Algorithmic Game Theory Introduction to Mechanism Design for Single Parameter Environments

Vangelis Markakis markakis@gmail.com

Mechanism Design

- What is mechanism design?
- It can be seen as reverse game theory
- Main goal: design the rules of a game so as to
 - avoid strategic behavior by the players
 - and more generally, enforce a certain behavior for the players or other desirable properties
- Applied to problems where a "social choice" needs to be made
 - i.e., an aggregation of individual preferences to a single joint decision
- strategic behavior = declaring false preferences in order to gain a higher utility

Examples

Elections

- Parliamentary elections, committee elections, council elections, etc
- A set of voters
- A set of candidates
- Each voter expresses preferences according to the election rules
 - E.g., by specifying his single top choice, or by specifying his first few choices, or by submitting a full ranking of the candidates
- Social choice: can be a single candidate (single-winner election) or a set of candidates (multi-winner election) or a ranking of the candidates

Examples

Auctions

- An auctioneer with some items for sale
- A set of bidders express preferences (offers) over items
 - Or combinations of items
- Preferences are submitted either through a valuation function, or according to some bidding language
- Social choice: allocation of items to the bidders

Examples

- Government policy making and referenda
 - A municipality is considering implementing a public project
 - Q1: Should we build a new road, a library or a tennis court?
 - Q2: If we build a library, where shall we build it?
 - Citizens can express their preferences in an online survey or a referendum
 - Social choice: the decision of the municipality on what and where to implement

Specifying preferences

- In all the examples, the players need to submit their preferences in some form
- Representation of preferences can be done by
 - A valuation function (specifying a value for each possible outcome)
 - A ranking (an ordering on possible outcomes)
 - An approval set (which outcomes are approved)
- Possible conflict between increased expressiveness vs complexity of decision problem

Single-item Auctions

Auctions

Set of players N = {1, 2, ..., n}

1 indivisible good

Auctions

- A means of conducting transactions since antiquity
 - First references of auctions date back to ancient Athens and Babylon
- Modern applications:
 - Art works
 - Stamps
 - Flowers (Netherlands)
 - Spectrum licenses
 - Other governmental licenses
 - Pollution rights
 - Google ads
 - eBay
 - Bonds

• ...

Auctions

- Earlier, the most popular types of auctions were
 - The English auction
 - The price keeps increasing in small increments
 - Gradually bidders drop out till there is only one winner left
 - The Dutch auction
 - The price starts at +∞ (i.e., at some very high price) and keeps decreasing
 - Until there exists someone willing to offer the current price
 - There exist also many variants regarding their practical implementation
- These correspond to ascending or descending price trajectories

Sealed bid auctions

- Sealed bid: We think of every bidder submitting his bid in an envelope, without other players seeing it
 - It does not really have to be an envelope, bids can be submitted electronically
 - The main assumption is that it is submitted in a way that other bidders cannot see it
- After collecting the bids, the auctioneer needs to decide:
 - Who wins the item?
 - Easy! Should be the guy with the highest bid
 - Yes in most cases, but not always
 - How much should the winner pay?
 - Not so clear

Sealed bid auctions

Why do we view auctions as games?

- •We assume every player has a valuation v_i for obtaining the good
- Available strategies: each bidder is asked to submit a bid b_i
 - $b_i \in [0, \infty)$
 - Infinite number of strategies
- •The submitted bid b_i may differ from the real value v_i of bidder i

First price auction

Auction rules

- •Let $\mathbf{b} = (b_1, b_2, ..., b_n)$ the vector of all the offers
- Winner: The bidder with the highest offer
 - In case of ties: We assume the winner is the bidder with the lowest index (not important for the analysis)
 - E.g. if there is a tie among bidder 2 and bidder 4, the winner is bidder 2
- Winner's payment: the bid declared by the winner
- Utility function of bidder i,

$$u_{i}(\mathbf{b}) = \begin{cases} v_{i} - b_{i}, & \text{if i is the winner} \\ 0, & \text{otherwise} \end{cases}$$

Incentives in the first price auction

Analysis of first price auctions

- There are too many Nash equilibria
- •Can we predict bidding behavior? Is some equilibrium more likely to occur?
- •Hard to tell what exactly will happen in practice but we can still make some conclusions for first price auctions

