Algorithmic Game Theory

Auction theory in practice

Vangelis Markakis
markakis@gmail.com

Allocation rules and truthful mechanisms

- We recall first some definitions we saw in previous lectures
- Consider a mechanism with allocation rule \mathbf{x}
- Definition: An allocation rule is monotone if for every i, and every profile \mathbf{b}_{-i}, the allocation $x_{i}\left(z_{,}, \mathbf{b}_{-i}\right)$ to i is non-decreasing in z
- i.e., bidding higher can only get you more stuff
[Myerson '81]
- Theorem: For every single-parameter environment,
- An allocation rule \mathbf{x} can be turned into a truthful mechanism if and only if it is monotone
- If \mathbf{x} is monotone, then there is a unique payment rule \mathbf{p}, so that (\mathbf{x}, \mathbf{p}) is a truthful mechanism

Myerson's lemma and payment formula

- For the payment rule, we need to look for each bidder at the allocation function $x_{i}\left(z, b_{-i}\right)$
- For the single-item truthful auction:
- Fix b_{-i} and let $b^{*}=\max _{j \neq i} b_{j}$

Facts:

- For any fixed \mathbf{b}_{-i}, the allocation function is piecewise linear with 1 jump
- The Vickrey payment is precisely the value at which the jump happens
- The jump changes the allocation from 0 to 1 unit

Myerson's lemma and payment formula

For most scenarios of interest
-The allocation is piecewise linear with multiple jumps
-The jump determines how many extra units the bidder wins

- Suppose bidder i bids b_{i}
- Look at the jumps of $x_{i}\left(z, b_{-i}\right)$ in the interval [0, b_{i}]
- Suppose we have k jumps
- Jump at $z_{1}=w_{1}$
- Jump at $z_{2}=w_{2}-w_{1}$
- Jump at $z_{3}=w_{3}-w_{2}$
- ...
- Jump at $\mathrm{z}_{\mathrm{k}}=\mathrm{w}_{\mathrm{k}}-\mathrm{w}_{\mathrm{k}-1}$

Myerson's lemma and payment formula

For most scenarios of interest
-The allocation is piecewise linear with multiple jumps
-The jump determines how many extra units the bidder wins

Payment formula

- For each bidder i at a profile b, find all the jump points within [$0, b_{i}$]
- $\mathrm{p}_{\mathrm{i}}(\mathrm{b})=\Sigma_{\mathrm{j}} \mathrm{z}_{\mathrm{j}} \cdot\left[\right.$ jump at z_{j}]

$$
=\Sigma_{j} z_{j} \cdot\left[w_{j}-w_{j-1}\right]
$$

- The formula can also be generalized for monotone but not piecewise linear functions

Sponsored Search Auctions

What is sponsored search?

What is sponsored search?

How does it work?

- For a fixed search term (e.g. ipod)
- n advertisers
- k slots (typically $k \ll n$)
- An auction is run for every single search
- Each advertiser (bidder) is interested in getting himself displayed in one of the slots
- And usually they prefer a slot as high up as possible
- Same auction is also run for related keywords (e.g. "buy ipod", "cheap ipod", "ipod purchase", ...)
- The advertiser can determine for which phrases to participate

How does it work?

- Bidders submit an initial budget which they can refresh weekly or monthly
- Bidders also submit an initial bid which they can adjust as often as they wish
- The auction selects the winners to be displayed
- Different charging models exist: Pay Per Click, Pay Per Impression, Pay Per Transaction
- Currently, most popular is Pay Per Click
- A bidder is charged only if someone clicks on the bidder's ad

The Actors

- The Search engine:
- Wants to make as much revenue as possible
- At the same time, wants to make sure users receive meaningful ads and bidders do not feel that they were overcharged
- Big percentage of Google's revenue has been due to these auctions!
- The Bidders:
- Want to occupy a high slot and pay as little as possible
- The Searchers:
- Want to find the most relevant ads with respect to what they are looking for

Analyzing sponsored search auctions

- We will focus on the bidders' side
- Model parameters for each bidder i
- Private information: $v_{i}=$ maximum amount willing to pay per click = value/happiness derived from a click (private information)
- Each bidder i submits a bid b_{i} for willingness to pay per click (b_{i} may differ from v_{i})
- We will ignore the budget parameter
- In many cases, it is large enough and cannot affect the game
- Hence, we have a single-parameter problem

