Algorithmic Game Theory
 Introduction to Mechanism Design for Single Parameter Environments

Vangelis Markakis
markakis@gmail.com

Mechanism Design

- What is mechanism design?
- It can be seen as reverse game theory
- Main goal: design the rules of a game so as to
- avoid strategic behavior by the players
- and more generally, enforce a certain behavior for the players or other desirable properties
- Applied to problems where a "social choice" needs to be made
- i.e., an aggregation of individual preferences to a single joint decision
- strategic behavior = declaring false preferences in order to gain a higher utility

Examples

- Elections
- Parliamentary elections, committee elections, council elections, etc
- A set of voters
- A set of candidates
- Each voter expresses preferences according to the election rules
- E.g., by specifying his single top choice, or by specifying his first few choices, or by submitting a full ranking of the candidates
- Social choice: can be a single candidate (single-winner election) or a set of candidates (multi-winner election) or a ranking of the candidates

Examples

- Auctions
- An auctioneer with some items for sale
- A set of bidders express preferences (offers) over items
- Or combinations of items
- Preferences are submitted either through a valuation function, or according to some bidding language
- Social choice: allocation of items to the bidders

Examples

- Government policy making and referenda
- A municipality is considering implementing a public project
- Q1: Should we build a new road, a library or a tennis court?
- Q2: If we build a library, where shall we build it?
- Citizens can express their preferences in an online survey or a referendum
- Social choice: the decision of the municipality on what and where to implement

Specifying preferences

- In all the examples, the players need to submit their preferences in some form
- Representation of preferences can be done by
- A valuation function (specifying a value for each possible outcome)
- A ranking (an ordering on possible outcomes)
- An approval set (which outcomes are approved)
- Possible conflict between increased expressiveness vs complexity of decision problem

Single-item Auctions

Auctions

1 indivisible good

Set of players
$N=\{1,2, \ldots, n\}$

Auctions

- A means of conducting transactions since antiquity
- First references of auctions date back to ancient Athens and Babylon
- Modern applications:
- Art works
- Stamps
- Flowers (Netherlands)
- Spectrum licenses
- Other governmental licenses
- Pollution rights
- Google ads
- eBay
- Bonds

Auctions

- Earlier, the most popular types of auctions were
- The English auction
- The price keeps increasing in small increments
- Gradually bidders drop out till there is only one winner left
- The Dutch auction
- The price starts at $+\infty$ (i.e., at some very high price) and keeps decreasing
- Until there exists someone willing to offer the current price
- There exist also many variants regarding their practical implementation
- These correspond to ascending or descending price trajectories

Sealed bid auctions

- Sealed bid: We think of every bidder submitting his bid in an envelope, without other players seeing it
- It does not really have to be an envelope, bids can be submitted electronically
- The main assumption is that it is submitted in a way that other bidders cannot see it
- After collecting the bids, the auctioneer needs to decide:
- Who wins the item?
- Easy! Should be the guy with the highest bid
- Yes in most cases, but not always
- How much should the winner pay?
- Not so clear

Sealed bid auctions

Why do we view auctions as games?
-We assume every player has a valuation v_{i} for obtaining the good

- Available strategies: each bidder is asked to submit a bid b_{i}
- $b_{i} \in[0, \infty)$
- Infinite number of strategies
-The submitted bid b_{i} may differ from the real value v_{i} of bidder i

First price auction

Auction rules

- Let $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ the vector of all the offers
-Winner: The bidder with the highest offer
- In case of ties: We assume the winner is the bidder with the lowest index (not important for the analysis)
- E.g. if there is a tie among bidder 2 and bidder 4, the winner is bidder 2
-Winner's payment: the bid declared by the winner
- Utility function of bidder i,

$$
u_{i}(b)= \begin{cases}v_{i}-b_{i}, & \text { if } i \text { is the winner } \\ 0, & \text { otherwise }\end{cases}
$$