Observation: Suppose that $v_1 \ge v_2 \ge v_3 \dots \ge v_n$. Then the profile $(v_2, v_2, v_3, \dots, v_n)$ is a Nash equilibrium

Corollary: The first price auction provides incentives to bidders to hide their true value

•This is highly undesirable when $v_1 - v_2$ is large

Auction mechanisms

We would like to explore alternative payment rules with better properties

<u>Definition</u>: For the single-item setting, an auction mechanism receives as input the bidding vector $\mathbf{b} = (b_1, b_2, ..., b_n)$ and consists of

- •an allocation algorithm (who wins the item)
- •a payment algorithm (how much does the winner pay)

Most mechanisms satisfy individual rationality:

- Non-winners do not pay anything
- •If the winner is bidder i, her payment will not exceed b_i (it is guaranteed that no-one will pay more than what she declared)

Auction mechanisms

Aligning Incentives

- •Ideally, we would like mechanisms that do not provide incentives for strategic behavior
- •How do we even define this mathematically?

An attempt:

<u>Definition:</u> A mechanism is called truthful (or strategyproof, or incentive compatible) if for every bidder i, and for every profile **b**_{-i} of the other bidders, it is a **dominant strategy** for i to declare her real value v_i, i.e., it holds that

$$u_i(v_i, \mathbf{b}_{-i}) \ge u_i(b', \mathbf{b}_{-i})$$
 for every $b' \ne v_i$

Auction mechanisms

- •In a truthful mechanism, every rational agent knows what to play, independently of what the other bidders are doing
- •It is a win-win situation:
 - The auctioneer knows that players should not strategize
 - The bidders also know that they should not spend time on trying to find a different strategy
- Very powerful property for a mechanism
- Fact: The first-price mechanism is not truthful

Are there truthful mechanisms?

The 2nd price mechanism (Vickrey auction)

[Vickrey '61]

- Allocation algorithm: same as before, the bidder with the highest offer
 - In case of ties: we assume the winner is the bidder with the lowest index
- Payment algorithm: the winner pays the 2nd highest bid
- Hence, the auctioneer offers a discount to the winner

Observation: the payment does not depend on the winner's bid!

The bid of each player determines if he wins or not, but not what he will pay

The 2nd price mechanism (Vickrey auction)

[Vickrey '61] (Nobel prize in economics, 1996)

•Theorem: The 2nd price auction is a truthful mechanism

Proof sketch:

- •Fix a bidder i, and let **b**_{-i} be an arbitrary bidding profile for the rest of the players
- •Let $b^* = \max_{j \neq i} b_j$
- \bullet Consider now all possible cases for the final utility of bidder i, if he plays v_i
 - $v_i < b^*$
 - $v_i > b^*$
 - $v_i = b^*$
 - In all these different cases, we can prove that bidder i does not become better off by deviating to another strategy

Optimization objectives

What do we want to optimize in an auction?

Usual objectives:

- Social welfare (the total welfare produced for the involved entities)
- Revenue (the payment received by the auctioneer)

We will focus first on social welfare

Optimization objectives

What do we want to optimize in an auction?

<u>Definition</u>: The utilitarian social welfare produced by a bidding vector **b** is $SW(\mathbf{b}) = \sum_i u_i(\mathbf{b})$

- •The summation includes the auctioneer's utility (= the auctioneer's payment)
- •The auctioneer's payment cancels out with the winner's payment
- For the single-item setting, SW(b) = the value of the winner for the item
- An auction is welfare maximizing if it always produces an allocation with optimal social welfare when bidders are truthful

Vickrey auction: an ideal auction format

Summing up:

Theorem: The 2nd price auction is

- truthful [incentive guarantees]
- welfare maximizing [economic performance guarantees]
- •implementable in polynomial time [computational performance guarantees]

Even though the valuations are private information to the bidders, the Vickrey auction solves the welfare maximization problem as if the valuations were known