Analyzing sponsored search auctions

- We will focus on the bidders' side
- Model parameters for each slot j
$-\alpha_{j}=$ Click-through rate (CTR) of slot $j=$ probability that a user will click on slot j
- Assume it is independent of who occupies slot j
- We can generalize to the case where the rates are weighted by a quality score of the advertiser who takes each slot
- The search engines update regularly the CTRs and statistics show that

$$
\alpha_{1} \geq \alpha_{2} \geq \alpha_{3} \geq \ldots \geq \alpha_{k}
$$

- Users tend to click on higher slots
- Validation also by eye-tracking experiments

Analyzing sponsored search auctions

- How shall we allocate the k slots to the n bidders?
- Most natural allocation rule: for $\mathrm{i}=1$ to k , give to the i -th highest bidder the i-th best slot in terms of CTR
- Remaining n-k bidders do not win anything
- For convenience, assume that $b_{1} \geq b_{2} \geq b_{3} \geq \ldots \geq b_{n}$
- Expected value of a winning bidder $i: \alpha_{i} v_{i}$
- Is this rule monotone?
- Yes, bidding higher can only get you a better slot
- Hence we can apply Myerson's formula to find the payment rule
- For each bidder i, let $x_{i}\left(b_{i}, b_{-i}\right) \in\left\{0, \alpha_{k}, \alpha_{k-1}, \ldots, \alpha_{1}\right\}$

Myerson’s lemma for sponsored search auctions

- Let's analyze the highest bidder with bid b_{1}
- Suppose we have 3 slots and n>3 bidders

- Look at the jumps of x_{i} in the interval $\left[0, b_{1}\right]$
- Jump at $b_{4}=\alpha_{3}$
- Jump at $b_{3}=\alpha_{2}-\alpha_{3}$
- Jump at $b_{2}=\alpha_{1}-\alpha_{2}$

Total payment:
$b_{4} \alpha_{3}+b_{3}\left(\alpha_{2}-\alpha_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{2}\right)$

Myerson's lemma for sponsored search auctions

- More generally, for the i -th highest bidder, there will be $\mathrm{k}-\mathrm{i}+1$ jumps

$$
p_{i}(\mathbf{b})=\sum_{j=i}^{k} b_{j+1}\left[\alpha_{j}-\alpha_{j+1}\right]
$$

-Under pay-per-click, no actual payment takes place at the end of every auction, unless there is a click by a user
-Need to scale so that expected per-click payment is $p_{i}(\mathbf{b})$

- Proposed per-click payment to bidder in i-th slot: $p_{i}(\mathbf{b}) / \alpha_{i}$
-By Myerson, no other payment can achieve truthfulness with the same allocation rule

Sponsored search auctions in practice

- In practice most engines do not use the payment of Myerson's lemma
- But they use the same allocation rule
- The Generalized Second Price Mechanism (GSP) - initial version:
- The search engine ranks the bids in decreasing order:

$$
b_{1} \geq b_{2} \geq \ldots \geq b_{n}
$$

- The i-th highest bidder takes the i-th best slot
- Every time there is a click on slot i, bidder i pays b_{i+1}
- There is also a reserve price (opening bid), initially the same for every keyword (\$0.1), later became keyworddependent

The Generalized Second Price Mechanism (GSP)

- A better version:
- The search engine keeps a quality score q_{i} for each bidder i
- Yahoo, Bing (till a few years ago): q_{i} is the click-through rate of i (probability of a user clicking on an ad of bidder i)
- Google: q_{i} depends on click-through rate, relevance of text and other factors
- The search engine ranking is in decreasing order of $q_{i} \times b_{i}$ $q_{1} \times b_{1} \geq q_{2} \times b_{2} \geq \ldots \geq q_{n} \times b_{n}$
- The first k bidders of the ranking are displayed in the k slots
- Every time there is a click on slot i, bidder i pays the minimum bid required to keep his position, i.e. $\left(\mathrm{q}_{i+1} \times \mathrm{b}_{i+1}\right) / \mathrm{q}_{i}$

The Generalized Second Price Mechanism (GSP)

- Myerson's lemma implies GSP cannot be truthful
- Otherwise, its payment rule would coincide with the Myerson formula
- The deployment of GSP was probably just an educated guess
- As an attempt to generalize the Vickrey auction and use something simple that looked close to truthful!
- Nevertheless...
- For a long period, revenue from GSP was 95\% of Google's revenue
- Still nowadays an important percentage of search engines' revenue

Multi-unit auctions

Multi-unit Auctions

Auctions for selling multiple identical units of a single good
In practice:

- US Treasury notes, bonds
- UK electricity auctions (output of generators)
- Carbon allowance markets (pollution rights)
- Spectrum licences
- Various online sales

Multi-unit Auctions

Online sites offering multi-unit auctions

- US
- www.onlineauction.com
-UK
- uk.ebid.net
- Greece
- www.ricardo.gr
- Actually not any more...
- ...

