Algorithmic Game Theory

Truthful Mechanisms
for Welfare Maximization

Vangelis Markakis
markakis@gmail.com

Designing welfare maximizing truthful auctions for single parameter environments

Single parameter auctions

- For the single-item case, we saw that the Vickrey auction is ideal
- We would like to achieve the same properties for any other type of auction
- truthfulness and individual rationality [incentive guarantees]
- welfare maximization [economic performance guarantees]
- implementation in polynomial time [computational performance guarantees]
- Can we achieve all 3 properties for any single-parameter environment?

Knapsack auctions

- We will see an illustration for knapsack auctions
- k identical items for sale
- Each bidder i has a publicly known demand for w_{i} items
- Inelastic demand
- The mechanism should either give w_{i} items to the bidder or should not give him anything
- Each bidder i submits a bid b_{i} for his value per unit
- Real value per unit $=v_{i}$
- Assume the demands $\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ are known to the mechanism
- Say bidders have no incentive to lie about them
- Only private information to bidder i is v_{i}

Knapsack auctions

Alternative view of knapsack auctions
-The auctioneer has a resource of total capacity k (a knapsack)
-Each bidder requires size w_{i}, if he is served
-Each bidder has a value v_{i}, if he is served
-The auctioneer needs to select a subset of bidders to serve so as not to exceed the capacity k

Feasible allocations:

- $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with $x_{i} \in\{0,1\}$, and $\sum_{i} w_{i} x_{i}<=k$
- Just like the feasible solutions of a knapsack problem

Knapsack auctions

Example

-Resource = the half-time break in the Champions League final
-Capacity k = total length of the break

- Each bidder corresponds to a company who wants to be advertised during the break
-The size w_{i} is the duration of the ad of bidder i
-The auctioneer needs to select a subset of bidders as winners and present their ads without exceeding the time capacity k

Knapsack auctions

- Let $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ be the biding vector
- Need to decide the allocation and payment rule
- For the allocation rule:
- Think of maximizing the social welfare
- Then we have precisely the 0-1 Knapsack problem!
$\max \sum_{i} b_{i} x_{i}$
s.t.

$$
\begin{aligned}
& \sum_{i} w_{i} x_{i}<=k \\
& x_{i} \in\{0,1\}, \text { for } i=1, \ldots, n
\end{aligned}
$$

Knapsack auctions

Claim: The allocation rule that maximizes the social welfare is monotone
-Consider a winner and see what can happen if he increases his bid

Hence, we can apply Myerson's lemma
How many jumps can we have for the allocation of a single player?
-At most one, a player can jump from being a loser $\left(x_{i}=0\right)$ to being a winner $\left(x_{i}=1\right)$

Myerson's lemma and knapsack auctions

-The jump for a winner i happens at i's critical bid: the minimum he could bid and still be a winner, also known as threshold bid
-Generalization of the payment in Vickrey auction

Final mechanism:
-Solve the knapsack problem and find an optimal solution
-Give to each winner i, the requested number of items w_{i}
-Charge the winners their critical bid

Myerson's lemma and knapsack auctions

Does this mechanism achieve the desirable properties we wanted?

- truthfulness [YES]
- welfare maximization [YES]
- implementation in polynomial time [?]
-Knapsack is an NP-complete problem
-The properties can be enforced only for special cases where Knapsack is easy
- If highest bid or highest demand is polynomial in n (by dynamic programming)
- If weights form a super-increasing sequence

Algorithmic Mechanism Design

- The requirement for low complexity usually comes in conflict with the other criteria
- Goal of algorithmic mechanism design: explore the tradeoffs between the 3 main properties (or any other properties that we may require in a given setting)
- Truthfulness
- welfare maximization
- implementation in polynomial time
- Approach: relax one of the criteria and see if we can achieve the others
- For Knapsack and in general whenever welfare maximization is NP-complete: resort to approximation algorithms

Knapsack auctions

Goal for Knapsack:
-Find an approximation algorithm for the social welfare
-Prove that it is monotone

Recall:

Definition: An algorithm A, for a maximization problem, achieves an approximation factor of $\gamma(\gamma \leq 1)$, if for every instance I of the problem, the solution returned by A satisfies:

$$
\mathrm{SOL}(\mathrm{I}) \geq \gamma \mathrm{OPT}(\mathrm{I})
$$

Where $\operatorname{OPT}(\mathrm{I})$ is the value of the optimal solution for instance I

Knapsack auctions

- There are several heuristics and approximation algorithms for Knapsack, but not all of them are monotone
- A greedy $1 / 2$-approximation:
- For each bidder i, we care to evaluate the quantity b_{i} / w_{i}
- Intuitively, we prefer bidders with small size/demand and large value
- Step 1: Sort and re-index the bidders so that

$$
b_{1} / w_{1} \geq b_{2} / w_{2} \geq \ldots \geq b_{n} / w_{n}
$$

- Step 2: Pick bidders in that order until the first time that adding someone exceeds the knapsack capacity
- Step 3: Return either the previous solution, or just the highest bidder if he achieves higher social welfare on his own