Generalizations to single-parameter environments

Single-parameter mechanisms

- In many cases, we do not have a single item to sell, but multiple items
- But still, the valuation of a bidder could be determined by a single number (e.g., value per unit)
- Note: the valuation function may depend on various other parameters, but we assume only a single parameter is private information to the bidder
 - The other parameters may be publicly known information
- We can treat all these settings in a unified manner
- Our focus: Direct revelation mechanisms
 - The mechanism asks each bidder to submit the parameter that completely determines her valuation function

Examples of single-parameter environments

•Single-item auctions:

- One item for sale
- each bidder is asked to submit his value for acquiring the item

k-item unit-demand auctions

- k identical items for sale
- each bidder submits his value per unit and can win at most one unit

Knapsack auctions

 k identical items, each bidder has a value for obtaining a certain number of units

Single-minded auctions

- a set of (non-identical) items for sale
- each bidder is interested in acquiring a specific subset of items (known to the mechanism)
- Each bidder submits his value for the set she desires

Examples of single-parameter environments

Sponsored search auctions

- multiple advertising slots available, arranged from top to bottom
- each bidder interested in acquiring as high a slot as possible
- each bidder submits his value per click

Public project mechanisms

- deciding whether to build a public project (e.g., a park)
- each bidder submits his value for having the project built

In all these settings, we can have multiple winners in the auction

Some Notation

- Suppose we have n players
- •Let v_i be the parameter that is private information to player i
 - Usually v_i corresponds to value per unit, or value obtained at the desirable outcome, or maximum amount willing to pay (dependent on the context)

General form of direct-revelation mechanisms for single-parameter problems:

- •Input: The bidding vector $\mathbf{b} = (\mathbf{b}_1, ..., \mathbf{b}_n)$ by the players
 - each b_i may differ from v_i
- Allocation rule: Choose an allocation $\mathbf{x}(\mathbf{b}) = (\mathbf{x}_1(\mathbf{b}), \mathbf{x}_2(\mathbf{b}), ..., \mathbf{x}_n(\mathbf{b}))$
 - $x_i(\mathbf{b})$ = number of units received by pl. i or more generally the decision on what is allocated to i
- Payment rule: $p(b) = (p_1(b), p_2(b), ..., p_n(b))$
 - $p_i(\mathbf{b})$ = payment for bidder i

Some Notation

- We will use (x, p) to refer to a mechanism with allocation function x, and payment function p
- •Final utility of bidder i in a mechanism M = (x, p):
 - $u_i(b) = v_i x_i(b) p_i(b)$
 - Quasi-linear form of utility functions
- •For simplicity, we often write $(x_1, x_2, ..., x_n)$ instead of $(x_1(\mathbf{b}), x_2(\mathbf{b}), ..., x_n(\mathbf{b}))$
- We focus on mechanisms that satisfy Individual Rationality:
 - If a bidder i is a non-winner $(x_i(\mathbf{b}) = 0)$, then $p_i(\mathbf{b}) = 0$
 - For winners, the payment rule satisfies $p_i(\mathbf{b}) \in [0, b_i x_i(\mathbf{b})]$ for every bidding vector \mathbf{b} and every i
 - The auctioneer can never ask a bidder for a payment higher than her declared total value for what she won

Examples of single-parameter environments

Describing the feasible allocations

- Single-item auctions:
 - $x_i \in \{0, 1\}$ for every i, and $\sum_i x_i = 1$
- •k-item unit-demand auctions
 - k identical items for sale
 - $x_i \in \{0, 1\}, \sum_i x_i <= k$
- Knapsack auctions
 - k identical items for sale
 - For each bidder, demand of w_i units
 - $x_i \in \{0, 1\}$ for every i, $\sum_i w_i x_i \le k$
- Public project mechanisms
 - Deciding whether to build a public project (e.g., a park)
 - Only 2 feasible allocations: (0, 0, ..., 0) or (1, 1, ..., 1)

Allocation rules and truthful mechanisms

- Can we understand how to derive truthful mechanisms?
- Actually, we can rephrase this as:
 - Suppose we are given an allocation rule x
 - Can we tell if x can be combined with a pricing rule p, so that (x, p) is a truthful mechanism?
- This would allow us to focus only on designing the allocation algorithm appropriately
- Consider the single-item auction
 - Allocation rule 1: Give the item to the highest bidder
 - Allocation rule 2: Give the item to the 2nd highest bidder
- •For rule 1, we have seen how to turn it into a truthful mechanism (Vickrey auction)
- •For rule 2?
 - We have not seen how to do this, but we have also not proved that it cannot be done