Some Notation

- n bidders
- k available units of an indivisible good
- Bidder i has valuation function $v_{i}:\{0,1, \ldots, k\} \rightarrow R$
- $v_{i}(j)=$ value of bidder i for obtaining j units
- Representation with marginal valuations:
- $m_{i}(j)=v_{i}(j)-v_{i}(j-1)=$ additional value for obtaining the j-th unit, if already given $j-1$ units
- $\left(m_{i}(1), m_{i}(2), \ldots, m_{i}(k)\right)$: vector of marginal values

Submodular Valuations

- In the multi-unit setting, a valuation v_{i} is submodular iff

$$
\forall x \leq y, \quad v_{i}(x+1)-v_{i}(x) \geq v_{i}(y+1)-v_{i}(y)
$$

- Hence: $m_{i}(1) \geq m_{i}(2) \geq \ldots \geq m_{i}(k)$ (decreasing marginal values)
- In many multi-unit auctions, bidders are asked to submit a submodular valuation
- Makes sense due to the saturation of getting more and more units
- Valuation compression: Even if bidders are not submodular, they would still have to express their preferences by a submodular function

A Bidding Format for Multi-unit Auctions

- Used in various multi-unit auctions
[Krishna ' 02, Ch. 12-13, Milgrom ' 04, Ch. 7]

1. The auctioneer asks each bidder to submit a vector of decreasing marginal bids

- $\boldsymbol{b}_{i}=\left(b_{i}(1), b_{i}(2), \ldots, b_{i}(k)\right)$
- $b_{i}(1) \geq b_{i}(2) \geq \ldots \geq b_{i}(k)$

2. The bids are ranked in decreasing order and the k highest win the units

Simplified format in some cases: Uniform bidding, i.e., ask for a bid per unit + number of units demanded

Example

$$
\begin{aligned}
& \mathbf{b}_{1}=(45,42,31,22,15) \\
& \mathbf{b}_{2}=(35,27,20,12,7) \\
& \mathbf{b}_{3}=(40,33,24,14,9)
\end{aligned}
$$

How should we charge the winners?

Pricing Rules

1. Multi-unit Vickrey auction (VCG) [Vickrey ' 61]

- Each bidder pays the externality he causes to the others
- Generalization of single-item $2^{\text {nd }}$ price auction
- Good theoretical properties, truthful, but barely used in practice

2. Discriminatory Price Auction (DPA)

- Bidders pay their bids for the units won
- Generalization of $1^{\text {st }}$ price auction
- Not truthful, but widely used in practice

Pricing Rules (cont' d)

3. Uniform Price Auction (UPA) [Friedman 1960]

- Same price for every unit
- Interval of prices to pick from:
[highest losing bid, lowest winning bid]
- This lecture: price = highest losing bid
- For 1 unit, same as Vickrey auction
- For ≥ 2 units, not truthful, but widely used in practice (following the campaign of Miller and Friedman in the 90's)

Interval of candidate prices for UPA $=[31,33]$
Uniform price $=31$

Uniform Price vs Discriminatory?

- Debate still going on for treasury auctions
- DPA is thought to raise more revenue (no formal justification though)
- UPA eliminates complaints arising from price discrimination (identical goods should cost the same!)

Equilibrium analysis of non-truthful mechanisms

Non-truthful mechanisms

- As already seen, there are plenty of settings where the mechanism employed is not truthful
- Sponsored search
- Auctions for government bonds
- Some types of auctions for telecom/spectrum licences (e.g., coreselecting auctions)
- Why?
- Low revenue often achieved by truthful auctions, e.g., by VCG
- Complexity: Social welfare maximization may turn out too difficult to solve (which is a required step in VCG-based mechanisms)
- [Ausubel, Milgrom '06]: The lovely but lonely Vickrey auction
- Chapter 1 in the book "Combinatorial Auctions"

Non-truthful mechanisms

- How do we evaluate non-truthful mechanisms?
- If the bidders are non-truthful, can we argue about the social welfare generated?
- We can think of the equilibria as the most likely outcomes to occur
- If these games are played frequently, players may end up at an equilibrium by adjusting gradually their strategies
- Thus, we can take the social welfare or revenue achieved at an equilibrium as an evaluation metric