Knapsack auctions

- Why do we need the last step?
- Maybe there is a bidder with a very high value, but with a large demand as well
- The algorithm may not select this bidder in the first steps
- Step 3 ensures we do not miss out such highly-valued bidders
- Claim: This algorithm is monotone
- Theorem: Using Myerson's lemma, we can have a truthful polynomial time mechanism, that produces at least 50% of the optimal social welfare

Knapsack auctions

Going further

- Knapsack also admits an FPTAS (Fully Polynomial Time Approximation Scheme)
- We can have a (1- ε)-approximation for any constant $\varepsilon>0$ [Ibarra, Kim '75]
- But this is not a monotone algorithm
-[Briest, Krysta, Voecking '05]: A truthful FPTAS for Knapsack
-Conclusion: For a knapsack auction and any $\varepsilon>0$, we have a truthful mechanism that produces at least $(1-\varepsilon)$-fraction of the optimal social welfare and runs in time polynomial in n and 1/ ε

General Approach

Suppose we have a single-parameter auction where the social welfare maximization problem is NP-hard
-Check if any of the known approximation algorithms for the problem is monotone (usually not)
$>$ If not, then try to tweak it so as to make it monotone (sometimes feasible)
$>$ Or design a new approximation algorithm that is monotone (hopefully without worsening the approximation guarantee)

Single-minded bidders

A single-paramerer auction with non-identical items
-The auctioneer has a set M of items for sale
-Each bidder i is interested in acquiring a specific subset of items, $S_{i} \subseteq \mathrm{M}$ (known to the mechanism)

- If the bidder does not obtain S_{i} (or a superset of it), his value is 0
-Each bidder submits a bid b_{i} for his value if he obtains the set
- Motivated by certain spectrum auctions
- Feasible allocations: the auctioneer needs to select winners who do not have overlapping sets

Single-minded bidders

Examples

- In the example above, the auctioneer can accept only 1 bidder as a winner
- In the example below, the auctioneer can accept up to 2 bidders as winners

Single-minded bidders

Social welfare maximization:
-Given the bids of the players, select a set of bidders with nonoverlapping subsets, so as to maximize the sum of their bids -It contains the SET PACKING problem, hence NP-hard
-Actually it gets even worse w.r.t. approximation

Theorem [Sandholm '99]: Under certain complexity theory assumptions, we cannot have an algorithm with approximation factor better than $1 /$ sqrt(m)

Q : Can we have a $1 / \mathrm{sqrt}(\mathrm{m})$-approximation?

Single-minded bidders

[Lehmann, O' Callaghan, Shoham '01]:

- Order the bidders in decreasing order of $b_{i} / s q r t\left(s_{i}\right)$
- Accept each bidder in this order unless overlapping with previously accepted bidders
- Payment i: largest bid b_{j} for set S_{j} with nonempty intersection with S_{i}.
-This algorithm achieves
- $1 /$ sqrt (m)-approximation, where $\mathrm{m}=|\mathrm{M}|$
- 1/d-approximation, where $d=$ max $_{i} s_{i}$
- Monotonicity and truthfulness.

Final conclusion: truthful polynomial time mechanism with the best possible approximation to the social welfare

Single-minded bidders

- Order the bidders in decreasing order of $\mathrm{b}_{\mathrm{i}} / \mathrm{sqrt}_{\mathrm{p}}\left(\mathrm{s}_{\mathrm{i}}\right)^{\circ}$
- Accept each bidder in this order unless overlapping with previously accepted bidders
- A algorithm's solution (set of indices accepted by Greedy)
- O optimal solution (set of indices accepted by OPT)

Wlog. assume that $O \cap A=\emptyset$.
Partition O into $O_{i}, i \in A$, s.t. $j \in O_{i}$ if $j \in O$ and $S_{i} \cap S_{j} \neq \emptyset$.

$$
\begin{array}{rlr}
\sum_{j \in O_{i}} v_{j} & \leq \frac{v_{i}}{\sqrt{s_{i}}} \sum_{j \in O_{i}} \sqrt{s_{j}} & \text { Greedy property } \\
& \leq \frac{v_{i}}{\sqrt{s_{i}}} \sqrt{\sum_{j \in O_{i}} s_{j}} \sqrt{\left|O_{i}\right|} & \text { Cauchy-Schwarz ineq. } \\
& \leq \frac{v_{i}}{\sqrt{s_{i}}} \sqrt{m} \sqrt{s_{i}} & \left|O_{i}\right| \leq s_{i} \text { and } \sum_{j \in O_{i}} s_{j} \leq m \\
& \leq v_{i} \sqrt{m} &
\end{array}
$$

Wrapping Up

- Single parameter bidders: private information of bidder i is single value v_{i}, expressed by bid b_{i}
- Myerson's Lemma: truthful mechanism iff monotone allocation, payments are uniquely determined (and virtually always easy to compute).
- $2^{\text {nd }}$ price / Vickrey auction is the only truthful single-item auction.
- Optimal is always monotone: if allocation problem is easy, we also get computational efficiency.
- If allocation problem is hard, we seek monotone poly-time approximation algorithms.
- (1-1/k)-approximation in time $O\left(n^{k+1}\right)$ and FPTAS for Knapsack (with demand known).
- Single-minded bidders / set packing: Greedy wrt $b_{i} / s q r t\left(s_{i}\right)$ is monotone and $\mathrm{O}(\operatorname{sqrt}(\mathrm{m}))$-approximation (best possible approximation in polynomial time).