Incentives in the first price auction

Analysis of first price auctions

- There are too many Nash equilibria
-Can we predict bidding behavior? Is some equilibrium more likely to occur?
- Hard to tell what exactly will happen in practice but we can still make some conclusions for first price auctions

Observation: Suppose that $v_{1} \geq v_{2} \geq v_{3} \ldots \geq v_{n}$. Then the profile $\left(v_{2}, v_{2}, v_{3}, \ldots, v_{n}\right)$ is a Nash equilibrium

Corollary: The first price auction provides incentives to bidders to hide their true value
-This is highly undesirable when $v_{1}-v_{2}$ is large

Auction mechanisms

We would like to explore alternative payment rules with better properties

Definition: For the single-item setting, an auction mechanism receives as input the bidding vector $b=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ and consists of
-an allocation algorithm (who wins the item)
-a payment algorithm (how much does the winner pay)

Most mechanisms satisfy individual rationality:

- Non-winners do not pay anything
-If the winner is bidder i, her payment will not exceed b_{i} (it is guaranteed that no-one will pay more than what she declared)

Auction mechanisms

Aligning Incentives
-Ideally, we would like mechanisms that do not provide incentives for strategic behavior

- How do we even define this mathematically?

An attempt:
Definition: A mechanism is called truthful (or strategyproof, or incentive compatible) if for every bidder i , and for every profile \mathbf{b}_{-i} of the other bidders, it is a dominant strategy for i to declare her real value v_{i}, i.e., it holds that

$$
u_{i}\left(v_{i}, \boldsymbol{b}_{-i}\right) \geq u_{i}\left(b^{\prime}, b_{-i}\right) \text { for every } b^{\prime} \neq v_{i}
$$

Auction mechanisms

- In a truthful mechanism, every rational agent knows what to play, independently of what the other bidders are doing
- It is a win-win situation:
- The auctioneer knows that players should not strategize
- The bidders also know that they should not spend time on trying to find a different strategy
- Very powerful property for a mechanism
\bullet Fact: The first-price mechanism is not truthful

Are there truthful mechanisms?

The $2^{\text {nd }}$ price mechanism (Vickrey auction)

[Vickrey '61]

- Allocation algorithm: same as before, the bidder with the highest offer
- In case of ties: we assume the winner is the bidder with the lowest index
- Payment algorithm: the winner pays the $2^{\text {nd }}$ highest bid
- Hence, the auctioneer offers a discount to the winner

Observation: the payment does not depend on the winner's bid!

- The bid of each player determines if he wins or not, but not what he will pay

The $2^{\text {nd }}$ price mechanism (Vickrey auction)

[Vickrey '61] (Nobel prize in economics, 1996)
-Theorem: The $2^{\text {nd }}$ price auction is a truthful mechanism
Proof sketch:

- Fix a bidder \mathbf{i}, and let \mathbf{b}_{-i} be an arbitrary bidding profile for the rest of the players
-Let $b^{*}=\max _{j \neq i} b_{j}$
- Consider now all possible cases for the final utility of bidder i, if he plays v_{i}
- $v_{i}<b^{*}$
- $v_{i}>b^{*}$
- $v_{i}=b^{*}$
- In all these different cases, we can prove that bidder i does not become better off by deviating to another strategy

Optimization objectives

What do we want to optimize in an auction?

Usual objectives:

- Social welfare (the total welfare produced for the involved entities)
-Revenue (the payment received by the auctioneer)

We will focus first on social welfare

Optimization objectives

What do we want to optimize in an auction?

