>>> Distribution Learning

Name: Alkis Kalavasis
Date: May 28, 2022

>>> Contents

1. Distribution Learning

Learning Discrete distributions
Learning Multivariate Gaussians
Learning Ranking Distributions
Learning Coarse Gaussians
Learning Restricted Boltzmann Machines
Density estimation or distribution learning is the following task: given data generated from an unknown target probability distribution f^{\star} from a known class \mathcal{F}, design/compute \widehat{f} that is close to f^{\star}.

Density estimation or distribution learning is the following task: given data generated from an unknown target probability distribution f^{\star} from a known class \mathcal{F}, design/compute \widehat{f} that is close to f^{\star}.

Example: $\mathcal{F}=$ Gaussian in d dimensions, $f^{\star}=\mathcal{N}(0, I)$.

Density estimation or distribution learning is the following task: given data generated from an unknown target probability distribution f^{\star} from a known class \mathcal{F}, design/compute \widehat{f} that is close to f^{\star}.

Example: $\mathcal{F}=$ Gaussian in d dimensions, $f^{\star}=\mathcal{N}(0, \mathrm{I})$.

* Evaluation: Sample Complexity and Computational Complexity
* Data generated i.i.d. from f^{\star}
* Our measure of closeness is the Total Variation distance

>>> TV Distance

$$
\|f\|_{1}=\sum_{x \in X}|f(x)| \text { or } \int_{x \in X}|f(x)| d x
$$

$$
\|f\|_{1}=\sum_{x \in X}|f(x)| \text { or } \int_{x \in X}|f(x)| d x
$$

Total Variation distance:

$$
d_{T V}(P, Q)=\frac{1}{2}\|P-Q\|_{1}
$$

Why $1 / 2$?

$$
\|f\|_{1}=\sum_{x \in X}|f(x)| \text { or } \int_{x \in X}|f(x)| d x
$$

Total Variation distance:

$$
d_{T V}(P, Q)=\frac{1}{2}\|P-Q\|_{1}
$$

Why $1 / 2$?

$$
d_{T V}(P, Q)=\max _{S \in \mathcal{A}}|P(S)-Q(S)|
$$

>>> Learning Distributions

If \widehat{f} is a density estimate from m samples, we define the risk of the estimator with respect to the class \mathcal{F} as

$$
\mathcal{R}_{m}(\widehat{f}, \mathcal{F})=\sup _{f \in \mathcal{F}} \mathbb{E}\left[d_{T V}(\widehat{f}, f)\right]
$$

>>> Learning Distributions

If \widehat{f} is a density estimate from m samples, we define the risk of the estimator with respect to the class \mathcal{F} as

$$
\mathcal{R}_{m}(\widehat{f}, \mathcal{F})=\sup _{f \in \mathcal{F}} \mathbb{E}\left[d_{T V}(\widehat{f}, f)\right]
$$

The analogue of the optimal sample complexity is the minimax risk of the class \mathcal{F}

$$
\mathcal{R}_{m}(\mathcal{F})=\inf _{\widehat{f}} \sup _{f \in \mathcal{F}} \mathbb{E}\left[d_{T V}(\widehat{f}, f)\right]
$$

>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\}
$$

>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\}
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon$ w.p. $1-\delta$.
>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\}
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon$ w.p. $1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$.
>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\} .
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon \mathrm{w} . \mathrm{p} .1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:
>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\}
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon$ w.p. $1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:

* Compute the empirical distribution \hat{p} given m samples $x_{1}, \ldots, x_{m} \sim p$.
>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\}
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon$ w.p. $1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:

* Compute the empirical distribution \hat{p} given m samples $x_{1}, \ldots, x_{m} \sim p$.
* $d_{T V}(\hat{p}, p)>\epsilon \Longleftrightarrow \exists S \subset[n]$ s.t. $\hat{p}(S)-p(S)>\epsilon$.
>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\} .
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon$ w.p. $1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:

* Compute the empirical distribution \hat{p} given m samples $x_{1}, \ldots, x_{m} \sim p$.
* $d_{T V}(\hat{p}, p)>\epsilon \Longleftrightarrow \exists S \subset[n]$ s.t. $\hat{p}(S)-p(S)>\epsilon$.
* Step 1: Fix $S \subset[n]$

$$
\hat{p}(S)=\sum_{j \in S} \hat{p}(j)=
$$

>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\}
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon \mathrm{w} . \mathrm{p} .1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:

* Compute the empirical distribution \hat{p} given m samples $x_{1}, \ldots, x_{m} \sim p$.
* $d_{T V}(\hat{p}, p)>\epsilon \Longleftrightarrow \exists S \subset[n]$ s.t. $\hat{p}(S)-p(S)>\epsilon$.
* Step 1: Fix $S \subset[n]$

$$
\hat{p}(S)=\sum_{j \in S} \hat{p}(j)=\sum_{j \in S}\left(\frac{1}{m} \sum_{i=1}^{m} 1\left\{x_{i}=j\right\}\right)=
$$

>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\} .
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon \mathrm{w} . \mathrm{p} .1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:

* Compute the empirical distribution \hat{p} given m samples $x_{1}, \ldots, x_{m} \sim p$.
* $d_{T V}(\hat{p}, p)>\epsilon \Longleftrightarrow \exists S \subset[n]$ s.t. $\hat{p}(S)-p(S)>\epsilon$.
* Step 1: Fix $S \subset[n]$

$$
\hat{p}(S)=\sum_{j \in S} \hat{p}(j)=\sum_{j \in S}\left(\frac{1}{m} \sum_{i=1}^{m} 1\left\{x_{i}=j\right\}\right)=\frac{1}{m} \sum_{i=1}^{m} X_{i}
$$

where $X_{i} \sim \operatorname{Be}(p(S))$ (i.i.d.)
>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\} .
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon \mathrm{w} . \mathrm{p} .1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:

* Compute the empirical distribution \hat{p} given m samples $x_{1}, \ldots, x_{m} \sim p$.
* $d_{T V}(\hat{p}, p)>\epsilon \Longleftrightarrow \exists S \subset[n]$ s.t. $\hat{p}(S)-p(S)>\epsilon$.
* Step 1: Fix $S \subset[n]$

$$
\hat{p}(S)=\sum_{j \in S} \hat{p}(j)=\sum_{j \in S}\left(\frac{1}{m} \sum_{i=1}^{m} 1\left\{x_{i}=j\right\}\right)=\frac{1}{m} \sum_{i=1}^{m} X_{i}
$$

where $X_{i} \sim \operatorname{Be}(p(S))$ (i.i.d.)

* Step 2: Hoeffding: $\operatorname{Pr}[\hat{p}(S)-p(S)>\epsilon] \leq \exp \left(-2 \epsilon^{2} m\right)$
>>> Learning Discrete Distributions over $X=[n]$

$$
\mathcal{F}=\left\{p=\left(p_{1}, p_{2}, \ldots, p_{n}\right): p_{i}>0, \sum_{i \in[n]} p_{i}=1\right\} .
$$

Problem: Given access to i.i.d. samples from the unknown $p \in \mathcal{F}$, output a hypothesis q s.t. $d_{T V}(p, q)<\epsilon \mathrm{w} . \mathrm{p} .1-\delta$. Fact: $\Theta\left(\frac{n+\log (1 / \delta)}{\epsilon^{2}}\right)$ (or $\left.R_{m}(\mathcal{F})=\sqrt{n / m}\right)$. The upper bound:

* Compute the empirical distribution \hat{p} given m samples $x_{1}, \ldots, x_{m} \sim p$.
* $d_{T V}(\hat{p}, p)>\epsilon \Longleftrightarrow \exists S \subset[n]$ s.t. $\hat{p}(S)-p(S)>\epsilon$.
* Step 1: Fix $S \subset[n]$

$$
\hat{p}(S)=\sum_{j \in S} \hat{p}(j)=\sum_{j \in S}\left(\frac{1}{m} \sum_{i=1}^{m} 1\left\{x_{i}=j\right\}\right)=\frac{1}{m} \sum_{i=1}^{m} X_{i}
$$

where $X_{i} \sim \operatorname{Be}(p(S))$ (i.i.d.)