Multi-dimensional Bidders / Combinatorial Auctions

The model
Set of players
$N=\{1,2, \ldots, n\}$

Set of indivisible goods
$M=\{1,2, \ldots, m\}$

Combinatorial Auctions

- Any auction with multiple items for sale
- The players may be allowed to express interest / bids on various combinations of goods
- In practice very active field within the last 10-15 years
- Spectrum licenses
- The FCC incentive auction:
- https://www.fcc.gov/about-fcc/fcc-initiatives/incentive-auctions
- Transportation routes
- Logistics

Combinatorial auctions

- In practice, it seems economically more efficient and profitable to sell the items together than have a separate auction for each good
- Main challenges:
- Algorithmic: How shall we design the allocation rule (especially if we have many overlaps in what the players want the most)?
- Game-theoretic: Can we generalize Myerson's lemma to get truthful mechanisms?

Valuation functions

- So far we studied settings where a single parameter v_{i} determined all the information we needed for a player
- Most general scenario: consider that each player has a valuation function defined for every subset of the items
- $v_{i}: P(M) \rightarrow R$
- where $P(M)=$ powerset of M (all subsets of M)
- For every $S \subseteq M$,
- $v_{i}(S)=$ value of player i if he acquires set S
$b_{i}(S)=$ maximum amount willing to pay for acquiring S
- We always assume monotonicity ("free-disposal"): for all $T \subseteq S, v_{i}(T) \leq v_{i}(S)$.

Examples of valuation functions

Additive valuation functions

- For every $S \subseteq M, v_{i}(S)=\sum_{j \in S} v_{i j}$
- where $\mathrm{v}_{\mathrm{ij}}=$ utility of acquiring item j
- Hence, the function can be completely determined by specifying the vector $\left(\mathrm{v}_{\mathrm{i} 1}, \mathrm{v}_{\mathrm{i} 2}, \ldots, \mathrm{v}_{\mathrm{im}}\right)$
- m parameters for each bidder
- In such cases, the goods can be auctioned independently:
- The value of an item is not affected by other items that a bidder may have already obtained

Examples of valuation functions

- In practice, the items may be interrelated with each other and additive valuations are not appropriate
- The value they add to a player may depend on the other items that the player has
- The items may exhibit
- Complementarity: some items may be valuable only when they are sold together with other items (e.g. left and right shoe)
- Substitutability: some items may be of similar type and should not be sold together to the same player (e.g. 2 cars with the same features)

Examples of valuation functions

Subadditive functions

- For any 2 disjoint subsets $\mathrm{S} \subseteq \mathrm{M}, \mathrm{T} \subseteq \mathrm{M}$,

$$
v_{i}(S \cup T) \leq v_{i}(S)+v_{i}(T)
$$

- In this case, we have substitutability among the goods
-They are also called complement-free functions (since we do not have complementarity)

Examples of valuation functions

Submodular functions

For any 2 subsets S, T, with $S \subseteq T \subseteq M$, and for every $j \notin T$

Examples of valuation functions

- Submodular functions form a special class of subadditive valuations
- Hence, they also do not exhibit complementarity
- They play a key role in micro-economic theory
- Expressing the fact that utility gets "saturated" as we keep allocating substitutes to the same player

Examples of valuation functions

Symmetric submodular

- Special case of submodular functions, where all goods are identical
- Hence, the final utility depends only on how many items the player receives
- Applicable for multi-unit auctions
- E.g., auctions for government bonds fall under this framework
- For k identical items, such functions can be represented by a vector of k marginal values
- $\left(m_{i}(1), m_{i}(2), \ldots, m_{i}(k)\right)$ with $m_{i}(j) \geq m_{i}(j+1)$
- Where $m_{i}(j)=$ additional utility to the player for obtaining the j-th unit, if the player already has j-1 units

Examples of valuation functions

Superadditive functions

- For any 2 disjoint subsets $\mathrm{S} \subseteq \mathrm{M}, \mathrm{T} \subseteq \mathrm{M}$,

$$
v_{i}(S \cup T) \geq v_{i}(S)+v_{i}(T)
$$

- In this case, we have complementarity
-For example, the items may not have any value if they are sold on their own, but only when sold in bundles with other goods
- Single-minded bidders fall under this class

