
>>> Distribution Learning

Name: Alkis Kalavasis
Date: May 28, 2022

[~] [1]

>>> Contents

1. Distribution Learning
Learning Discrete distributions
Learning Multivariate Gaussians
Learning Ranking Distributions
Learning Coarse Gaussians
Learning Restricted Boltzmann Machines

[~] [2]

>>> Problem Formulation: Distribution Learning

Density estimation or distribution learning is the
following task: given data generated from an unknown
target probability distribution f⋆ from a known class
F, design/compute f̂ that is close to f⋆.

Example: F = Gaussian in d dimensions, f⋆ = N (0, I).

* Evaluation: Sample Complexity and Computational
Complexity

* Data generated i.i.d. from f⋆

* Our measure of closeness is the Total Variation distance

[~] [3]

>>> Problem Formulation: Distribution Learning

Density estimation or distribution learning is the
following task: given data generated from an unknown
target probability distribution f⋆ from a known class
F, design/compute f̂ that is close to f⋆.

Example: F = Gaussian in d dimensions, f⋆ = N (0, I).

* Evaluation: Sample Complexity and Computational
Complexity

* Data generated i.i.d. from f⋆

* Our measure of closeness is the Total Variation distance

[~] [3]

>>> Problem Formulation: Distribution Learning

Density estimation or distribution learning is the
following task: given data generated from an unknown
target probability distribution f⋆ from a known class
F, design/compute f̂ that is close to f⋆.

Example: F = Gaussian in d dimensions, f⋆ = N (0, I).

* Evaluation: Sample Complexity and Computational
Complexity

* Data generated i.i.d. from f⋆

* Our measure of closeness is the Total Variation distance

[~] [3]

>>> TV Distance

∥f∥1 =
∑
x∈X

|f(x)| or
∫
x∈X

|f(x)|dx

Total Variation distance:

dTV (P,Q) =
1

2
∥P −Q∥1

Why 1/2?

dTV (P,Q) = max
S∈A

|P (S)−Q(S)|

[1. Distribution Learning] [4]

>>> TV Distance

∥f∥1 =
∑
x∈X

|f(x)| or
∫
x∈X

|f(x)|dx

Total Variation distance:

dTV (P,Q) =
1

2
∥P −Q∥1

Why 1/2?

dTV (P,Q) = max
S∈A

|P (S)−Q(S)|

[1. Distribution Learning] [4]

>>> TV Distance

∥f∥1 =
∑
x∈X

|f(x)| or
∫
x∈X

|f(x)|dx

Total Variation distance:

dTV (P,Q) =
1

2
∥P −Q∥1

Why 1/2?

dTV (P,Q) = max
S∈A

|P (S)−Q(S)|

[1. Distribution Learning] [4]

>>> Learning Distributions

If f̂ is a density estimate from m samples, we define the
risk of the estimator with respect to the class F as

Rm(f̂ ,F) = sup
f∈F

E[dTV (f̂ , f)]

The analogue of the optimal sample complexity is the minimax
risk of the class F

Rm(F) = inf
f̂

sup
f∈F

E[dTV (f̂ , f)]

[1. Distribution Learning] [5]

>>> Learning Distributions

If f̂ is a density estimate from m samples, we define the
risk of the estimator with respect to the class F as

Rm(f̂ ,F) = sup
f∈F

E[dTV (f̂ , f)]

The analogue of the optimal sample complexity is the minimax
risk of the class F

Rm(F) = inf
f̂

sup
f∈F

E[dTV (f̂ , f)]

[1. Distribution Learning] [5]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.

Fact: Θ(n+log(1/δ)
ϵ2

) (or Rm(F) =
√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m).

The upper bound:
* Compute the empirical distribution p̂ given m samples

x1, ..., xm ∼ p.
* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.

* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =

∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=

1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)

* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)

* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Learning Discrete Distributions over X = [n]

F =

p = (p1, p2, ..., pn) : pi > 0,
∑
i∈[n]

pi = 1

 .

