(𝑙𝑙−1))

𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙 : weight from the 𝑗𝑗-th neuron 

to the 𝑖𝑖-th neuron of the 𝑙𝑙-th layer



How to train weights in MLPs
• We have no explicit supervision signals for the internal 

(hidden) inputs/outputs 𝒉𝒉(2), … ,𝒉𝒉(𝐿𝐿−1)

• Having said that, SGD only needs the value of gradient 
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) in MLPs

• Can we compute the value of 𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙)?

• Yes! Backpropagation can do that!!
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Backpropagation
• Commonly used in deep neural networks

• Formulas for backpropagation look complicated

• However:
• We can understand backpropagation easily if we know 

the concept of computation graph
• Most deep learning frameworks implement 

backpropagation by using automatic differentiation

• Let’s see computation graph and automatic 
differentiation first

Feedforward Neural Network (I) 52



Feedforward Neural Network (I) 56



Rules for reverse-mode AD
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+

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦

𝛿𝛿

𝛿𝛿

𝛿𝛿

×

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥𝑦𝑦

𝛿𝛿

𝑦𝑦 ⋅ 𝛿𝛿

𝑥𝑥 ⋅ 𝛿𝛿

𝑓𝑓(𝑥𝑥)
𝑧𝑧 = 𝑓𝑓(𝑥𝑥)

𝛿𝛿𝜕𝜕𝑓𝑓 𝑥𝑥
𝜕𝜕𝑥𝑥

⋅ 𝛿𝛿

𝑥𝑥

𝑥𝑥

𝛿𝛿1 + 𝛿𝛿2

𝛿𝛿1

𝛿𝛿2

𝑥𝑥

𝑥𝑥

Add

Multiply

Function application

Branch



Computation graph: 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/
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𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝑧𝑧)

The value of a variable (above an arrow)

Forward pass

http://cs231n.github.io/optimization-2/


Automatic Differentiation (AD): 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/
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𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝑧𝑧)

The value of a variable (above an arrow)
The gradient of the output 𝑓𝑓 with respect to the variable (below an arrow)

1

3

−4

−4

−4

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

× 1 = 𝛼𝛼 = 3

𝜕𝜕𝑓𝑓
𝜕𝜕𝛼𝛼

× 1 = 𝑧𝑧 = −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑥𝑥

× −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑦𝑦

× −4

Compare with:
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑥𝑥 + 𝑦𝑦 = 3

Backward pass
(Reverse mode AD)

http://cs231n.github.io/optimization-2/


Automatic differentiation (Baydin+ 2018)
• AD computes derivations by using the chain rule

• Function values computed in the forward pass
• Derivations computed with respect to:

• Every variable (in reverse-mode accumulation)
• A specific variable (in forward-mode accumulation)

• Do not confuse with these:
• Numerical differentiation: for example, 𝜕𝜕𝑓𝑓(𝑥𝑥)

𝜕𝜕𝑥𝑥
= 𝑓𝑓 𝑥𝑥+𝛿𝛿 −𝑓𝑓(𝑥𝑥)

𝛿𝛿

• Symbolic differentiation: e.g., Mathematica, sympy
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Exercise: AD on computation graph
• Write a computation graph for 𝑙𝑙𝒙𝒙 𝑤𝑤 ,

𝑙𝑙𝒙𝒙 𝑤𝑤 = − log𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 = − log
1

1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙

• Consider 𝒙𝒙 = 1,1,1 ⊺ and 𝒘𝒘 = 1,1,−1.5 ⊺

• Compute the value of 𝑙𝑙𝒙𝒙 𝒘𝒘

• Compute gradients 𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘
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Computing  𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘

using AD
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𝑤𝑤1

𝑥𝑥1

×

+

+ × −1 exp +1 1/𝜋𝜋

𝛽𝛽

𝛾𝛾

𝜁𝜁

𝜅𝜅

𝜆𝜆

𝜇𝜇 𝜈𝜈 𝜉𝜉 𝜋𝜋 𝜛𝜛

−1.5

0.62251.60650.6065−0.50.5

-1.5

log

𝑙𝑙
𝜌𝜌

𝛼𝛼

𝑤𝑤2

𝑥𝑥2

×
𝜀𝜀

𝛿𝛿

𝑤𝑤3

𝑥𝑥3

×
𝜗𝜗

𝜃𝜃

1

1

1

1

1

1

1

2

𝛾𝛾 = 𝛼𝛼𝛽𝛽

𝜁𝜁 = 𝛿𝛿𝜀𝜀

𝜅𝜅 = 𝜃𝜃𝜗𝜗

𝜆𝜆 = 𝛾𝛾 + 𝜁𝜁

𝜇𝜇 = 𝜆𝜆 + 𝜅𝜅

⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛼𝛼 = 𝛽𝛽 ⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛽𝛽 = 𝛼𝛼
⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝛿𝛿 = 𝜀𝜀 ⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝜀𝜀 = 𝛿𝛿
⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜃𝜃 = 𝜗𝜗 ⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜗𝜗 = 𝜃𝜃
⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝛾𝛾 = 1 ⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝜁𝜁 = 1
⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜆𝜆 = 1 ⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜅𝜅 = 1

𝑣𝑣 = −𝜇𝜇 ⁄𝜕𝜕𝑣𝑣 𝜕𝜕 𝜇𝜇 = −1

𝜉𝜉 = 𝑒𝑒𝜈𝜈 ⁄𝜕𝜕𝜉𝜉 𝜕𝜕𝜈𝜈 = 𝑒𝑒𝜈𝜈

𝜋𝜋 = 𝜉𝜉 + 1 ⁄𝜕𝜕𝜋𝜋 𝜕𝜕𝜉𝜉 = 1
𝜛𝜛 = 1/𝜋𝜋 ⁄𝜕𝜕𝜛𝜛 𝜕𝜕𝜋𝜋 = −(1/𝜋𝜋)2

𝜌𝜌 = log𝜛𝜛 ⁄𝜕𝜕𝜌𝜌 𝜕𝜕𝜛𝜛 = 1/𝜛𝜛

−0.4740

𝑙𝑙 = −𝜌𝜌 ⁄𝜕𝜕𝑙𝑙 𝜕𝜕𝜌𝜌 = −1

−1−1.60650.62240.62240.3775−0.3775

𝜕𝜕𝑙𝑙
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

𝜕𝜕𝜋𝜋
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝜈𝜈

𝜕𝜕𝜈𝜈
𝜕𝜕𝜇𝜇

𝜕𝜕𝜇𝜇
𝜕𝜕𝜅𝜅

𝜕𝜕𝜇𝜇
𝜕𝜕𝜆𝜆

𝜕𝜕𝜆𝜆
𝜕𝜕𝜁𝜁

𝜕𝜕𝜆𝜆
𝜕𝜕𝛾𝛾

𝜕𝜕𝛾𝛾
𝜕𝜕𝛼𝛼

𝜕𝜕𝛾𝛾
𝜕𝜕𝛽𝛽

𝜕𝜕𝜁𝜁
𝜕𝜕𝛿𝛿

𝜕𝜕𝜁𝜁
𝜕𝜕𝜀𝜀

𝜕𝜕𝜅𝜅
𝜕𝜕𝜃𝜃

𝜕𝜕𝜅𝜅
𝜕𝜕𝜗𝜗

−0.3775

0.5663

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

0.4740

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

× −1

= − 1
𝜛𝜛

= − 1
0.6225

= −1.6065

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

× −1.6065

= − 1
1.6065

2
× −1.6065

= 0.6224

𝑤𝑤1 ⟵ 𝑤𝑤1 + 𝜂𝜂
𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝑤𝑤1

= 𝑤𝑤1 + 0.3775𝜂𝜂

× −1



No need to derive backpropagation
• Manual derivation of gradients is tedious and error-prone

• Debugging a mistake in gradients is extremely difficult

• AD is employed in most deep learning frameworks
• We only need implement an algorithm for a forward pass, i.e., how 

to compute an output from an input
• We can concentrate on designing a structure of neural network
• This boosted the speed of research and development
• The idea of AD is not new (since 1959)

• Deriving a formula for backpropagation is legacy
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Summary and notes
• We design:

• A neural network model 𝑓𝑓(𝒙𝒙;𝜃𝜃) (with parameters 𝜃𝜃)
• A loss function: 𝐸𝐸𝐷𝐷 𝜃𝜃 = ∑𝑛𝑛=1𝑁𝑁 ℒ 𝑓𝑓 𝒙𝒙𝑛𝑛; 𝜃𝜃 ,𝑦𝑦𝑛𝑛