Relations between different classes of valuation functions

Social Welfare Maximization

- Need to define social welfare in this more general setting
- Definition: Let $\mathbf{S}=\left(S_{1}, S_{2}, \ldots, S_{n}\right)$ be an allocation of the items to the players, where $S_{i}=$ subset assigned to player i. Then the social welfare derived from S is

$$
S W(S)=\Sigma_{i} v_{i}\left(S_{i}\right)
$$

The SWM problem (Social Welfare Maximization): Input: The valuation functions of the players (how?) Output: Find an allocation $\mathbf{S}^{*}=\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$ that produces the highest possible social welfare:
$\operatorname{SW}\left(\mathbf{S}^{*}\right) \geq \operatorname{SW}(\mathbf{S})$ for any other allocation \mathbf{S}

Social welfare maximization

Example with additive valuations

- 3 players, 4 items
- The input can be determined by a 3×4 array

$\mathbf{4 8}$	$\mathbf{4 1}$	11	0
35	10	$\mathbf{5 0}$	5
45	20	10	$\mathbf{2 5}$

- Optimal allocation: $S^{*}=\left(S_{1}, S_{2}, S_{3}\right)=(\{1,2\},\{3\},\{4\})$
- Optimal social welfare: $48+41+50+25=164$

Integer Programming Formulation

$$
\begin{aligned}
\max \sum_{i, S} x_{i, S} v_{i}(S) & \\
\sum_{S} x_{i, S} \leq 1 & \forall i \in[n] \\
\sum_{i, S: j \in S} x_{i, S} \leq 1 & \forall j \in[m] \\
x_{i, S} \geq 0 &
\end{aligned}
$$

$$
\begin{array}{rr}
\min \sum_{j \in[m]} p_{j}+\sum_{i \in[n]} u_{i} & \\
u_{i} \geq v_{i}(S)-\sum_{j \in S} p_{j} & \forall i, S \\
p_{j} \geq 0 & \forall j \in[m] \\
u_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

- p_{j} is the price of item j and u_{i} is the utility of bidder i

$$
u_{i}=\max _{S}\left\{v_{i}(S)-p(S)\right\}
$$

- Complementary slackness: in optimal solution (assuming integrality), each bidder gets a utility maximizing set and each item with positive price is allocated.
- Optimal solutions, if integral, correspond to equilibrium! ${ }_{38}$

Walrasian (Competitive) Equilibrum

- Competitive (Walrasian) equilibrium is price vector $\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $\mathbf{S}^{*}=\left(S_{1}, \ldots, S_{m}\right)$ such that
- $v_{i}\left(S_{i}\right)-p\left(S_{i}\right) \geq v_{i}(S)-p(S)$, for any subset S of items.
- Every item j with $p_{j}>0$ is allocated.
- Example: two bidders Alice and Bob, two items x and y.
- Alice has value 2 for x, y and $x+y, 0$ for empty set.
- Bob has value 4 for $x+y$ and 0 for anything else.
- $p_{x}=p_{y}=2$, Alice nothing, Bob $x+y$ is equilibrium.
- If Bob had value 3 for $x+y$ and 0 for anything else, Walrasian equilibrium does not exist!

Walrasian (Competitive) Equilibrum

- Competitive (Walrasian) equilibrium is price vector $\mathbf{p}=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $\mathbf{S}^{*}=\left(S_{1}, \ldots, S_{m}\right)$ such that
- $v_{i}\left(S_{i}\right)-p\left(S_{i}\right) \geq v_{i}(S)-p(S)$, for any subset S of items.
- Every item j with $p_{j}>0$ is allocated.
- First Welfare Theorem: (If exists,) Walrasian equilibrium maximizes social welfare, even among fractional solutions.

For any feasible (fractional) solution $x_{i, S}$, for any bidder i,

$$
\begin{equation*}
v_{i}\left(S_{i}\right)-\sum_{j \in S_{i}} p_{j} \geq \sum_{S} x_{i, S}\left(v_{i}(S)-\sum_{j \in S} p_{j}\right) \tag{1}
\end{equation*}
$$

by first condition and because $\sum_{S} x_{i, S} \leq 1$.

- We sum up (1) and observe that sums of prices cancel out, because allocations must be disjoint.

Walrasian (Competitive) Equilibrum

- Competitive (Walrasian) equilibrium is price vector $\boldsymbol{p}=\left(p_{1}, \ldots, p_{m}\right)$ and allocation $\mathbf{S}^{*}=\left(S_{1}, \ldots, S_{m}\right)$ such that
- $v_{i}\left(S_{i}\right)-p\left(S_{i}\right) \geq v_{i}(S)-p(S)$, for any subset S of items.
- Every item j with $p_{j}>0$ is allocated.
- Second Welfare Theorem: If LP admits integral optimal solution, then Walrasian equilibrium exists.
- Follows from complementary slackness conditions.
- LP admits integral optimal solution for gross substitutes.
- When price for item increases, the demand for other items does not decrease.
- Walrasian equilibrium computed by natural tatonnement process. [Kelso-Crawford, '82] Special case of discrete convexity!!!
- http://www.inbaltalgam.com/slides/GS\ Tutorial\ Part\ I.pdf and http://www.inbaltalgam.com/slides/GS\ Tutorial\ Part\ II.pdf