Problem: Given access to i.i.d. samples from the unknown
p ∈ F, output a hypothesis q s.t. dTV (p, q) < ϵ w.p. 1− δ.
Fact: Θ(n+log(1/δ)

ϵ2
) (or Rm(F) =

√
n/m). The upper bound:

* Compute the empirical distribution p̂ given m samples
x1, ..., xm ∼ p.

* dTV (p̂, p) > ϵ ⇐⇒ ∃S ⊂ [n] s.t. p̂(S)− p(S) > ϵ.
* Step 1: Fix S ⊂ [n]

p̂(S) =
∑
j∈S

p̂(j) =
∑
j∈S

(
1

m

m∑
i=1

1{xi = j}
)

=
1

m

m∑
i=1

Xi

where Xi ∼ Be(p(S)) (i.i.d.)
* Step 2: Hoeffding: Pr[p̂(S)− p(S) > ϵ] ≤ exp(−2ϵ2m)
* Step 3: U.B.: Pr[∃S ⊂ [n] : p̂(S)− p(S) > ϵ] ≤ 2n exp(−2ϵ2m) ≤ δ.

[1. Distribution Learning] [6]

>>> Continuous Case

For continuous distributions the learning problem is not
solvable with no assumptions.
Intuition : n → ∞
Focus on structured distribution families, e.g., parametric
families.

[1. Distribution Learning] [7]

>>> Continuous Case

For continuous distributions the learning problem is not
solvable with no assumptions.

Intuition : n → ∞
Focus on structured distribution families, e.g., parametric
families.

[1. Distribution Learning] [7]

>>> Continuous Case

For continuous distributions the learning problem is not
solvable with no assumptions.
Intuition : n → ∞

Focus on structured distribution families, e.g., parametric
families.

[1. Distribution Learning] [7]

>>> Continuous Case

For continuous distributions the learning problem is not
solvable with no assumptions.
Intuition : n → ∞
Focus on structured distribution families, e.g., parametric
families.

[1. Distribution Learning] [7]

>>> Univariate Gaussian: MLE

x ∼ N (µ, σ2)

−10 −5 0 5 10
0

0.1

0.2

0.3

0.4

[1. Distribution Learning] [8]

>>> Univariate Case

How many parameters? Can we accurately estimate them?

N
samples from N (µ, σ2)

Empirical mean

µ̂ =
1

N

N∑
i=1

xi → µ

Empirical variance

1

N

N∑
i=1

(xi − µ̂)2 → σ2

[1. Distribution Learning] [9]

>>> Univariate Case

How many parameters? Can we accurately estimate them? N
samples from N (µ, σ2)

Empirical mean

µ̂ =
1

N

N∑
i=1

xi → µ

Empirical variance

1

N

N∑
i=1

(xi − µ̂)2 → σ2

[1. Distribution Learning] [9]

>>> Maximum Log-Likelihood

x1, ..., xN ∼ N (µ, σ2)⊗N

L(x1, ..., xN |µ, σ2) =
∏

i∈[N]N (xi|µ, σ2) =
∏

i∈[N]
1√
2πσ2

exp(− (xi−µ)2

2σ2)

ln(L(x1, ..., xN |µ, σ2)) = − N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2

Optimize the negative log-likelihood over the space of
parameters (µ, σ).

[1. Distribution Learning] [10]

>>> Maximum Log-Likelihood

x1, ..., xN ∼ N (µ, σ2)⊗N

L(x1, ..., xN |µ, σ2) =
∏

i∈[N]N (xi|µ, σ2) =

∏
i∈[N]

1√
2πσ2

exp(− (xi−µ)2

2σ2)

ln(L(x1, ..., xN |µ, σ2)) = − N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2

Optimize the negative log-likelihood over the space of
parameters (µ, σ).

[1. Distribution Learning] [10]

>>> Maximum Log-Likelihood

x1, ..., xN ∼ N (µ, σ2)⊗N

L(x1, ..., xN |µ, σ2) =
∏

i∈[N]N (xi|µ, σ2) =
∏

i∈[N]
1√
2πσ2

exp(− (xi−µ)2

2σ2)

ln(L(x1, ..., xN |µ, σ2)) = − N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2

Optimize the negative log-likelihood over the space of
parameters (µ, σ).