PoA in auctions

- Consider an auction where $\mathrm{v}_{\mathrm{i}}=$ actual valuation function of bidder i
- It can be either single or multi-parameter
- Let \mathbf{b} be a pure Nash equilibrium with resulting allocation: $\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}(b), \ldots, x_{n}(b)\right)$
- Social Welfare at $\mathbf{b}: \operatorname{SW}(b)=\Sigma \mathrm{v}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)$
- OPT = Optimal welfare (as determined by the valuations)

$$
\operatorname{PoA}=\sup _{\mathbf{b}} \mathrm{OPT} / \mathrm{SW}(\mathbf{b})
$$

Where the supremum can be either over all pure or over all mixed equilibria

PoA in sponsored search auctions

- PoA can become unbounded in worst case
- [Lahaie '06]: $\operatorname{PoA} \leq\left(\min _{1 \leq i \leq k-1} \min \left\{\alpha_{i+1} / \alpha_{i}, 1-\left(\alpha_{i+2} / \alpha_{i+1}\right)\right\}\right)^{-1}$
- For pure equilibria, when we have $k \geq 2$ slots
- Where recall α_{i} is the CTR of slot i, and assume $\alpha_{k+1}=0$
- For arbitrary auctions, the ratios of the CTRs can become arbitrarily high
- In some cases, the click data fit well with an exponential decay model (geometric CTRs): $\alpha_{i} \propto 1 / \delta^{i}$ for a constant δ
- [Feng, Bhargava, Pennock '07]: $\delta=1.428$ using various empirical datasets
- In these cases, $\mathrm{PoA} \leq(\min \{1 / \delta, 1-1 / \delta\})^{-1}$
- Hence, low inefficiency under geometric CTRs

PoA in sponsored search auctions

- One can also study PoA under restrictions on the set of equilibria under consideration
- E.g., some "bad" equilibria arise when some players overbid and at the same time some high-valued players underbid
- The no-overbidding assumption: Focus on equilibria where $b_{i} \leq v_{i}$
- Such bidders are also referred to as conservative bidders
- Initiated in [Christodoulou, Kovacs, Schapira '08], and assumed in several follow up works
- Can PoA be better under no-overbidding?

PoA in sponsored search auctions

- [Paes Leme, Tardos '10]: Under no-overbidding
- PoA ≤ 1.618 ($=\phi$) for pure equilibria
- PoA ≤ 4 for mixed equilibria
- [Lucier, Paes Leme '11, Caragiannis et al. '11, '15]: Currently best known:
- PoA ≤ 1.28 for pure equilibria
- PoA ≤ 2.31 for mixed equilibria
- For lower bounds, it is known that PoA ≥ 1.259
- Main conclusion: For conservative bidders, selfish behavior does not lead to socially bad outcomes

PoA in multi-unit auctions

- A PoA analysis can be carried out for any other nontruthful auction
- For multi-unit auctions, PoA can be affected by the phenomenon of "demand reduction"
- [Ausubel, Cramton '96]: Bidders may have incentives to hide their demand for items in order to achieve a better price

Example of Demand Reduction in UPA

Real profile

Equilibrium profile

$$
\text { OPT }=3, S W(b)=13 / 6 \Rightarrow P o A \geq 18 / 13 \text { for UPA }
$$

- Revealing the true profile for bidder 1 results in a relatively high price
- Demand reduction discussed further in [Ausubel, Cramton '96]

PoA for pure equilibria

Can demand reduction create a huge loss of efficiency?

Theorem:
For the Discriminatory Price Auction (DPA), and arbitrary monotone valuations for the bidders, $\mathrm{PoA}=1$

- No need to assume no-overbidding
- All pure Nash equilibria (when they exist) are efficient
- Generalizes what holds for the single-item $1^{\text {st }}$ price auction
- Existence of pure equilibria guaranteed under appropriate tie-breaking rules

PoA for pure equilibria

- The same is not true for UPA
- Example: Consider k units and the profiles:

Real profile
(k, $0,0, \ldots, 0)$
$(1,1,1, \ldots, 1)$

Equilibrium profile b

- OPT $=2 \mathrm{k}-1$
- $\operatorname{SW}(b)=k$
- $P o A \geq(2 k-1) / k=2-1 / k$ for UPA
- Can it get worse?

