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Foreword

In 1959, Arthur Samuel (1901–1990) published Some Studies in Machine Learning
Using the Game of Checkers [1]. The paper was one of the earliest uses of the
words “machine learning” [2]. He wrote, “As a result of these experiments one can
say with some certainty that it is now possible to devise learning schemes which
will greatly outperform an average person and that such learning schemes may
eventually be economically feasible as applied to real-life problems” [1, p. 548].
His program together with IBM’s first stored-program computer, the 701,
demonstrated this statement by winning a game of checkers against a human expert
in Connecticut. Since that time, games have provided fertile research ground for
artificial intelligence, and in 1996, the Chinook Project for checkers was recognized
by the Guinness Book of World Records as the first computer program to win a
human world championship [3]. The day to apply machine learning to challenging
real-world problems is here and now.

What is “machine learning”? Several suggested definitions are discussed on the
IBM community site [4], including “The purpose of machine learning is to learn
from training data in order to make as good as possible predictions on new, unseen,
data.” This definition suggests some of the challenges with machine learning. The
program needs to build a model based on training data that includes the correct
answer (i.e., supervised learning) and that minimizes the error in predicting new
data. Alternatively, algorithms may look for structure in the data and group similar
clusters (i.e., unsupervised learning). Too closely mirroring the training data results
in overfitting and poor results with unknown data, and too little fitting results in
unacceptable errors in predictions. In addition, as updated known data become
available, the model may need to be re-adjusted to retain generalizability. Thus, the
methods used in machine learning are constantly being researched and assessed
against real-life data from various fields along with the computer technologies
needed to implement them.

This book applies and assesses machine learning for classes of important
real-life problems, an area often referred to as “data analytics.” Authors have
contributed leading research in the areas of medical, biological and signal sciences;
social studies and social interactions; traffic, computer and power networks; and
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digital forensics. The book also looks to the future for research areas that may yield
theoretical advances. The editors have provided a valuable and much-needed col-
lection of leading research in machine learning and data analytics that will
increasingly impact each of us in our everyday lives. New and experienced
researchers, practitioners, and those interested in machine learning will be inspired
by the innovative ideas contained in its pages.

Baltimore, USA Gloria Phillips-Wren, Ph.D.
Professor, Loyola University Maryland
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Preface

At the dawn of the fourth Industrial Revolution, data analytics is emerging as a
force that drives towards dramatic changes in our daily lives, the workplace and
human relations. Synergies between physical, digital, biological and energy sci-
ences and technologies, sewn together by non-traditional data collection and
analysis, drive the digital economy at all levels and offer new, previously
unavailable opportunities.

The need for data analytics arises in most modern scientific disciplines,
including engineering, natural, computer and information sciences, economics,
business, commerce, environment, healthcare and life sciences. The book at hand
explores some of the emerging scientific and technological areas in which data
analytics arises as a need and, thus, may play a significant role in the years to come.

Coming as the third volume under the general titleMachine Learning Paradigms
and following two related monographs, the book includes an editorial note (Chap. 1)
and an additional twelve (12) chapters and is divided into five parts, namely:
(1) Data Analytics in the Medical, Biological and Signal Sciences, (2) Data
Analytics in Social Studies and Social Interactions, (3) Data Analytics in Traffic,
Computer and Power Networks, (4) Data Analytics for Digital Forensics and
(5) Theoretical Advances and Tools for Data Analytics.

This research book is directed towards professors, researchers, scientists, engi-
neers and students of all disciplines. We hope that they all will find it useful in their
works and researches.

We are grateful to the authors and the reviewers for their excellent contributions
and visionary ideas. We are also thankful to Springer for agreeing to publish this
book. Last, but not least, we are grateful to the Springer staff for their excellent
work in producing this book.

Piraeus, Greece George A. Tsihrintzis
Piraeus, Greece Dionisios N. Sotiropoulos
Sydney, Australia/Canberra, Australia Lakhmi C. Jain
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Chapter 1
Machine Learning Paradigms: Advances
in Data Analytics

George A. Tsihrintzis, Dionisios N. Sotiropoulos and Lakhmi C. Jain

Abstract At the dawn of the 4th Industrial Revolution, data analytics is emerging
as a force that drives towards dramatic changes in our daily lives, the workplace
and human relationships. Synergies between physical, digital, biological and energy
sciences and technologies, brought together by non-traditional data collection and
analysis, drive the digital economy at all levels and offer new, previously-unavailable
opportunities. The need for data analytics arises inmostmodern scientific disciplines,
including engineering; natural-, computer- and information sciences; economics;
business; commerce; environment; healthcare; and life sciences. Coming as the third
volume under the general title MACHINE LEARNING PARADIGMS, the book
includes an editorial note (Chapter 1) and an additional 12 chapters, and is divided
into five parts: (1) Data Analytics in the Medical, Biological and Signal Sciences,
(2) Data Analytics in Social Studies and Social Interactions, (3) Data Analytics in
Traffic, Computer and Power Networks, (4) Data Analytics for Digital Forensics,
and (5) Theoretical Advances and Tools for Data Analytics. This research book
is intended for both experts/researchers in the field of data analytics, and readers
working in the fields of artificial and computational intelligence as well as computer
science in general who wish to learn more about the field of data analytics and its
applications. An extensive list of bibliographic references at the end of each chapter
guides readers to probe further into the application areas of interest to them.