[1. Distribution Learning] [10]

>>> Maximum Log-Likelihood

x1, ..., xN ∼ N (µ, σ2)⊗N

L(x1, ..., xN |µ, σ2) =
∏

i∈[N]N (xi|µ, σ2) =
∏

i∈[N]
1√
2πσ2

exp(− (xi−µ)2

2σ2)

ln(L(x1, ..., xN |µ, σ2)) =

− N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2

Optimize the negative log-likelihood over the space of
parameters (µ, σ).

[1. Distribution Learning] [10]

>>> Maximum Log-Likelihood

x1, ..., xN ∼ N (µ, σ2)⊗N

L(x1, ..., xN |µ, σ2) =
∏

i∈[N]N (xi|µ, σ2) =
∏

i∈[N]
1√
2πσ2

exp(− (xi−µ)2

2σ2)

ln(L(x1, ..., xN |µ, σ2)) = − N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2

Optimize the negative log-likelihood over the space of
parameters (µ, σ).

[1. Distribution Learning] [10]

>>> Maximum Log-Likelihood

x1, ..., xN ∼ N (µ, σ2)⊗N

L(x1, ..., xN |µ, σ2) =
∏

i∈[N]N (xi|µ, σ2) =
∏

i∈[N]
1√
2πσ2

exp(− (xi−µ)2

2σ2)

ln(L(x1, ..., xN |µ, σ2)) = − N

2
ln(2π)− N

2
ln(σ2)− 1

2σ2

N∑
i=1

(xi − µ)2

Optimize the negative log-likelihood over the space of
parameters (µ, σ).

[1. Distribution Learning] [10]

>>> KL divergence and MLE

θ∗ true parameters, θ guess.

KL(Dθ∗ ,Dθ) = Ex∼Dθ∗

[
log

(
Dθ∗(x)

Dθ(x)

)]

KL(Dθ∗ ,Dθ) = Θ(1)− Eθ∗ [log(Dθ)]
Estimate Ex∼Dθ∗ [h(x)] with 1

N

∑
i∈[N] h(xi)

min
θ∈Θ

K̂L(Dθ∗ ,Dθ) = min
θ∈Θ

− 1

N

N∑
i=1

log(Dθ(xi)) = max
θ∈Θ

N∏
i=1

Dθ(xi)

[1. Distribution Learning] [11]

>>> KL divergence and MLE

θ∗ true parameters, θ guess.

KL(Dθ∗ ,Dθ) = Ex∼Dθ∗

[
log

(
Dθ∗(x)

Dθ(x)

)]
KL(Dθ∗ ,Dθ) = Θ(1)− Eθ∗ [log(Dθ)]

Estimate Ex∼Dθ∗ [h(x)] with 1
N

∑
i∈[N] h(xi)

min
θ∈Θ

K̂L(Dθ∗ ,Dθ) = min
θ∈Θ

− 1

N

N∑
i=1

log(Dθ(xi)) = max
θ∈Θ

N∏
i=1

Dθ(xi)

[1. Distribution Learning] [11]

>>> KL divergence and MLE

θ∗ true parameters, θ guess.

KL(Dθ∗ ,Dθ) = Ex∼Dθ∗

[
log

(
Dθ∗(x)

Dθ(x)

)]
KL(Dθ∗ ,Dθ) = Θ(1)− Eθ∗ [log(Dθ)]
Estimate Ex∼Dθ∗ [h(x)] with 1

N

∑
i∈[N] h(xi)

min
θ∈Θ

K̂L(Dθ∗ ,Dθ) = min
θ∈Θ

− 1

N

N∑
i=1

log(Dθ(xi)) = max
θ∈Θ

N∏
i=1

Dθ(xi)

[1. Distribution Learning] [11]

>>> KL divergence and MLE

θ∗ true parameters, θ guess.