* Step 2: Hoeffding: $\operatorname{Pr}[\hat{p}(S)-p(S)>\epsilon] \leq \exp \left(-2 \epsilon^{2} m\right)$
* Step 3: U.B.: $\operatorname{Pr}[\exists S \subset[n]: \hat{p}(S)-p(S)>\epsilon] \leq 2^{n} \exp \left(-2 \epsilon^{2} m\right) \leq \delta$.

>>> Continuous Case

>>> Continuous Case

For continuous distributions the learning problem is not solvable with no assumptions.

>>> Continuous Case

For continuous distributions the learning problem is not solvable with no assumptions.
Intuition : $n \rightarrow \infty$

>>> Continuous Case

For continuous distributions the learning problem is not solvable with no assumptions.
Intuition : $n \rightarrow \infty$
Focus on structured distribution families, e.g., parametric families.
>>> Univariate Gaussian: MLE $x \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$

>>> Univariate Case

How many parameters? Can we accurately estimate them?

How many parameters? Can we accurately estimate them? N samples from $\mathcal{N}\left(\mu, \sigma^{2}\right)$

Empirical mean

$$
\hat{\mu}=\frac{1}{N} \sum_{i=1}^{N} x_{i} \rightarrow \mu
$$

Empirical variance

$$
\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\hat{\mu}\right)^{2} \rightarrow \sigma^{2}
$$

>>> Maximum Log-Likelihood

$$
x_{1}, \ldots, x_{N} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)^{\otimes N}
$$

>>> Maximum Log-Likelihood

$$
\begin{aligned}
& x_{1}, \ldots, x_{N} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)^{\otimes N} \\
& \mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \mathcal{N}\left(x_{i} \mid \mu, \sigma^{2}\right)=
\end{aligned}
$$

>>> Maximum Log-Likelihood

$$
\begin{aligned}
& x_{1}, \ldots, x_{N} \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \otimes N \\
& \mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \mathcal{N}\left(x_{i} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

>>> Maximum Log-Likelihood

$$
\begin{aligned}
& x_{1}, \ldots, x_{N} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)^{\otimes N} \\
& \mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \mathcal{N}\left(x_{i} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

$$
\ln \left(\mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)\right)=
$$

>>> Maximum Log-Likelihood

$$
\begin{aligned}
& x_{1}, \ldots, x_{N} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)^{\otimes N} \\
& \mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \mathcal{N}\left(x_{i} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
& \quad \ln \left(\mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)\right)=-\frac{N}{2} \ln (2 \pi)-\frac{N}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

>>> Maximum Log-Likelihood

$$
\begin{aligned}
& x_{1}, \ldots, x_{N} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)^{\otimes N} \\
& \mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \mathcal{N}\left(x_{i} \mid \mu, \sigma^{2}\right)=\prod_{i \in[N]} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{\left(x_{i}-\mu\right)^{2}}{2 \sigma^{2}}\right) \\
& \quad \ln \left(\mathcal{L}\left(x_{1}, \ldots, x_{N} \mid \mu, \sigma^{2}\right)\right)=-\frac{N}{2} \ln (2 \pi)-\frac{N}{2} \ln \left(\sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}
\end{aligned}
$$

Optimize the negative log-likelihood over the space of parameters (μ, σ).
>>> KL divergence and MLE
θ^{*} true parameters, θ guess.

$$
\mathrm{KL}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\mathbb{E}_{x \sim \mathcal{D}_{\theta^{*}}}\left[\log \left(\frac{\mathcal{D}_{\theta^{*}}(x)}{\mathcal{D}_{\theta}(x)}\right)\right]
$$

>>> KL divergence and MLE

θ^{*} true parameters, θ guess.

$$
\mathrm{KL}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\mathbb{E}_{x \sim \mathcal{D}_{\theta^{*}}}\left[\log \left(\frac{\mathcal{D}_{\theta^{*}}(x)}{\mathcal{D}_{\theta}(x)}\right)\right]
$$

$\operatorname{KL}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\Theta(1)-\mathbb{E}_{\theta^{*}}\left[\log \left(\mathcal{D}_{\theta}\right)\right]$
>>> KL divergence and MLE
θ^{*} true parameters, θ guess.