Definition: The utilitarian social welfare produced by a bidding vector \mathbf{b} is $\operatorname{SW}(\mathbf{b})=\sum_{i} u_{i}(\mathbf{b})$
-The summation includes the auctioneer's utility (= the auctioneer's payment)
-The auctioneer's payment cancels out with the winner's payment
$>$ For the single-item setting, $\mathrm{SW}(\mathbf{b})=$ the value of the winner for the item
\Rightarrow An auction is welfare maximizing if it always produces an allocation with optimal social welfare when bidders are truthful

Vickrey auction: an ideal auction format

Summing up:

Theorem: The $2^{\text {nd }}$ price auction is
-truthful [incentive guarantees]

- welfare maximizing [economic performance guarantees]
-implementable in polynomial time [computational performance guarantees]

Even though the valuations are private information to the bidders, the Vickrey auction solves the welfare maximization problem as if the valuations were known

Generalizations to single-parameter environments

Single-parameter mechanisms

- In many cases, we do not have a single item to sell, but multiple items
- But still, the valuation of a bidder could be determined by a single number (e.g., value per unit)
- Note: the valuation function may depend on various other parameters, but we assume only a single parameter is private information to the bidder
- The other parameters may be publicly known information
- We can treat all these settings in a unified manner
- Our focus: Direct revelation mechanisms
- The mechanism asks each bidder to submit the parameter that completely determines her valuation function

Examples of single-parameter environments

- Single-item auctions:
- One item for sale
- each bidder is asked to submit his value for acquiring the item
-k-item unit-demand auctions
- k identical items for sale
- each bidder submits his value per unit and can win at most one unit
- Knapsack auctions
- k identical items, each bidder has a value for obtaining a certain number of units
- Single-minded auctions
- a set of (non-identical) items for sale
- each bidder is interested in acquiring a specific subset of items (known to the mechanism)
- Each bidder submits his value for the set she desires

Examples of single-parameter environments

- Sponsored search auctions

- multiple advertising slots available, arranged from top to bottom
- each bidder interested in acquiring as high a slot as possible
- each bidder submits his value per click
- Public project mechanisms
- deciding whether to build a public project (e.g., a park)
- each bidder submits his value for having the project built

In all these settings, we can have multiple winners in the auction

Some Notation

-Suppose we have n players

- Let v_{i} be the parameter that is private information to player i
- Usually v_{i} corresponds to value per unit, or value obtained at the desirable outcome, or maximum amount willing to pay (dependent on the context)

General form of direct-revelation mechanisms for singleparameter problems:

- Input: The bidding vector $\mathbf{b}=\left(\mathrm{b}_{1}, \ldots, \mathbf{b}_{n}\right)$ by the players
- each b_{i} may differ from v_{i}
-Allocation rule: Choose an allocation $\mathbf{x}(\mathbf{b})=\left(\mathrm{x}_{1}(\mathbf{b}), \mathrm{x}_{2}(\mathbf{b}), \ldots, \mathrm{x}_{\mathrm{n}}(\mathbf{b})\right)$
- $\quad x_{i}(b)=$ number of units received by pl . i or more generally the decision on what is allocated to i
-Payment rule: $\mathbf{p}(\mathbf{b})=\left(\mathrm{p}_{1}(\mathbf{b}), \mathrm{p}_{2}(\mathbf{b}), \ldots, \mathrm{p}_{\mathrm{n}}(\mathbf{b})\right)$
- $p_{i}(b)=$ payment for bidder i

Some Notation

-We will use (\mathbf{x}, \mathbf{p}) to refer to a mechanism with allocation function \mathbf{x}, and payment function \mathbf{p}
-Final utility of bidder i in a mechanism $\mathrm{M}=(\mathbf{x}, \mathbf{p})$:

- $u_{i}(\mathbf{b})=v_{i} x_{i}(\mathbf{b})-p_{i}(\mathbf{b})$
- Quasi-linear form of utility functions
- For simplicity, we often write ($x_{1}, x_{2}, \ldots, x_{n}$) instead of ($x_{1}(b)$, $\mathrm{x}_{2}(\mathrm{~b}), \ldots, \mathrm{x}_{\mathrm{n}}(\mathrm{b})$)
-We focus on mechanisms that satisfy Individual Rationality:
- If a bidder i is a non-winner $\left(x_{i}(b)=0\right)$, then $p_{i}(b)=0$
- For winners, the payment rule satisfies $p_{i}(b) \in\left[0, b_{i} x_{i}(b)\right]$ for every bidding vector \mathbf{b} and every \mathbf{i}
- The auctioneer can never ask a bidder for a payment higher than her declared total value for what she won