KL(Dθ∗ ,Dθ) = Ex∼Dθ∗

[
log

(
Dθ∗(x)

Dθ(x)

)]
KL(Dθ∗ ,Dθ) = Θ(1)− Eθ∗ [log(Dθ)]
Estimate Ex∼Dθ∗ [h(x)] with 1

N

∑
i∈[N] h(xi)

min
θ∈Θ

K̂L(Dθ∗ ,Dθ) = min
θ∈Θ

− 1

N

N∑
i=1

log(Dθ(xi)) = max
θ∈Θ

N∏
i=1

Dθ(xi)

[1. Distribution Learning] [11]

>>> Multivariate Case
How many parameters?

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4
D(x1)

D(x2)

x1 x2

D

[1. Distribution Learning] [12]

>>> Gaussian density estimation

* d-dimensional Gaussian N (µ,Σ), µd×1,Σd×d:

N (µ,Σ)(x) =
1√

(2π)ddet(Σ)
exp(−1

2
(x− µ)⊤Σ−1(x− µ)) .

* Ellipsoid: {x : (x− v)⊤A(x− v) = 1} where A ⪰ 0

Nd using O(d2/ϵ2), Ω̃(d2/ϵ2) samples.

[1. Distribution Learning] [13]

>>> Gaussian Upper Bound via Yatracos Class

For a class F of functions from X to R, the Yatracos
class of F is

Y(F) = {{x ∈ X : f1(x) ≥ f2(x)} : f1, f2 ∈ F} .

Exercise: dTV (f1, f2) = ∥f1 − f2∥Y(F)

(1) For any class F, the sample complexity of learning
F is O(VCdim(Y(F)+log(1/δ))

ϵ2
).

(2) Let G be a vector space of real-valued functions.
Then VCdim({{x : f(x) > 0} : f ∈ G}) ≤ dim(G).

Proof: Y(Nd) = {{x : N (µ1,Σ1)(x) ≥ N (µ2,Σ2)(x)} : µi,Σi} and so
is contained in the space {{x⊤Ax+ b⊤x+ c > 0} : A, b, c} whose
dimension is O(d2).

[1. Distribution Learning] [14]

>>> Gaussian Upper Bound via Yatracos Class

For a class F of functions from X to R, the Yatracos
class of F is

Y(F) = {{x ∈ X : f1(x) ≥ f2(x)} : f1, f2 ∈ F} .

Exercise: dTV (f1, f2) = ∥f1 − f2∥Y(F)

(1) For any class F, the sample complexity of learning
F is O(VCdim(Y(F)+log(1/δ))

ϵ2
).

(2) Let G be a vector space of real-valued functions.
Then VCdim({{x : f(x) > 0} : f ∈ G}) ≤ dim(G).

Proof: Y(Nd) = {{x : N (µ1,Σ1)(x) ≥ N (µ2,Σ2)(x)} : µi,Σi} and so
is contained in the space {{x⊤Ax+ b⊤x+ c > 0} : A, b, c} whose
dimension is O(d2).

[1. Distribution Learning] [14]

>>> Gaussian Upper Bound via Yatracos Class

For a class F of functions from X to R, the Yatracos
class of F is

Y(F) = {{x ∈ X : f1(x) ≥ f2(x)} : f1, f2 ∈ F} .

Exercise: dTV (f1, f2) = ∥f1 − f2∥Y(F)

(1) For any class F, the sample complexity of learning
F is O(VCdim(Y(F)+log(1/δ))

ϵ2
).

(2) Let G be a vector space of real-valued functions.
Then VCdim({{x : f(x) > 0} : f ∈ G}) ≤ dim(G).

Proof: Y(Nd) = {{x : N (µ1,Σ1)(x) ≥ N (µ2,Σ2)(x)} : µi,Σi} and so
is contained in the space {{x⊤Ax+ b⊤x+ c > 0} : A, b, c} whose
dimension is O(d2).

[1. Distribution Learning] [14]

>>> Permutations

We assume that there is a hidden central ranking π0 ∈ Sn and
we define a notion of distance between permutations:

dKT (π, σ) =
∑
i≻πj

1{j ≻σ i} = Bubblesort(π, σ)

dKT (123, 213) = 1
dKT (123, 312) = 2
dKT (π, π

−1) =
(
n
2

)
Mallows Model M(π, β)

Pr[π|π0, β] ∝ exp(−β · dKT (π, π0))

Sampling from a Mallows model, can we learn the true target
ranking π0?