$$
\mathrm{KL}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\mathbb{E}_{x \sim \mathcal{D}_{\theta^{*}}}\left[\log \left(\frac{\mathcal{D}_{\theta^{*}}(x)}{\mathcal{D}_{\theta}(x)}\right)\right]
$$

$\mathrm{KL}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\Theta(1)-\mathbb{E}_{\theta^{*}}\left[\log \left(\mathcal{D}_{\theta}\right)\right]$
Estimate $\mathbb{E}_{x \sim \mathcal{D}_{\theta^{*}}}[h(x)]$ with $\frac{1}{N} \sum_{i \in[N]} h\left(x_{i}\right)$
>>> KL divergence and MLE
θ^{*} true parameters, θ guess.

$$
\mathrm{KL}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\mathbb{E}_{x \sim \mathcal{D}_{\theta^{*}}}\left[\log \left(\frac{\mathcal{D}_{\theta^{*}}(x)}{\mathcal{D}_{\theta}(x)}\right)\right]
$$

$\operatorname{KL}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\Theta(1)-\mathbb{E}_{\theta^{*}}\left[\log \left(\mathcal{D}_{\theta}\right)\right]$
Estimate $\mathbb{E}_{x \sim \mathcal{D}_{\theta^{*}}}[h(x)]$ with $\frac{1}{N} \sum_{i \in[N]} h\left(x_{i}\right)$

$$
\min _{\theta \in \Theta} \widehat{\mathrm{KL}}\left(\mathcal{D}_{\theta^{*}}, \mathcal{D}_{\theta}\right)=\min _{\theta \in \Theta}-\frac{1}{N} \sum_{i=1}^{N} \log \left(\mathcal{D}_{\theta}\left(x_{i}\right)\right)=\max _{\theta \in \Theta} \prod_{i=1}^{N} \mathcal{D}_{\theta}\left(x_{i}\right)
$$

>>> Multivariate Case
How many parameters?

* d-dimensional Gaussian $\mathcal{N}(\mu, \Sigma), \mu_{d \times 1}, \Sigma_{d \times d}$:

$$
\mathcal{N}(\mu, \Sigma)(x)=\frac{1}{\sqrt{(2 \pi)^{d} \operatorname{det}(\Sigma)}} \exp \left(-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right) .
$$

* Ellipsoid: $\left\{x:(x-v)^{\top} A(x-v)=1\right\}$ where $A \succeq 0$

$$
\mathcal{N}_{d} \text { using } O\left(d^{2} / \epsilon^{2}\right), \tilde{\Omega}\left(d^{2} / \epsilon^{2}\right) \text { samples. }
$$

>>> Gaussian Upper Bound via Yatracos Class

For a class \mathcal{F} of functions from \mathbb{X} to \mathbb{R}, the Yatracos class of \mathcal{F} is

$$
\mathcal{Y}(\mathcal{F})=\left\{\left\{x \in \mathbb{X}: f_{1}(x) \geq f_{2}(x)\right\}: f_{1}, f_{2} \in \mathcal{F}\right\} .
$$

>>> Gaussian Upper Bound via Yatracos Class

For a class \mathcal{F} of functions from \mathbb{X} to \mathbb{R}, the Yatracos class of \mathcal{F} is

$$
\mathcal{Y}(\mathcal{F})=\left\{\left\{x \in \mathbb{X}: f_{1}(x) \geq f_{2}(x)\right\}: f_{1}, f_{2} \in \mathcal{F}\right\} .
$$

Exercise: $d_{T V}\left(f_{1}, f_{2}\right)=\left\|f_{1}-f_{2}\right\|_{\mathcal{Y}(\mathcal{F})}$

For a class \mathcal{F} of functions from \mathbb{X} to \mathbb{R}, the Yatracos class of \mathcal{F} is

$$
\mathcal{Y}(\mathcal{F})=\left\{\left\{x \in \mathbb{X}: f_{1}(x) \geq f_{2}(x)\right\}: f_{1}, f_{2} \in \mathcal{F}\right\}
$$

Exercise: $d_{T V}\left(f_{1}, f_{2}\right)=\left\|f_{1}-f_{2}\right\|_{\mathcal{Y}(\mathcal{F})}$
(1) For any class \mathcal{F}, the sample complexity of learning \mathcal{F} is $O\left(\frac{\operatorname{VCdim}(\mathcal{Y}(\mathcal{F})+\log (1 / \delta))}{\epsilon^{2}}\right)$.
(2) Let G be a vector space of real-valued functions. Then $\operatorname{VCdim}(\{\{x: f(x)>0\}: f \in G\}) \leq \operatorname{dim}(G)$.