Walrasian Tatonnement

- Demand correspondence:

$$
\begin{aligned}
D(v, p) & =\{S \subseteq U: v(S)-p(S) \geq v(T)-p(T), \forall T \subseteq U\} \\
D_{i}(p) & =\left\{S \subseteq U: v_{i}(S)-p(S) \geq v_{i}(T)-p(T), \forall T \subseteq U\right\}
\end{aligned}
$$

An item-price ascending auction for substitutes valuations:

Initialization:

For every item $j \in M$, set $p_{j} \leftarrow 0$.
For every bidder i let $S_{i} \leftarrow \emptyset$.
Repeat
For each i, let D_{i} be the demand of i at the following prices:
p_{j} for $j \in S_{i}$ and $p_{j}+\epsilon$ for $j \notin S_{i}$.
If for all $i S_{i}=D_{i}$, exit the loop;
Find a bidder i with $S_{i} \neq D_{i}$ and update:

- For every item $j \in D_{i} \backslash S_{i}$, set $p_{j} \leftarrow p_{j}+\epsilon$
- $S_{i} \leftarrow D_{i}$
- For every bidder $k \neq i, S_{k} \leftarrow S_{k} \backslash D_{i}$

Finally: Output the allocation S_{1}, \ldots, S_{n}.

Mechanisms for Combinatorial Auctions

How do the players describe their valuations to auctioneer?

- For a general function, the bidder would need to specify $v_{i}(S)$, for every $S \subseteq M$ (2^{m} numbers, prohibitive!)
- Three approaches:

1. Some functions can be described with a small number of parameters

- E.g. additive or symmetric submodular (m parameters)

2. The auctioneer can ask the bidders during the auction for their values on certain subsets of items

- Value queries.
- No need to know the entire function.

3. The auctioneer computes prices and let the bidders decide on their utility maximizing set.

- Demand queries - NP-hard to compute, in general.
- No information about valuation is given to auctioneer.

Mechanisms for Combinatorial Auctions

- Truthful mechanisms for combinatorial auctions?
- Can we generalize the $2^{\text {nd }}$ price auction when we have multiple items?
- We need to generalize:
- The allocation algorithm: with 1 item, the winner was the highest bidder
- multiple winners (with non-overlapping sets of goods), but monotonicity still necessary!
- The payment rule: with 1 item, we offered a «discount» to the winner
- Adjust the discount to the more general setting (and we also need a separate discount for each winner)

The VCG mechanism

- A generalization of the Vickrey auction
- Named after [Vickrey '61, Clarke '71, Groves '73]

1. $\mathbf{S}^{*}=\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$ social welfare maximizing allocation.
2. Allocation rule: For $i=1, \ldots, n$, player i receives set S_{i}
3. Payment rule:

- Payment of player $\mathrm{i}: \mathrm{p}_{\mathrm{i}}=S W_{-i}{ }^{*}-\Sigma_{j \neq \mathrm{i}} \mathrm{v}_{\mathrm{j}}\left(\mathrm{S}_{\mathrm{j}}\right)$ where $\mathrm{SW}_{-i}^{*}=$ optimal social welfare without player i
- Every player pays the "externality" that his presence causes to the welfare of the others
- Utility (value - payment) of player i: $u_{i}=S W^{*}-S W_{-i}^{*}$
- Every player has utility equal to the increase in the social welfare due to his presence.

The VCG mechanism

In conclusion:
-Every player receives the items specified by the optimal allocation (w.r.t. the social welfare)
-His payment is determined by the declarations of the other players, just as in the Vickrey auction

Theorem: For any valuation functions, the VCG mechanism is truthful and maximizes the social welfare

Can we implement efficiently the VCG mechanism?
-Only when we can solve the SWM problem efficiently

The VCG Mechanism Truthfulness

Fix i and \mathbf{b}_{-i}. When the chosen outcome $\mathbf{x}(\mathbf{b})$ is ω^{*}, i 's utility is

$$
v_{i}\left(\omega^{*}\right)-p_{i}(\mathbf{b})=\underbrace{\left[v_{i}\left(\omega^{*}\right)+\sum_{j \neq i} b_{j}\left(\omega^{*}\right)\right]}_{(\mathrm{A})}-\underbrace{\left[\max _{\omega \in \Omega} \sum_{j \neq i} b_{j}(\omega)\right]}_{(\mathrm{B})}
$$

- Part (B) is independent of i^{\prime} bid b_{i} (truthfulness holds for any (B) that does not depend on b_{i}).
- Part (B), a.k.a. Clarke pivot rule, ensures non-positive transfers (NPT) and individual rationality (IR).
- Bidding truthfully, i.e. $b_{i}=v_{i}$, allows the mechanism to maximize part (A), which is exactly what player i wants!
- Players' incentives fully aligned with objective of mechanism!