[1. Distribution Learning] [15]

>>> Permutations

We assume that there is a hidden central ranking π0 ∈ Sn and
we define a notion of distance between permutations:

dKT (π, σ) =
∑
i≻πj

1{j ≻σ i} = Bubblesort(π, σ)

dKT (123, 213) = 1
dKT (123, 312) = 2
dKT (π, π

−1) =
(
n
2

)
Mallows Model M(π, β)

Pr[π|π0, β] ∝ exp(−β · dKT (π, π0))

Sampling from a Mallows model, can we learn the true target
ranking π0?

[1. Distribution Learning] [15]

>>> Permutations

We assume that there is a hidden central ranking π0 ∈ Sn and
we define a notion of distance between permutations:

dKT (π, σ) =
∑
i≻πj

1{j ≻σ i} = Bubblesort(π, σ)

dKT (123, 213) = 1
dKT (123, 312) = 2
dKT (π, π

−1) =
(
n
2

)

Mallows Model M(π, β)

Pr[π|π0, β] ∝ exp(−β · dKT (π, π0))

Sampling from a Mallows model, can we learn the true target
ranking π0?

[1. Distribution Learning] [15]

>>> Permutations

We assume that there is a hidden central ranking π0 ∈ Sn and
we define a notion of distance between permutations:

dKT (π, σ) =
∑
i≻πj

1{j ≻σ i} = Bubblesort(π, σ)

dKT (123, 213) = 1
dKT (123, 312) = 2
dKT (π, π

−1) =
(
n
2

)
Mallows Model M(π, β)

Pr[π|π0, β] ∝ exp(−β · dKT (π, π0))

Sampling from a Mallows model, can we learn the true target
ranking π0?

[1. Distribution Learning] [15]

>>> Permutations

We assume that there is a hidden central ranking π0 ∈ Sn and
we define a notion of distance between permutations:

dKT (π, σ) =
∑
i≻πj

1{j ≻σ i} = Bubblesort(π, σ)

dKT (123, 213) = 1
dKT (123, 312) = 2
dKT (π, π

−1) =
(
n
2

)
Mallows Model M(π, β)

Pr[π|π0, β] ∝ exp(−β · dKT (π, π0))

Sampling from a Mallows model, can we learn the true target
ranking π0?

[1. Distribution Learning] [15]

Learning with probability at least 1− ϵ using

Θ(log(n/ϵ))
samples.
In each sample, either i ≻ j or j ≻ i
Count for each ordered pair i, j, the votes nij and nji

If i ≻π0 j, we expect nij − nji > 0 due to the Mallows model
Hoeffding and U.B. over

(
n
2

)
pairs.

[1. Distribution Learning] [16]

Learning with probability at least 1− ϵ using Θ(log(n/ϵ))
samples.

In each sample, either i ≻ j or j ≻ i
Count for each ordered pair i, j, the votes nij and nji

If i ≻π0 j, we expect nij − nji > 0 due to the Mallows model
Hoeffding and U.B. over

(
n
2

)
pairs.

[1. Distribution Learning] [16]

Learning with probability at least 1− ϵ using Θ(log(n/ϵ))
samples.
In each sample, either i ≻ j or j ≻ i

Count for each ordered pair i, j, the votes nij and nji

If i ≻π0 j, we expect nij − nji > 0 due to the Mallows model
Hoeffding and U.B. over

(
n
2

)
pairs.

[1. Distribution Learning] [16]

Learning with probability at least 1− ϵ using Θ(log(n/ϵ))
samples.
In each sample, either i ≻ j or j ≻ i
Count for each ordered pair i, j, the votes nij and nji

If i ≻π0 j, we expect nij − nji > 0 due to the Mallows model
Hoeffding and U.B. over

(
n
2

)
pairs.

[1. Distribution Learning] [16]

Learning with probability at least 1− ϵ using Θ(log(n/ϵ))
samples.
In each sample, either i ≻ j or j ≻ i
Count for each ordered pair i, j, the votes nij and nji

If i ≻π0 j, we expect nij − nji > 0 due to the Mallows model

Hoeffding and U.B. over
(
n
2

)
pairs.