Proof: $\mathcal{Y}\left(\mathcal{N}_{d}\right)=\left\{\left\{x: \mathcal{N}\left(\mu_{1}, \Sigma_{1}\right)(x) \geq \mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)(x)\right\}: \mu_{i}, \Sigma_{i}\right\}$ and so is contained in the space $\left\{\left\{x^{\top} A x+b^{\top} x+c>0\right\}: A, b, c\right\}$ whose dimension is $O\left(d^{2}\right)$.

>>> Permutations

We assume that there is a hidden central ranking $\pi_{0} \in \mathbb{S}_{n}$ and we define a notion of distance between permutations:

>>> Permutations

We assume that there is a hidden central ranking $\pi_{0} \in \mathbb{S}_{n}$ and we define a notion of distance between permutations:

$$
d_{K T}(\pi, \sigma)=\sum_{i \succ_{\pi} j} 1\left\{j \succ_{\sigma} i\right\}=\text { Bubblesort }(\pi, \sigma)
$$

>>> Permutations

We assume that there is a hidden central ranking $\pi_{0} \in \mathbb{S}_{n}$ and we define a notion of distance between permutations:

$$
d_{K T}(\pi, \sigma)=\sum_{i \succ_{\pi} j} 1\left\{j \succ_{\sigma} i\right\}=\text { Bubblesort }(\pi, \sigma)
$$

$$
\begin{aligned}
& d_{K T}(123,213)=1 \\
& d_{K T}(123,312)=2 \\
& d_{K T}\left(\pi, \pi^{-1}\right)=\binom{n}{2}
\end{aligned}
$$

>>> Permutations

We assume that there is a hidden central ranking $\pi_{0} \in \mathbb{S}_{n}$ and we define a notion of distance between permutations:

$$
d_{K T}(\pi, \sigma)=\sum_{i \succ_{\pi} j} 1\left\{j \succ_{\sigma} i\right\}=\text { Bubblesort }(\pi, \sigma)
$$

$$
\begin{aligned}
& d_{K T}(123,213)=1 \\
& d_{K T}(123,312)=2 \\
& d_{K T}\left(\pi, \pi^{-1}\right)=\binom{n}{2}
\end{aligned}
$$

Mallows Model $\mathbf{M}(\pi, \beta)$

$$
\operatorname{Pr}\left[\pi \mid \pi_{0}, \beta\right] \propto \exp \left(-\beta \cdot d_{K T}\left(\pi, \pi_{0}\right)\right)
$$

>>> Permutations

We assume that there is a hidden central ranking $\pi_{0} \in \mathbb{S}_{n}$ and we define a notion of distance between permutations:

$$
d_{K T}(\pi, \sigma)=\sum_{i \succ \pi j} 1\left\{j \succ_{\sigma} i\right\}=\text { Bubblesort }(\pi, \sigma)
$$

$$
\begin{aligned}
& d_{K T}(123,213)=1 \\
& d_{K T}(123,312)=2 \\
& d_{K T}\left(\pi, \pi^{-1}\right)=\binom{n}{2}
\end{aligned}
$$

Mallows Model $\mathbf{M}(\pi, \beta)$

$$
\operatorname{Pr}\left[\pi \mid \pi_{0}, \beta\right] \propto \exp \left(-\beta \cdot d_{K T}\left(\pi, \pi_{0}\right)\right)
$$

Sampling from a Mallows model, can we learn the true target ranking π_{0} ?

Learning with probability at least $1-\epsilon$ using

Learning with probability at least $1-\epsilon$ using $\Theta(\log (n / \epsilon))$ samples.