Implementing the VCG mechanism

How to compute the allocation and the payment rule of VCG:

- It suffices to solve $\mathrm{n}+1$ instances of the SWM problem
- 1 instance with all players present to determine the allocation of the items
- n more instances with a different player absent each time (SWM with n-1 out of the initial n players)
- Final complexity: O(n) • (complexity of SWM)

Implementing the VCG mechanism

Additive valuations

- Input: n x m matrix
- Solving SWM: Easy, greedy algorithm
- For every item j: give it to the player with the highest value
- Implementing the payment rule of VCG:
- Easy, solve n more times SWM with 1 player absent each time

Implementing the VCG mechanism

Example with additive valuations

-3 players, 4 items

$\mathbf{4 8}$	$\mathbf{4 1}$	11	0
35	10	$\mathbf{5 0}$	5
$\mathbf{4 5}$	$\mathbf{2 0}$	10	$\mathbf{2 5}$

- Optimal allocation: $\mathrm{S}^{*}=\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \mathrm{~S}_{3}\right)=(\{1,2\},\{3\},\{4\})$
- Optimal social welfare: $48+41+50+25=164$

Implementing the VCG mechanism

Example with additive valuations

-3 players, 4 items

$\mathbf{4 8}$	$\mathbf{4 1}$	11	0
35	10	$\mathbf{5 0}$	5
$\mathbf{4 5}$	$\mathbf{2 0}$	10	$\mathbf{2 5}$

Payments:

- $\mathrm{p}_{1}=\mathrm{SW}_{-1}{ }^{*}-\sum_{j \neq 1} \mathrm{v}_{\mathrm{j}}\left(\mathrm{S}_{\mathrm{j}}\right)=140-(50+25)=65$
- $p_{2}=S W_{-2}{ }^{*}-\sum_{j \neq 2} v_{j}\left(S_{j}\right)=125-(89+25)=11$
- Similarly, $p_{3}=5$

Implementing the VCG mechanism

Additive valuations

- What if we run m independent Vickrey auctions for every item separately?
- We get the same result!
- It is due to the fact that we have additive valuations (hence, the values of different items for a player are not correlated)

Corollary:
For additive valuations, the VCG mechanism is equivalent to executing an independent Vickrey auction for each item

Implementing the VCG mechanism

Submodular functions?

Good news

Theorem: The VCG mechanism can be implemented in polynomial time for symmetric submodular valuations

- Greedy (wrt. marginal values) allocation is optimal.

Bad news

- For general submodular valuations, SWM is NP-complete
- Reduction from Knapsack
- The same also holds for subadditive valuations

Implementing the VCG mechanism

Submodular functions?

[Lehmann, Lehmann, Nisan '01]: greedy, 1/2-approximation

- Fix an ordering of the goods, $1,2, \ldots, m$
- For $\mathrm{j}=1, \ldots, \mathrm{~m}$
$>$ Let $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}\right)$ be the current allocation to the bidder
> Allocate next good to the bidder with currently highest marginal value for this good
- i.e., calculate $v_{i}\left(S_{i} \cup\{j\}\right)-v_{i}\left(S_{i}\right)$ for each player i
- We measure how much extra welfare is derived by adding the good to the currently assigned bundle of a player

Implementing the VCG mechanism

Submodular functions?

- Further progress: (1-1/e ≈ 0.632)-approximation with value queries [Vondrak '08]
- [Mirrokni, Schapira, Vondrak '08]: Better approximation would require exponentially many value queries.
- Unfortunately these algorithms cannot be combined with the VCG payment formula to obtain a truthful mechanism
- Open problem to derive a computationally efficient truthful mechanism for submodular valuations with the best possible approximation to the social welfare

Truthful Mechanisms for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira 05]:

1. Query each bidder for values of all singleton sets and U.
2. Find best "matching" allocation where each bidder gets at most one good (maximum bipartite matching).

- Complete bipartite graph with agents on the left, goods on the right, and weight $v_{i}(\{j\})$ on each $\{$ agent i, good $j\}$ edge.

3. Return best of maximum "matching" and $\max \left\{\mathrm{v}_{\mathrm{i}}(\mathrm{U})\right\}$

- Algorithm finds optimal over subset of feasible allocations, that includes only "matchings" and "winner-takes-all".
- Maximal-in-Range (MiR) mechanisms: optimize over a predetermined subset of feasible solutions (a.k.a. "range").
- Allocation is optimal-in-range: truthfulness with VCG payments!
- Range chosen to guarantee good approximation and polynomialtime optimization.

Truthful Mechanisms for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira 05]:

1. Query each bidder for values of all singleton sets and U.
2. Find best "matching" allocation where each bidder gets at most one good (maximum bipartite matching).

- Complete bipartite graph with agents on the left, goods on the right, and weight $v_{i}(\{j\})$ on each $\{$ agent i, good $j\}$ edge.

3. Return best of maximum "matching" and $\max \left\{\mathrm{v}_{\mathrm{i}}(\mathrm{U})\right\}$

- Approximation ratio $O($ sqrt(m)) for subadditive valuations.
- If most of OPT SW by "large sets" (cardinality \geq sqrt(m), so at most $\operatorname{sqrt}(\mathrm{m})$ of them), $\max \left\{\mathrm{v}_{\mathrm{i}}(\mathrm{U})\right\}$ is sqrt(m)-approximation.
- If most of OPT SW by "small sets" (cardinality < sqrt(m)) maximum "matching" is sqrt(m)-approximation (due to subadditivity and bound on cardinality).