Examples of single-parameter environments

Describing the feasible allocations

- Single-item auctions:
- $x_{i} \in\{0,1\}$ for every i, and $\Sigma_{i} x_{i}=1$
\bullet-item unit-demand auctions
- kidentical items for sale
- $x_{i} \in\{0,1\}, \Sigma_{i} x_{i}<=k$
-Knapsack auctions
- kidentical items for sale
- For each bidder, demand of w_{i} units
- $x_{i} \in\{0,1\}$ for every $i, \sum_{i} w_{i} x_{i}<=k$
- Public project mechanisms
- Deciding whether to build a public project (e.g., a park)
- Only 2 feasible allocations: ($0,0, \ldots, 0$) or ($1,1, \ldots, 1$)

Allocation rules and truthful mechanisms

-Can we understand how to derive truthful mechanisms?
-Actually, we can rephrase this as:

- Suppose we are given an allocation rule \mathbf{x}
- Can we tell if \mathbf{x} can be combined with a pricing rule \mathbf{p}, so that (\mathbf{x}, \mathbf{p}) is a truthful mechanism?
-This would allow us to focus only on designing the allocation algorithm appropriately
- Consider the single-item auction
- Allocation rule 1: Give the item to the highest bidder
- Allocation rule 2: Give the item to the $2^{\text {nd }}$ highest bidder
- For rule 1, we have seen how to turn it into a truthful mechanism
(Vickrey auction)
\bullet For rule 2?
- We have not seen how to do this, but we have also not proved that it 30 cannot be done

Allocation rules and truthful mechanisms

-Consider a mechanism with allocation rule \mathbf{x}
-Fix a player \mathbf{i}, and fix a profile \mathbf{b}_{-i} for the other players

- Allocation to player i at a profile $\mathbf{b}=\left(z, \mathbf{b}_{\mathrm{i}}\right)$ is given by $\mathrm{x}_{\mathrm{i}}(\mathbf{b})$
-Keeping \mathbf{b}_{-i} fixed, we can view the allocation to player i as a function of his bid
- $x_{i}=x_{i}\left(z, b_{-i}\right)$, if bidder i bids z
- Definition: An allocation rule is monotone if for every bidder i , and every profile \mathbf{b}_{-i}, the allocation $x_{i}\left(z_{,} \mathbf{b}_{-i}\right)$ to i is non-decreasing in Z
-l.e., bidding higher can only get you more stuff

Monotonicity of allocation rules

Examples

- Back to the single-item auction
-The allocation rule that gives the item to the highest bidder is monotone
- If a bidder wins at profile \mathbf{b}, she continues to be a winner if she raises her own bid (keeping \mathbf{b}_{-i} fixed)
- If she was not a winner at \mathbf{b}, then by raising her bid, she will either remain a non-winner or she will become a winner
-The allocation rule that gives the item to the $2^{\text {nd }}$ highest bidder is not monotone
- If I am a winner and raise my bid, I may become the highest bidder and will stop being a winner

Myerson's lemma

[Myerson '81]
-Theorem: For every single-parameter environment,

- An allocation rule \mathbf{x} can be turned into a truthful mechanism if and only if it is monotone
- If \mathbf{x} is monotone, then there is a unique payment rule \mathbf{p}, so that (\mathbf{x}, \mathbf{p}) is a truthful mechanism
- Subject to the constraint that if $b_{i}=0$, then $p_{i}=0$
- One of the classic results in mechanism design
- In fact, in many cases we can also compute the payments by a simple formula