• ℒ is an instance-wise loss function
• 𝐷𝐷 presents a set of training data 𝐷𝐷 = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁

• We find a minimizer 𝜃𝜃∗ for 𝐸𝐸𝐷𝐷 𝜃𝜃 by using SGD
• An update formula for every parameter 𝑤𝑤 ∈ 𝜃𝜃 is derived in 

a generic manner based on automatic differentiation

• Step function is inappropriate for backpropagation
• Gradients will not flow because 𝑔𝑔′ 𝑎𝑎 = 0 at 𝑎𝑎 ≠ 0
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Activation functions
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Step
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• Pros
• Yields a binary output

• Cons (never use this)
• Zero gradients

• SGD cannot update parameters because 𝜕𝜕𝑙𝑙
𝜕𝜕𝑤𝑤

= 0

Step function: ℝ → {0,1}

𝑔𝑔(𝑥𝑥) = �1 (if 𝑥𝑥 > 0)
0 (otherwise)

𝑔𝑔
𝑥𝑥 𝑔𝑔(𝑥𝑥)

𝛿𝛿0



Sigmoid
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• Pros
• Yields an output within (0,1)

• Cons
• Not zero-centered
• Zero (vanishing) gradients when |𝑥𝑥| is large

Sigmoid: ℝ → (0,1)

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥

𝑔𝑔
𝑥𝑥 𝜎𝜎(𝑥𝑥)

𝛿𝛿𝜎𝜎𝑓(𝑥𝑥)



Hyperbolic tangent (tanh)

• Pros
• Yields an output within (−1,1)
• Zero-centered

• Cons
• Zero (vanishing) gradients when |𝑥𝑥| is large
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tanh: ℝ → (−1,1)

tanh 𝑥𝑥 =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
= 2𝜎𝜎 2𝑥𝑥 − 1



Rectified Linear Unit (ReLU)
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ReLU: ℝ → ℝ≥0
ReLU 𝑥𝑥 = max(0, 𝑥𝑥)

• Pros
• Gradients do not vanish when 𝑥𝑥 > 0
• Light-weight (no 𝑒𝑒𝑥𝑥) computation
• Faster convergence (e.g., 6x faster on CIFAR-10)

• Cons
• Not zero centered
• Dead neurons when 𝑥𝑥 ≤ 0



Leaky ReLU
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Leaky ReLU: ℝ → ℝ
LeakyReLU𝛼𝛼 𝑥𝑥 = max(𝛼𝛼𝑥𝑥, 𝑥𝑥)

• Pros
• Gradients do not vanish
• Light-weight (no 𝑒𝑒𝑥𝑥) computation

• Cons
• Not zero centered
• Not so much improvement over ReLU in practice



Typical definition of a DNN
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  What made Deep Neural Networks 
possible and efficient?

Factors from the natural evolution of computation
- Better computers and software allow bigger networks with higher 
capacity to solve more difficult problems
- With bigger datasets available we must use stochastic methods like 
SGD

Algorithmic factors
- Cross-entropy is a better loss function than MSE for sigmoid, 
softmax
- ReLU in hidden layers is a better activation function than sigmoid 
and tanh for deeper networks
- Automatic differentiation is now a feature of all DL frameworks
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  What is the difference between a 
neural network and a deep neural 
network, and why do the deep 
ones work better?

Short answer: DNN simply seem to perform better! Read 
the first answer in the following link:
https://stats.stackexchange.com/questions/182734/what-is-the-differe 
nce-between-a-neural-network-and-a-deep-neural-network-and-w

https://stats.stackexchange.com/questions/182734/what-is-the-differe
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Implementation: Comparison of MLP 
and DFFN with different activation 
functions (PyTorch, MNIST dataset)

- Model A: 1 Hidden Layer Feedforward Neural Network (Sigmoid Activation)
- Model B: 1 Hidden Layer Feedforward Neural Network (Tanh Activation)
- Model C: 1 Hidden Layer Feedforward Neural Network (ReLU Activation)
- Model D: 2 Hidden Layer Feedforward Neural Network (ReLU Activation)
- Model E: 3 Hidden Layer Feedforward Neural Network (ReLU Activation)

notebook: pytorch_feedforward_neuralnetwork.ipynb in mycourses folder
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/

https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedf
https://www.deeplearningwizard.com/deep_learning/practical_pytorch/pytorch_feedforward_neuralnetwork/
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