Truthful Mechanisms for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira '05]:

1. Query each bidder for values of all singleton sets and U.
2. Find best "matching" allocation where each bidder gets at most one good (maximum bipartite matching).

- Complete bipartite graph with agents on the left, goods on the right, and weight $v_{i}(\{j\})$ on each $\{$ agent i, good $j\}$ edge.

3. Return best of maximum "matching" and $\max \left\{\mathrm{v}_{\mathrm{i}}(\mathrm{U})\right\}$

- Theorem. MiR algorithm above is truthful with VCG payments and achieves sqrt(m)-approximation for subadditive valuations.
- Maximal-in-Distributional Range gives sqrt(m)-approximation for CAs with general valuations [Lavi, Swamy '05]
https://www.cs.princeton.edu/~smattw/Teaching/521fa17lec19.pdf https://www.math.uwaterloo.ca/~cswamy/papers/mechdeslp-journ.pdf

Linear Programming Relaxation of Social Welfare Maximization

$$
\begin{aligned}
\max \sum_{i, S} x_{i, S} v_{i}(S) & \\
\sum_{S} x_{i, S} \leq 1 & \forall i \in[n] \\
\sum_{i, S: j \in S} x_{i, S} \leq 1 & \forall j \in[m] \\
x_{i, S} \geq 0 &
\end{aligned}
$$

$$
\begin{array}{rr}
\min \sum_{j \in[m]} p_{j}+\sum_{i \in[n]} u_{i} & \\
u_{i} \geq v_{i}(S)-\sum_{j \in S} p_{j} & \forall i, S \\
p_{j} \geq 0 & \forall j \in[m] \\
u_{i} \geq 0 & \forall i \in[n]
\end{array}
$$

- p_{j} is the price of item j and u_{i} is the utility of bidder i

$$
u_{i}=\max _{S}\left\{v_{i}(S)-p(S)\right\}
$$

$$
D_{i}\left(U_{i}, p\right)=\left\{S \subseteq U_{i}: v_{i}(S)-p(S) \geq v_{i}(T)-p(T), \forall T \subseteq U_{i}\right\}
$$

Truthful Mechanisms for Submodular Valuations

Demand Queries [Krysta, Vocking, '12]:
Algorithm 1. Overselling MPU algorithm
1 For each good $e \in U$ do $p_{e}^{1}:=p_{0}$.
2 For each bidder $i=1,2, \ldots, n$ do
$3 \quad$ Set $S_{i}:=D_{i}\left(U_{i}, p^{i}\right)$, for a suitable $U_{i} \subseteq U$.
4 Update for each good $e \in S_{i}: p_{e}^{i+1}:=p_{e}^{i} \cdot 2$

- Binary search in optimal prices of goods!
- Truthful because prices p_{i} do not depend on bidder i and demand queries.
- If $p_{0}=\max \left\{v_{i}(U)\right\} /(4 m)$, Alg1 allocates $\leq \log _{2}(4 m)+1$ copies of each good.
- After allocating so many copies of good e, $p_{e}>\max \left\{v_{i}(U)\right\}$ and no player can afford it anymore.

Truthful Mechanisms for Submodular Valuations

Lemma. p_{e}^{*} denotes final price of good e. Then,

$$
\begin{array}{rlrl}
\operatorname{Alg}=\sum_{i=1}^{n} v_{i}\left(S_{i}\right) & \geq \sum_{e \in U} p_{e}^{*}-m p_{0} & \\
\sum_{i=1}^{n} v_{i}\left(S_{i}\right) & \geq \sum_{i=1}^{n} \sum_{e \in S_{i}} p_{e}^{i} \\
& =\sum_{i=1}^{n} \sum_{e \in S_{i}} 2^{\ell_{e}^{i}} p_{0} & & \ell_{e}^{i}=\text { copies of } i \text { sold before } i \\
& =p_{0} \sum_{e \in U} \sum_{k=1}^{\ell_{e}^{*}-1} 2^{k} & \ell_{e}^{*}=\text { copies } i \text { sold in total } \\
& =p_{0} \sum_{e \in U}\left(2^{\ell_{e}^{*}}-1\right) & \\
& =\sum_{e \in U} p_{e}^{*}-m p_{0}=\sum_{e \in U} p_{e}^{*}-\frac{\mathrm{OPT}}{4} & p_{0}=\frac{\max \left\{v_{i}(U)\right\}}{4 m} \leq \frac{\mathrm{OPT}}{4 m}
\end{array}
$$

Truthful Mechanisms for Submodular Valuations

- Approximation ratio: compare social welfare of Alg and OPT
- Demand query ensures that:

$$
\forall \text { player } i, \quad v_{i}\left(S_{i}\right) \geq v_{i}\left(S_{i}^{*}\right)-\sum_{e \in S_{i}^{*}} p_{e}^{*}
$$

- Summing up and using Lemma:

$$
\mathrm{Alg} \geq \mathrm{OPT}-\sum_{e \in U} p_{e}^{*} \geq \mathrm{OPT}-\mathrm{Alg}-\frac{\mathrm{OPT}}{4}
$$

- We get Alg $\geq 30 \mathrm{PT} / 8$ (but with logarithmic "overselling").