Learning with probability at least $1-\epsilon$ using $\Theta(\log (n / \epsilon))$ samples.
In each sample, either $i \succ j$ or $j \succ i$

Learning with probability at least $1-\epsilon$ using $\Theta(\log (n / \epsilon))$ samples.
In each sample, either $i \succ j$ or $j \succ i$
Count for each ordered pair i, j, the votes $n_{i j}$ and $n_{j i}$

Learning with probability at least $1-\epsilon$ using $\Theta(\log (n / \epsilon))$ samples.
In each sample, either $i \succ j$ or $j \succ i$
Count for each ordered pair i, j, the votes $n_{i j}$ and $n_{j i}$ If $i \succ_{\pi_{0}} j$, we expect $n_{i j}-n_{j i}>0$ due to the Mallows model

Learning with probability at least $1-\epsilon$ using $\Theta(\log (n / \epsilon))$ samples.
In each sample, either $i \succ j$ or $j \succ i$
Count for each ordered pair i, j, the votes $n_{i j}$ and $n_{j i}$ If $i \succ_{\pi_{0}} j$, we expect $n_{i j}-n_{j i}>0$ due to the Mallows model Hoeffding and U.B. over $\binom{n}{2}$ pairs.

Consider a mixture of partitions π over \mathbb{R}^{d} and an unknown target mean μ^{\star}.

1. Draw a partition $\mathcal{S} \sim \pi$
2. Draw $x \sim \mathcal{N}\left(\mu^{\star}, I\right)$
3. Output the unique set $S \in \mathcal{S}$ that contains x (with distribution \mathcal{N}_{π})
Can we learn the true mean from i.i.d. samples from \mathcal{N}_{π} ?
>>> Efficient algorithm for Coarse Gaussians
Draw S from $\mathcal{N}_{\pi}\left(\mu^{\star}\right)$
>>> Efficient algorithm for Coarse Gaussians
Draw S from $\mathcal{N}_{\pi}\left(\mu^{\star}\right)$

$$
\mathcal{L}(\mu)=\log (\mathcal{N}(\mu ; S))=\log \left(\int_{S} \frac{1}{\sqrt{(2 \pi)^{d}}} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right)\right)
$$

>>> Efficient algorithm for Coarse Gaussians
Draw S from $\mathcal{N}_{\pi}\left(\mu^{\star}\right)$

$$
\begin{gathered}
\mathcal{L}(\mu)=\log (\mathcal{N}(\mu ; S))=\log \left(\int_{S} \frac{1}{\sqrt{(2 \pi)^{d}}} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right)\right) \\
\nabla \mathcal{L}(\mu)=\frac{\int_{S}(x-\mu) \cdot \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}{\int_{S} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}=\mathbb{E}_{\mathcal{N}_{S}(\mu)}[x]-\mu
\end{gathered}
$$

>>> Efficient algorithm for Coarse Gaussians
Draw S from $\mathcal{N}_{\pi}\left(\mu^{\star}\right)$

$$
\begin{aligned}
& \mathcal{L}(\mu)=\log (\mathcal{N}(\mu ; S))=\log \left(\int_{S} \frac{1}{\sqrt{(2 \pi)^{d}}} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right)\right) \\
& \nabla \mathcal{L}(\mu)=\frac{\int_{S}(x-\mu) \cdot \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}{\int_{S} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}=\mathbb{E}_{\mathcal{N}_{S}(\mu)}[x]-\mu
\end{aligned}
$$

$$
\nabla^{2} \mathcal{L}(\mu)=\operatorname{Cov}_{\mathcal{N}_{S}(\mu)}[x]-I
$$

>>> Efficient algorithm for Coarse Gaussians
Draw S from $\mathcal{N}_{\pi}\left(\mu^{\star}\right)$

$$
\begin{gathered}
\mathcal{L}(\mu)=\log (\mathcal{N}(\mu ; S))=\log \left(\int_{S} \frac{1}{\sqrt{(2 \pi)^{d}}} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right)\right) \\
\nabla \mathcal{L}(\mu)=\frac{\int_{S}(x-\mu) \cdot \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}{\int_{S} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}=\mathbb{E}_{\mathcal{N}_{S}(\mu)}[x]-\mu \\
\nabla^{2} \mathcal{L}(\mu)=\operatorname{Cov}_{\mathcal{N}_{S}(\mu)}[x]-I
\end{gathered}
$$