[1. Distribution Learning] [16]

Learning with probability at least 1− ϵ using Θ(log(n/ϵ))
samples.
In each sample, either i ≻ j or j ≻ i
Count for each ordered pair i, j, the votes nij and nji

If i ≻π0 j, we expect nij − nji > 0 due to the Mallows model
Hoeffding and U.B. over

(
n
2

)
pairs.

[1. Distribution Learning] [16]

>>> Learning Coarse Gaussians

Consider a mixture of partitions π over Rd and an unknown
target mean µ⋆.
1. Draw a partition S ∼ π

2. Draw x ∼ N (µ⋆, I)

3. Output the unique set S ∈ S that contains x (with
distribution Nπ)

Can we learn the true mean from i.i.d. samples from Nπ?

[1. Distribution Learning] [17]

>>> Efficient algorithm for Coarse Gaussians

Draw S from Nπ(µ
⋆)

L(µ) = log(N (µ;S)) = log

(∫
S

1√
(2π)d

exp(−∥x− µ∥22/2)

)

∇L(µ) =
∫
S(x− µ) · exp(−∥x− µ∥22/2)dx∫

S exp(−∥x− µ∥22/2)dx
= ENS(µ)[x]− µ

∇2L(µ) = CovNS(µ)[x]− I

If S is convex then the Brascamp-Lieb Inequality implies that
the negative log-likelihood is convex!
Beyond convexity?

[1. Distribution Learning] [18]

>>> Efficient algorithm for Coarse Gaussians

Draw S from Nπ(µ
⋆)

L(µ) = log(N (µ;S)) = log

(∫
S

1√
(2π)d

exp(−∥x− µ∥22/2)

)

∇L(µ) =
∫
S(x− µ) · exp(−∥x− µ∥22/2)dx∫

S exp(−∥x− µ∥22/2)dx
= ENS(µ)[x]− µ

∇2L(µ) = CovNS(µ)[x]− I

If S is convex then the Brascamp-Lieb Inequality implies that
the negative log-likelihood is convex!
Beyond convexity?

[1. Distribution Learning] [18]

>>> Efficient algorithm for Coarse Gaussians

Draw S from Nπ(µ
⋆)

L(µ) = log(N (µ;S)) = log

(∫
S

1√
(2π)d

exp(−∥x− µ∥22/2)

)

∇L(µ) =
∫
S(x− µ) · exp(−∥x− µ∥22/2)dx∫

S exp(−∥x− µ∥22/2)dx
= ENS(µ)[x]− µ

∇2L(µ) = CovNS(µ)[x]− I

If S is convex then the Brascamp-Lieb Inequality implies that
the negative log-likelihood is convex!
Beyond convexity?

[1. Distribution Learning] [18]

>>> Efficient algorithm for Coarse Gaussians

Draw S from Nπ(µ
⋆)

L(µ) = log(N (µ;S)) = log

(∫
S

1√
(2π)d

exp(−∥x− µ∥22/2)

)

∇L(µ) =
∫
S(x− µ) · exp(−∥x− µ∥22/2)dx∫

S exp(−∥x− µ∥22/2)dx
= ENS(µ)[x]− µ

∇2L(µ) = CovNS(µ)[x]− I

If S is convex then the Brascamp-Lieb Inequality implies that
the negative log-likelihood is convex!
Beyond convexity?

[1. Distribution Learning] [18]

>>> Efficient algorithm for Coarse Gaussians

Draw S from Nπ(µ
⋆)

L(µ) = log(N (µ;S)) = log

(∫
S

1√
(2π)d

exp(−∥x− µ∥22/2)

)

∇L(µ) =
∫
S(x− µ) · exp(−∥x− µ∥22/2)dx∫

S exp(−∥x− µ∥22/2)dx
= ENS(µ)[x]− µ

∇2L(µ) = CovNS(µ)[x]− I

If S is convex then the Brascamp-Lieb Inequality implies that
the negative log-likelihood is convex!

Beyond convexity?