PoA for pure equilibria

- For non-conservative bidders, it can get unbounded
- The no-overbidding assumption in UPA:

$$
\sum_{j=1}^{s} b_{i}(j) \leq v_{i}(s) \forall i, \forall s \leq k
$$

[Birmpas, Markakis, Telelis, Tsikiridis '17]:
For the Uniform Price Auction (UPA), and for

- Submodular bidders
- No-overbidding pure equilibria,

$$
\operatorname{PoA} \leq 2.18
$$

- Tight example even for 2 bidders

PoA for mixed equilibria

[de Keijzer, Markakis, Schaefer, Telelis '13]:
For submodular valuations, the PoA for mixed equilibria is

- $\leq \mathrm{e} / \mathrm{e}-1$ for DPA
- $\leq 3.146<2 e / e-1$ for UPA

Remarks:

- 3.146... = |W $\mathrm{W}_{-1}\left(-1 / \mathrm{e}^{2}\right) \mid$ (Lambert W function)
- Bounds hold both for standard bidding and for the simplified uniform bidding format
- The same bounds also hold for Bayesian games (PoA for Bayes-Nash equilibria)

PoA for mixed equilibria

- Currently known lower bounds: ≈ 1.1 for DPA, 2.18 for UPA
- Far from tight in the case of mixed equilibria
- Our proof can be cast into the smoothness framework of [Syrgkanis, Tardos '13]
\Downarrow
- Upper bounds carry over to simultaneous and sequential compositions of multi-unit auctions (e.g. combinatorial multi-unit auctions)
- Similar approaches and techniques used in other types of auctions as well (e.g. item-bidding auctions) [Christodoulou, Kovacs, Schapira '08, Bhawalkar, Roughgarden '11, Feldman, Fu, Gravin, Lucier '13]

Conclusions on PoA

- Take-home story: simple auction formats used in practice perform quite well w.r.t. social welfare
- Upper bounds:
- For pure equilibria, almost tight for sponsored search, completely tight for multi-unit auctions
- Open if we can improve the bounds for mixed equilibria
- PoA can also become even better if we focus on Nash equilibria in undominated strategies
- Lower bounds:
- Much harder to get

Examples of truthful auctions in practice

Spectrum Auctions

- Deferred Acceptance Auctions initiated by [Milgrom, Segal '14]
- Motivated by the design of the FCC "Broadcast Incentive Auction"

Broadcasters
Reverse Auction

Relinquishing
spectrum rights

Mobile Broadband Providers
Forward Auction

Assigning new
licenses

- Commenced on March 2016, closed on April 2017 for repurposing spectrum to align with consumer demand for broadband services

Basic Mechanism Design Setting

Main features:

- A provider of some service or resources
- A set of single-parameter buyers $N=\{1,2, \ldots, n\}$ interested in (some of) the resources
- Each buyer has a valuation $\mathbf{v}_{\mathbf{i}}$
- For each buyer: need to make an accept/reject decision
- Feasible solutions: Only specific subsets of buyers may be served simultaneously, due to problem constraints (e.g. interference constraints in spectrum auctions)

The framework of DeferredAcceptance Auctions

- Backward greedy allocation algorithms
- They work in rounds, finalizing the decision for a single bidder in each round
- $A_{t}=$ set of active bidders at round t
- Score of bidder i at round t: $\sigma_{i}^{A_{t}}\left(b_{i}, b_{N \backslash A_{t}}\right)$
- non-decreasing in b_{i}
- Possible dependence on the set A_{t} (but not on the bids of active bidders)

1. Initially all bidders are active $\left(A_{1}=N\right)$
2. While accepting all active bidders in A_{t} is infeasible

- Reject the bidder i with the lowest score
- $A_{t+1}=A_{t} \backslash\{i\}$

3. Remaining bidders are accepted and pay threshold prices

Properties of Deferred-Acceptance Auctions

Incentive guarantees:

- Not hard to show that DA auctions are truthful
- In fact we can have much stronger incentive guarantees

Definition: A mechanism is weakly group-strategyproof if: for any coalition $S \subseteq N$, and any profile b_{-S}, there is no deviation by S, such that all members are strictly better off, i.e., such that:

$$
u_{i}\left(b_{s}, b_{-S}\right)>u_{i}\left(v_{s}, b_{-S}\right), \text { for every } i \in S
$$

Lemma: DA auctions are weakly group-strategyproof

Properties of Deferred-Acceptance

Auctions

Further advantages of DA auctions:

1. Practical and simple to implement as long as

- Scoring function is simple
- Checking feasibility of a solution is easy

2. They admit an implementation as an ascending clock auction
3. Using the ascending auction implementation:

- Very easy to argue that truth-telling is a dominant strategy (obvious strategyproofness [Li '15])
- Privacy preservation: winners do not reveal their true value

Possible limitations:

1. They do not always guarantee a good approximation to the social welfare
2. Same for other objectives (e.g. revenue)
3. Solution returned may not be a maximal set w.r.t. problem constraints (drawback of backward greedy algorithms)

An illustration

Recall single-minded bidders from previous lectures

- The auctioneer has a set M of items for sale
- Each bidder i is interested in acquiring a specific subset of items,
$S_{i} \subseteq M$ (known to the mechanism)
- If the bidder does not obtain S_{i} (or a superset of it), his value is 0
- Each bidder submits a bid b_{i} for his value if he obtains the set
- Motivated by certain spectrum auctions
- Feasible allocations: the auctioneer needs to select winners who do not have overlapping sets

Single-minded bidders

Examples

- In the examle above, the auctioneer can accept only 1 bidder as a winner
- In the example below, the auctioneer can accept up to 2 bidders as winners

A forward greedy algorithm for singleminded bidders

[Lehmann, O’ Callaghan, Shoham ‘01]:

- Order the bidders in decreasing order of $b_{i} /$ sqrt $\left(s_{i} j^{\circ}\right)$
- Accept each bidder in this order unless overlapping with previously accepted bidders

This algorithm achieves

- Monotonicity of the allocation (hence can be made truthful)
- $1 /$ sqrt(m)-approximation, where $\mathrm{m}=|\mathrm{M}|$
- $1 / \mathrm{d}$-approximation, where $\mathrm{d}=\max _{\mathrm{i}} \mathrm{s}_{\mathrm{i}}$

Final conclusion: truthful polynomial time mechanism with the best possible approximation to the social welfare

Coalitions under the forward greedy mechanism

- The forward greedy mechanism is truthful but suppose players could also collude:

- What would forward greedy do?

1. Accept bid $\{\mathrm{c}, \mathrm{d}\}$
2. Reject bids $\{a, c\}$ and $\{b, d\}$
3. Accept bid \{a,b\}
4. Threshold price $=0$

- The coalition $\{3,4\}$ can change the outcome
- Threshold price still 0
- Both members better off!
- Forward greedy is not groupstrategyproof

Scoring Functions for DA auctions

- Can we achieve similar welfare guarantees with backward greedy algorithms?
- How about a DA auction with scoring $\sigma_{i}\left(v_{i}, s_{i}\right)=v_{i} / \sqrt{s_{i}}$?

- Backward greedy can do much worse than forward greedy
- Use conflict number $\sigma_{i}\left(v_{i}, c_{i, t}\right)=v_{i} / c_{i, t}$?
- $\mathrm{c}_{\mathrm{i}, \mathrm{t}}=$ number of conflicts with other bidders at stage t
[Dutting, Gkatzelis, Roughgarden '14]:
- This does not work either
- Having s_{i} or $\mathrm{c}_{\mathrm{i}, \mathrm{t}}$ in the denominator, raised to any power cannot achieve an $O(1 / d)$ or $\tilde{O}(1 / \sqrt{m})$ approximation

Positive results for DA auctions

[Dutting, Gkatzelis, Roughgarden '14]:

Theorem 1: There exists a DA auction that achieves an approximation ratio of $\mathbf{O}(d)$

Theorem 2: There exists a DA auction that achieves an approximation ratio of $\mathbf{O}(\sqrt{ } \mathrm{m} \operatorname{logm})$

Main message:
We can have comparable approximations as in forward greedy, but with stronger incentive guarantees!

- And with a more complicated scoring function

Final conclusions

- A wide range of applications
- The full spectrum of incentive guarantees can be seen in practice
- Non-truthful and bad equilibria (uniform price auction or sponsored search with overbidding)
- Non-truthful and efficient equilibria (single-item first price auction)
- Non-truthful and relatively efficient equilibria (sponsored search, uniform price auction, under no-overbidding)
- Truthful (single-item Vickrey)
- Weakly group-strategyproof (DA auctions)
- The choice of mechanism deployed may depend on:
- Traditions and practices used in a specific application domain (not always easy to switch to a new format)
- Complexity considerations (simplicity is often a must)
- Legal issues (there exist governmental auctions where social welfare w.r.t. reported bids needs to be maximized)