Allocation rules and truthful mechanisms

- Consider a mechanism with allocation rule x
- •Fix a player i, and fix a profile **b**_{-i} for the other players
- •Allocation to player i at a profile $\mathbf{b} = (z, \mathbf{b}_{-i})$ is given by $x_i(\mathbf{b})$
- •Keeping **b**_{-i} fixed, we can view the allocation to player i as a function of his bid
 - $x_i = x_i(z, \mathbf{b}_{-i})$, if bidder i bids z
- •<u>Definition:</u> An allocation rule is monotone if for every bidder i, and every profile \mathbf{b}_{-i} , the allocation $x_i(z, \mathbf{b}_{-i})$ to i is non-decreasing in z
- •I.e., bidding higher can only get you more stuff

Monotonicity of allocation rules

Examples

- Back to the single-item auction
- The allocation rule that gives the item to the highest bidder is monotone
 - If a bidder wins at profile b, she continues to be a winner if she raises her own bid (keeping b_{-i} fixed)
 - If she was not a winner at **b**, then by raising her bid, she will either remain a non-winner or she will become a winner
- •The allocation rule that gives the item to the 2nd highest bidder is not monotone
 - If I am a winner and raise my bid, I may become the highest bidder and will stop being a winner

[Myerson '81]

- Theorem: For every single-parameter environment,
 - An allocation rule **x** can be turned into a truthful mechanism if and only if it is monotone
 - If x is monotone, then there is a unique payment rule p, so that (x, p) is
 a truthful mechanism
 - Subject to the constraint that if $b_i = 0$, then $p_i = 0$
- One of the classic results in mechanism design
- •In fact, in many cases we can also compute the payments by a simple formula

•Allocation rule x is truthful =>

Allocation rule x is monotone: for all z, y, $(x(z) - x(y))(z - y) \ge 0$

If z is the true value:

$$\boldsymbol{x}(z) \cdot z - \boldsymbol{p}(z) \ge \boldsymbol{x}(y) \cdot z - \boldsymbol{p}(y)$$
 (1)

If y is the true value:

$$\mathbf{x}(y) \cdot y - \mathbf{p}(y) \ge \mathbf{x}(z) \cdot y - \mathbf{p}(z)$$
 (2)

Summing up (1) and (2):

$$\mathbf{x}(z) \cdot z + \mathbf{x}(y) \cdot y \ge \mathbf{x}(y) \cdot z + \mathbf{x}(z) \cdot y \Leftrightarrow$$

$$(\mathbf{x}(z) - \mathbf{x}(y)) \cdot z \ge (\mathbf{x}(z) - \mathbf{x}(y)) \cdot y \Leftrightarrow$$

$$(\mathbf{x}(z) - \mathbf{x}(y)) \cdot (z - y) \ge 0$$

Myerson's lemma and payment formula

- •For the payment rule, we need to look for each bidder at the allocation function $x_i(z, \mathbf{b}_{-i})$
- For the single-item truthful auction:
 - Fix \mathbf{b}_{-i} and let $\mathbf{b}^* = \max_{j \neq i} \mathbf{b}_j$

Facts:

- •For any fixed **b**_{-i}, the allocation function is piecewise linear with 1 jump
- •The Vickrey payment is precisely the value at which the jump happens
- •The jump changes the allocation from 0 to 1 unit

Myerson's lemma and payment formula

For most scenarios of interest

- The allocation is piecewise linear with multiple jumps
- The jump determines how many extra units the bidder wins

- Suppose bidder i bids b_i
- Look at the jumps of x_i(z, b_{-i}) in the interval [0, b_i]
- Suppose we have k jumps
- Jump at z_1 : w_1
- Jump at z₂: w₂ w₁
- Jump at z_3 : $w_3 w_2$
- ...
- Jump at z_k : $w_k w_{k-1}$

Myerson's lemma and payment formula

For most scenarios of interest

- The allocation is piecewise linear with multiple jumps
- •The jump determines how many extra units the bidder wins