[1. Distribution Learning] [18]

>>> Efficient algorithm for Coarse Gaussians

Draw S from Nπ(µ
⋆)

L(µ) = log(N (µ;S)) = log

(∫
S

1√
(2π)d

exp(−∥x− µ∥22/2)

)

∇L(µ) =
∫
S(x− µ) · exp(−∥x− µ∥22/2)dx∫

S exp(−∥x− µ∥22/2)dx
= ENS(µ)[x]− µ

∇2L(µ) = CovNS(µ)[x]− I

If S is convex then the Brascamp-Lieb Inequality implies that
the negative log-likelihood is convex!
Beyond convexity?

[1. Distribution Learning] [18]

>>> Ising Model and RBMs

J symmetric matrix, h external field

Pr[X = x] =
1

Z
exp(

1

2

∑
i,j

Jijxixj +
∑
i

hixi)

Ising models with hidden variables Y

Pr[X = x, Y = y]
1

Z
exp(x⊤Jy +

∑
i∈[n]

h1ixi +
∑
j∈[m]

h2jyj)

Ferromagnetic: Jij ≥ 0, h1i , h
2
j ≥ 0

How many samples from RBM to learn the structure of the
bipartite graph?

[1. Distribution Learning] [19]

>>> Influence in Ising models

The observed variables that exert the most influence on
some variable Xi ought to be Xi’s two-hop neighbors.

Ii(S) = EX∼µ(J,h)[Xi|XS = {+1}|S|]

If J, h are ferromagnetic, then Ii(S) is a monotone
submodular function for any i.

Submodular: For S ⊆ T

Ii(S ∪ {j})− Ii(S) ≥ Ii(T ∪ {j})− Ii(T)

[1. Distribution Learning] [20]

>>> Influence in Ising models

The observed variables that exert the most influence on
some variable Xi ought to be Xi’s two-hop neighbors.

Ii(S) = EX∼µ(J,h)[Xi|XS = {+1}|S|]

If J, h are ferromagnetic, then Ii(S) is a monotone
submodular function for any i.

Submodular: For S ⊆ T

Ii(S ∪ {j})− Ii(S) ≥ Ii(T ∪ {j})− Ii(T)

[1. Distribution Learning] [20]

>>> Influence in Ising models

The observed variables that exert the most influence on
some variable Xi ought to be Xi’s two-hop neighbors.

Ii(S) = EX∼µ(J,h)[Xi|XS = {+1}|S|]

If J, h are ferromagnetic, then Ii(S) is a monotone
submodular function for any i.

Submodular: For S ⊆ T

Ii(S ∪ {j})− Ii(S) ≥ Ii(T ∪ {j})− Ii(T)

[1. Distribution Learning] [20]

>>> Influence in Ising models

The observed variables that exert the most influence on
some variable Xi ought to be Xi’s two-hop neighbors.

Ii(S) = EX∼µ(J,h)[Xi|XS = {+1}|S|]

If J, h are ferromagnetic, then Ii(S) is a monotone
submodular function for any i.

Submodular: For S ⊆ T

Ii(S ∪ {j})− Ii(S) ≥ Ii(T ∪ {j})− Ii(T)

[1. Distribution Learning] [20]

>>> The Algorithm

Greedy Neighborhood for i

1. Set S0 = ∅
2. For t = 1, ..., d2 :

2.1 Let jt+1 = argmaxIi(St ∪ {j})
2.2 St+1 = St ∪ {jt+1}

3. Find two-hop neighborhood j ∈ Sk

Number of samples: poly(d2) · log(n)

[1. Distribution Learning] [21]

>>> The Algorithm

Greedy Neighborhood for i

1. Set S0 = ∅
2. For t = 1, ..., d2 :

2.1 Let jt+1 = argmaxIi(St ∪ {j})
2.2 St+1 = St ∪ {jt+1}

3. Find two-hop neighborhood j ∈ Sk

Number of samples: poly(d2) · log(n)

[1. Distribution Learning] [21]

	Distribution Learning
	Learning Discrete distributions
	Learning Multivariate Gaussians
	Learning Ranking Distributions
	Learning Coarse Gaussians
	Learning Restricted Boltzmann Machines