If S is convex then the Brascamp-Lieb Inequality implies that the negative log-likelihood is convex!
>>> Efficient algorithm for Coarse Gaussians
Draw S from $\mathcal{N}_{\pi}\left(\mu^{\star}\right)$

$$
\begin{gathered}
\mathcal{L}(\mu)=\log (\mathcal{N}(\mu ; S))=\log \left(\int_{S} \frac{1}{\sqrt{(2 \pi)^{d}}} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right)\right) \\
\nabla \mathcal{L}(\mu)=\frac{\int_{S}(x-\mu) \cdot \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}{\int_{S} \exp \left(-\|x-\mu\|_{2}^{2} / 2\right) d x}=\mathbb{E}_{\mathcal{N}_{S}(\mu)}[x]-\mu \\
\nabla^{2} \mathcal{L}(\mu)=\operatorname{Cov}_{\mathcal{N}_{S}(\mu)}[x]-I
\end{gathered}
$$

If S is convex then the Brascamp-Lieb Inequality implies that the negative log-likelihood is convex!
Beyond convexity?
>>> Ising Model and RBMs
J symmetric matrix, h external field

$$
\operatorname{Pr}[X=x]=\frac{1}{Z} \exp \left(\frac{1}{2} \sum_{i, j} J_{i j} x_{i} x_{j}+\sum_{i} h_{i} x_{i}\right)
$$

Ising models with hidden variables Y

$$
\operatorname{Pr}[X=x, Y=y] \frac{1}{Z} \exp \left(x^{\top} J y+\sum_{i \in[n]} h_{i}^{1} x_{i}+\sum_{j \in[m]} h_{j}^{2} y_{j}\right)
$$

Ferromagnetic: $J_{i j} \geq 0, h_{i}^{1}, h_{j}^{2} \geq 0$
How many samples from RBM to learn the structure of the bipartite graph?

The observed variables that exert the most influence on some variable X_{i} ought to be $X_{i}{ }^{\prime}$ s two-hop neighbors.

The observed variables that exert the most influence on some variable X_{i} ought to be $X_{i}{ }^{\prime}$ s two-hop neighbors.

$$
I_{i}(S)=\mathbb{E}_{X \sim \mu(J, h)}\left[X_{i} \mid X_{S}=\{+1\}^{|S|}\right]
$$

The observed variables that exert the most influence on some variable X_{i} ought to be $X_{i}{ }^{\prime}$ s two-hop neighbors.

$$
I_{i}(S)=\mathbb{E}_{X \sim \mu(J, h)}\left[X_{i} \mid X_{S}=\{+1\}^{|S|}\right]
$$

If J, h are ferromagnetic, then $I_{i}(S)$ is a monotone submodular function for any i.

The observed variables that exert the most influence on some variable X_{i} ought to be $X_{i}{ }^{\prime}$ s two-hop neighbors.

$$
I_{i}(S)=\mathbb{E}_{X \sim \mu(J, h)}\left[X_{i} \mid X_{S}=\{+1\}^{|S|}\right]
$$

If J, h are ferromagnetic, then $I_{i}(S)$ is a monotone submodular function for any i.

Submodular: For $S \subseteq T$

$$
I_{i}(S \cup\{j\})-I_{i}(S) \geq I_{i}(T \cup\{j\})-I_{i}(T)
$$

Greedy Neighborhood for i

Greedy Neighborhood for i

1. Set $S_{0}=\emptyset$
2. For $t=1, \ldots, d_{2}$:
2.1 Let $j_{t+1}=\operatorname{argmax} I_{i}\left(S_{t} \cup\{j\}\right)$
2.2 $S_{t+1}=S_{t} \cup\left\{j_{t+1}\right\}$
3. Find two-hop neighborhood $j \in S_{k}$

Number of samples: $\operatorname{poly}\left(d_{2}\right) \cdot \log (n)$