Payment formula

- •For each bidder i at a profile b, find all the jump points within [0, b_i]
- $\bullet p_i(b) = \sum_j z_j \cdot [jump \text{ at } z_j]$ $= \sum_j z_j \cdot [w_j w_{j-1}]$
- •The formula can also be generalized for monotone but not piecewise linear functions

Allocation rule x is truthful (and thus, monotone) =>
 find appropriate payments p

If z is the true value:

$$\boldsymbol{x}(z) \cdot z - \boldsymbol{p}(z) \ge \boldsymbol{x}(y) \cdot z - \boldsymbol{p}(y)$$
 (1)

If y is the true value:

$$\mathbf{x}(y) \cdot y - \mathbf{p}(y) \ge \mathbf{x}(z) \cdot y - \mathbf{p}(z)$$
 (2)

Combining (1) and (2), we get:

$$z(\boldsymbol{x}(z) - \boldsymbol{x}(y)) \le \boldsymbol{p}(y) - \boldsymbol{p}(z) \le y(\boldsymbol{x}(z) - \boldsymbol{x}(y))$$

Assuming that y tends to z from above, in the limit, we get:

$$\boldsymbol{p}'(z) = z \cdot \boldsymbol{x}'(z) \tag{3}$$

Allocation rule x is truthful (and thus, monotone) =>
 find appropriate payments p

$$\boldsymbol{p}'(z) = z \cdot \boldsymbol{x}'(z) \tag{3}$$

We assume $\mathbf{p}(0) = 0$ (normalization) and solve (3):

$$\mathbf{p}_{i}(b_{i}, \mathbf{b}_{-i}) = \int_{0}^{b_{i}} z \cdot \mathbf{x}'_{i}(z, \mathbf{b}_{-i}) dz = b_{i} \cdot \mathbf{x}_{i}(b_{i}, \mathbf{b}_{-i}) - \int_{0}^{b_{i}} \mathbf{x}_{i}(z, \mathbf{b}_{-i}) dz$$

$$p_i(b_i, b_{-i}) = b_i \cdot x_i(b_i, b_{-i}) - \int_0^{b_i} x_i(z, b_{-i}) dz$$

i's utility:
$$u_i(b_i, \mathbf{b}_{-i}) = (v_i - b_i) \cdot \mathbf{x}_i(b_i, \mathbf{b}_{-i}) + \int_0^{b_i} \mathbf{x}_i(z, \mathbf{b}_{-i}) dz$$

Any monotone allocation rule x is truthful with payments p

$$p_i(b_i, b_{-i}) = b_i \cdot x_i(b_i, b_{-i}) - \int_0^{b_i} x_i(z, b_{-i}) dz$$

i's utility:
$$u_i(b_i, \mathbf{b}_{-i}) = (v_i - b_i) \cdot \mathbf{x}_i(b_i, \mathbf{b}_{-i}) + \int_0^{b_i} \mathbf{x}_i(z, \mathbf{b}_{-i}) dz$$

Any monotone allocation rule x is truthful with payments p

i's utility:
$$u_i(b_i, \mathbf{b}_{-i}) = (v_i - b_i) \cdot \mathbf{x}_i(b_i, \mathbf{b}_{-i}) + \int_0^{b_i} \mathbf{x}_i(z, \mathbf{b}_{-i}) dz$$

Any monotone allocation rule x is truthful with payments p

i's utility:
$$u_i(b_i, \mathbf{b}_{-i}) = (v_i - b_i) \cdot \mathbf{x}_i(b_i, \mathbf{b}_{-i}) + \int_0^{b_i} \mathbf{x}_i(z, \mathbf{b}_{-i}) dz$$

Applying Myerson's lemma

- Single-item auctions
- •The allocation rule of giving the item to the highest bidder is monotone
- •The payment rule of Myerson gives us precisely the Vickrey auction
 - Non-winners pay nothing: If a bidder i is not a winner, there is no jump within [0, b_i] in the function x_i(z, b_{-i})
 - The winner pays $(2^{nd} \text{ highest bid}) \cdot [\text{jump at } 2^{nd} \text{ highest bid}] = 2^{nd} \text{ highest bid}$
- •Corollary: The Vickrey auction is the only truthful mechanism for single-item auctions, when the winner is the highest bidder