Truthful Mechanisms for Submodular Valuations

Algorithm 1. Overselling MPU algorithm

```
1 For each good e }eU\mathrm{ do }\mp@subsup{p}{e}{1}:=\mp@subsup{p}{0}{}\mathrm{ .
    2 For each bidder i=1,2,\ldots,n do
    3 Set Si:= Di(U},\mp@subsup{S}{i}{},\mp@subsup{p}{}{i})\mathrm{ , for a suitable }\mp@subsup{U}{i}{}\subseteqU
    4 Update for each good e\inSi:
```

- "Overselling" is fixed with oblivious rounding and sets U_{i}
- $\quad \mathrm{U}_{\mathrm{i}}$ is the set of available goods at step i .
- After the demand query $D_{i}\left(U_{i}, p^{i}\right)$ is answered, S_{i} is allocated with probability $1 / \log _{2}(4 m)$
- Approximation ratio increases by factor $\mathrm{O}\left(\log _{2}(4 \mathrm{~m})\right)$ for submodular valuations.
- Demand-query truthful approximations extends to budgeted bidders and liquid welfare: LiquidValuation ${ }_{i}(S)=\min \left\{v_{i}(S), B_{i}\right\}$

Negative Cycles, Monotonicity and Truthfulness

- Consider allocation (and truthfulness) from viewpoint of single bidder (as in Myerson's Lemma, but multi-dimensional)
- Fix allocation rule \mathbf{x}, other bids \mathbf{b}_{-i} and payments \mathbf{p}.
- Consider allocation $x(b)$, payments $p(b)$ and utility $v(x(b))-p(b)$ of bidder i as functions of i 's bid b and i's true valuation (a.k.a. type) v.
- We want to characterize allocation rules \mathbf{x} that allow for truthful payments p (similar to Myerson's Lemma).
- Definition of truthfulness:

$$
v(\mathbf{x}(v))-\mathbf{p}(v) \geq v(\mathbf{x}(b))-\mathbf{p}(b), \text { for all types } v, b
$$

- Focus on discrete domains (finite set of types), but everything generalizes to infinite (and continuous) domains.

Negative Cycles, Monotonicity and Truthfulness

- Let D set of all possible types.
- Correspondence graph G(D, E, w) is an edge-weighted complete directed graph on D.
- Let b and b^{\prime} be two types / vertices and $o=\mathbf{x}(b)$ and $o^{\prime}=\mathbf{x}\left(b^{\prime}\right)$ corresponding outcomes.
- $\quad w\left(b, b^{\prime}\right)=b(o)-b\left(o^{\prime}\right)\left(a n d w\left(b^{\prime}, b\right)=b^{\prime}\left(o^{\prime}\right)-b^{\prime}(o)\right)$.
- When true type b, how much bidder prefers o (outcome if he is truthful) to o' (outcome if he misreports b^{\prime})
- Payments p function of outcomes (only)!
- Allocation x is truthful (without payments!) iff $w\left(b, b^{\prime}\right) \geq 0$, for all edges (b, b').

Negative Cycles, Monotonicity and Truthfulness

- Correspondence graph $G(D, E, w)$.
- Let b, b^{\prime} be types and $o=\mathbf{x}(b), o^{\prime}=\mathbf{x}\left(b^{\prime}\right)$ outcomes.
- $w\left(b, b^{\prime}\right)=b(o)-b\left(o^{\prime}\right)$ (and $\left.w\left(b^{\prime}, b\right)=b^{\prime}\left(o^{\prime}\right)-b^{\prime}(o)\right)$.
- Allocation x admits truthful payments p : Outcomes -> R_{+}, if all edges (b, b^{\prime}) become non-negative after we apply \mathbf{p} :

$$
\mathrm{b}(\mathrm{o})-\mathrm{p}(\mathrm{o}) \geq \mathrm{b}\left(\mathrm{o}^{\prime}\right)-\mathrm{p}\left(\mathrm{o}^{\prime}\right)
$$

- Allocation x admits truthful payments p iff $G(D, E, w)$ does not have negative cycles!
- Truthful payments computed by Johnson's algorithm!
- If domain D is convex, allocation x admits truthful payments p iff $G(D, E, w)$ does not have negative 2-cycles.
- Weak monotonicity: $b(o)-b^{\prime}(o) \geq b\left(o^{\prime}\right)-b^{\prime}\left(o^{\prime}\right)$, for all b, b' [Zaks, Yu '05]

Research questions on the implementation of truthful mechanisms

- Find special cases where SWM is solvable in polynomial time
- Design approximation algorithms for SWM for various types of valuation functions
- General problem with approximation algorithms: they cannot always be combined with some payment rule and get a truthful mechanism
- At the end, we need to understand how truthful mechanisms look like for multi-parameter environments, esp. when SWM is difficult