Myerson's lemma

- Allocation rule \mathbf{x} is truthful =>

Allocation rule \mathbf{x} is monotone: forall $z, y,(x(z)-\mathbf{x}(y))(z-y) \geq 0$ If z is the true value:

$$
\begin{equation*}
\boldsymbol{x}(z) \cdot z-\boldsymbol{p}(z) \geq \boldsymbol{x}(y) \cdot z-\boldsymbol{p}(y) \tag{1}
\end{equation*}
$$

If y is the true value:

$$
\begin{equation*}
\boldsymbol{x}(y) \cdot y-\boldsymbol{p}(y) \geq \boldsymbol{x}(z) \cdot y-\boldsymbol{p}(z) \tag{2}
\end{equation*}
$$

Summing up (1) and (2):

$$
\begin{aligned}
\boldsymbol{x}(z) \cdot z+\boldsymbol{x}(y) \cdot y & \geq \boldsymbol{x}(y) \cdot z+\boldsymbol{x}(z) \cdot y \Leftrightarrow \\
(\boldsymbol{x}(z)-\boldsymbol{x}(y)) \cdot z & \geq(\boldsymbol{x}(z)-\boldsymbol{x}(y)) \cdot y \Leftrightarrow \\
(\boldsymbol{x}(z)-\boldsymbol{x}(y)) \cdot(z-y) & \geq 0
\end{aligned}
$$

Myerson's lemma and payment formula

- For the payment rule, we need to look for each bidder at the allocation function $x_{i}\left(z, b_{-i}\right)$
-For the single-item truthful auction:
- Fix b_{-i} and let $b^{*}=\max _{j \neq i} b_{j}$

Facts:
-For any fixed $\mathbf{b}_{-\boldsymbol{-}}$, the allocation function is piecewise linear with 1 jump
-The Vickrey payment is precisely the value at which the jump happens
-The jump changes the allocation from 0 to 1 unit

Myerson's lemma and payment formula

For most scenarios of interest
-The allocation is piecewise linear with multiple jumps
-The jump determines how many extra units the bidder wins

- Suppose bidder i bids b_{i}
- Look at the jumps of $x_{i}\left(z, b_{-i}\right)$ in the interval [0, b_{i}]
- Suppose we have k jumps
- Jump at $z_{1}: w_{1}$
- Jump at $z_{2}: w_{2}-w_{1}$
- Jump at $z_{3}: W_{3}-W_{2}$
- ...
- Jump at $\mathrm{z}_{\mathrm{k}}: \mathrm{w}_{\mathrm{k}}-\mathrm{w}_{\mathrm{k}-1}$

Myerson's lemma and payment formula

For most scenarios of interest
-The allocation is piecewise linear with multiple jumps
-The jump determines how many extra units the bidder wins

Payment formula

- For each bidder i at a profile b, find all the jump points within [0,
b_{i}]

$$
\begin{aligned}
\bullet p_{i}(b) & =\sum_{j} z_{j} \cdot\left[\text { jump at } z_{j}\right] \\
& =\sum_{j} z_{j} \cdot\left[w_{j}-w_{j-1}\right]
\end{aligned}
$$

-The formula can also be generalized for monotone but not piecewise linear functions

Myerson's lemma

-Allocation rule \mathbf{x} is truthful (and thus, monotone) => find appropriate payments \mathbf{p}

If z is the true value:

$$
\begin{equation*}
\boldsymbol{x}(z) \cdot z-\boldsymbol{p}(z) \geq \boldsymbol{x}(y) \cdot z-\boldsymbol{p}(y) \tag{1}
\end{equation*}
$$

If y is the true value:

$$
\begin{equation*}
\boldsymbol{x}(y) \cdot y-\boldsymbol{p}(y) \geq \boldsymbol{x}(z) \cdot y-\boldsymbol{p}(z) \tag{2}
\end{equation*}
$$

Combining (1) and (2), we get:

$$
z(\boldsymbol{x}(z)-\boldsymbol{x}(y)) \leq \boldsymbol{p}(y)-\boldsymbol{p}(z) \leq y(\boldsymbol{x}(z)-\boldsymbol{x}(y))
$$

Assuming that y tends to z from above, in the limit, we get:

$$
\begin{equation*}
\boldsymbol{p}^{\prime}(z)=z \cdot \boldsymbol{x}^{\prime}(z) \tag{3}
\end{equation*}
$$

Myerson's lemma

-Allocation rule \mathbf{x} is truthful (and thus, monotone) => find appropriate payments \mathbf{p}

$$
\begin{equation*}
\boldsymbol{p}^{\prime}(z)=z \cdot \boldsymbol{x}^{\prime}(z) \tag{3}
\end{equation*}
$$

We assume $\boldsymbol{p}(0)=0$ (normalization) and solve (3):

$$
\boldsymbol{p}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\int_{0}^{b_{i}} z \cdot \boldsymbol{x}_{i}^{\prime}\left(z, \boldsymbol{b}_{-i}\right) d z=b_{i} \cdot \boldsymbol{x}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)-\int_{0}^{b_{i}} \boldsymbol{x}_{i}\left(z, \boldsymbol{b}_{-i}\right) d z
$$

$$
\boldsymbol{p}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=b_{i} \cdot \boldsymbol{x}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)-\int_{0}^{b_{i}} \boldsymbol{x}_{i}\left(z, \boldsymbol{b}_{-i}\right) d z
$$

i 's utility: $\quad u_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\left(v_{i}-b_{i}\right) \cdot \boldsymbol{x}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)+\int_{0}^{b_{i}} \boldsymbol{x}_{i}\left(z, \boldsymbol{b}_{-i}\right) d z$

Myerson's lemma

- Any monotone allocation rule \mathbf{x} is truthful with payments \mathbf{p}

$$
\boldsymbol{p}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=b_{i} \cdot \boldsymbol{x}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)-\int_{0}^{b_{i}} \boldsymbol{x}_{i}\left(z, \boldsymbol{b}_{-i}\right) d z
$$

i 's utility: $\quad u_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\left(v_{i}-b_{i}\right) \cdot \boldsymbol{x}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)+\int_{0}^{b_{i}} \boldsymbol{x}_{i}\left(z, \boldsymbol{b}_{-i}\right) d z$

Myerson’s lemma

- Any monotone allocation rule \mathbf{x} is truthful with payments \mathbf{p}
i 's utility: $\quad u_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\left(v_{i}-b_{i}\right) \cdot \boldsymbol{x}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)+\int_{0}^{b_{i}} \boldsymbol{x}_{i}\left(z, \boldsymbol{b}_{-i}\right) d z$

Myerson’s lemma

- Any monotone allocation rule \mathbf{x} is truthful with payments \mathbf{p}
i 's utility: $\quad u_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)=\left(v_{i}-b_{i}\right) \cdot \boldsymbol{x}_{i}\left(b_{i}, \boldsymbol{b}_{-i}\right)+\int_{0}^{b_{i}} \boldsymbol{x}_{i}\left(z, \boldsymbol{b}_{-i}\right) d z$

Applying Myerson's lemma

- Single-item auctions
-The allocation rule of giving the item to the highest bidder is monotone
-The payment rule of Myerson gives us precisely the Vickrey auction
- Non-winners pay nothing: If a bidder i is not a winner, there is no jump within $\left[0, b_{i}\right]$ in the function $x_{i}\left(z, b_{-i}\right)$
- The winner pays ($2^{\text {nd }}$ highest bid) $\cdot\left[j u m p\right.$ at $2^{\text {nd }}$ highest bid] $=2^{\text {nd }}$ highest bid
-Corollary: The Vickrey auction is the only truthful mechanism for single-item auctions, when the winner is the highest bidder