We are facing the dawn of the 4th Industrial Revolution (IR), which is expected
to have a dramatic impact on our daily lives, the work place and human relations
[1]. Its pace is unprecedented, its breadth of applications is almost universal and its
impact will transform our societies radically.
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Unlike the previous IRs, which have depended on coal and water to drive steam
engines and oil to drive internal combustion engines (1st IR), the Mass Production
Line (2nd IR) and advances in Electronics and Information Technology (3rd IR),
the 4th IR is characterized by synergies between physical, digital, biological and
energy sciences and technologies. The common thread that unites all these different
scientific disciplines comes under the term data.

As has been eloquently stated,Data in the 21stCentury is like Oil in the 18thCen-
tury [2, 3]. This is because good data drive the digital economy at all levels, offering
new, previously-unavailable opportunities. However, traditionally-collected data, i.e.
economic figures, are not sufficient. All sorts of additional data need to be collected,
besides traditional economic figures, and this data needs to be efficiently stored,
transmitted, processed and converted into information, knowledge and, eventually,
wisdom [4].

Data Analytics is the term devised to describe specialized processing techniques,
software and systems aiming at extracting information from extensive data sets and
enabling their users to draw conclusions, to make informed decisions, to support
scientific theories and to manage hypotheses [5, 6].

The need forDataAnalytics arises inmostmodern scientific disciplines, including
engineering, natural, computer and information sciences, economics, business, com-
merce, environment, healthcare, and life sciences. The book at hand explores some
of the emerging scientific and technological areas in which Data Analytics arises as
a need and, thus, may play a significant role in the years to come. The book comes as
the third volume under the general title MACHINE LEARNING PARADIGMS and
follows two related monographs [7, 8].

More specifically, the book at hand consists of an editorial chapter (Chap. 1) and
an additional twelve (12) chapters. All chapters in the bookwere invited from authors
who work in the corresponding area of Data Analytics and are recognized for their
research contributions. In more detail, the chapters in the book are organized into
five parts, as follows.

The first part of the book consists of five chapters devoted to Data Analytics in
the Medical, Biological and Signal Sciences.

Specifically, Chap. 2, by Dessi, Recupero, Fenu and Consoli, is on “A Recom-
mender System of Medical Reports Leveraging Cognitive Computing and Frame
Semantics.” The authors design and implement a medical recommender system to
cluster a collection of medical reports and, subsequently, given a medical report for
a specific patient as input, to recommend similar medical reports from patients who
had similar symptoms.

Chapter 3, by Amelio and Amelio, is entitled “Classification Methods in Image
Analysis with a Special Focus onMedical Analytics.” The authors present and discuss
supervised and unsupervised classificationmethods for used inmedical analytics and
outline future related methodologies.

Chapter 4, byRjeily, Badr, El Hassani andAndres, is on “Medical DataMining for
Heart Diseases and the Future of Sequential Mining in Medical Field.” The authors
present an overview of various approaches in predicting heart failure and classifying
heart disease.

https://doi.org/10.1007/978-3-319-94030-4_1
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Chapter 5, by Stąpor, Roterman-Konieczna, and Fabian, is on “Machine Learning
Methods for the Protein Fold Recognition Problem.” The authors present methodolo-
gies for addressing the problem of protein fold recognition, which is characterised
by a high number of data classes, imbalance of the available data sets and presence
of outliers.

Chapter 6, by Korvel, Kurowski, Kostek and Czyzewski, is on “Speech Analytics
based on Machine Learning.” The authors present methodologies to prepare speech
data for machine learning-based processing.

The second part of the book consists of two chapters devoted to Data Analytics
in Social Studies and Social Interactions.

Specifically, Chap. 7, by Troussas, Krouska and Virvou, is on “Trends on Sen-
timent Analysis over Social Networks: Pre-processing Ramifications, Stand-Alone
Classifiers and Ensemble Averaging.” The authors provide a guideline for the deci-
sion of optimal pre-processing techniques and classifiers for sentiment analysis over
Twitter.

Chapter 8, by Sidorova, Rosander, Skold, Grahn and Lundberg, is on “Finding
a Healthy Equilibrium of Geo-demographic Segments for a Telecom Business: Who
areMaliciousHotspotters.” The authors present a data-driven analytic strategy based
on combinatorial optimization and analysis of the historical mobility designed to
quantify the desirability of different geo-demographic segments in the telecommu-
nications business.

The third part of the book consists of three chapters devoted to Data Analytics in
Traffic, Computer and Power Networks.

Specifically, Chap. 9, by Gravvanis, Salamanis and Filelis-Papadopoulos, is on
“Advanced Parametric Methods for Short-Term Traffic Forecasting in the Era of Big
Data.” The authors present several state-of-the-art methods used in all aspects of the
traffic forecasting problems, with particular emphasis given on both the algorithmic
and the efficiency aspects of the problem, in the light of the large amounts of available
traffic data.

Chapter 10, by Leros and Andreatos, is on “Network Traffic Analytics for Internet
Service Providers—Application in Early Prediction of DDoS Attacks.” The authors
model intra-values forecasts of a time-series Network Traffic using a mean reverting
stochastic process and show that proposed algorithmwas able to identify successfully
unusual activities contained in test datasets and to produce proper warnings.

Chapter 11, by Androvitsaneas, Boulas andDounias, is on “Intelligent Data Anal-
ysis in Electric Power Engineering Applications.” The authors various intelligent
approaches formodelling, generalization and knowledge extraction from data, which
are applied in different electric power engineering domains of the real world.

The fourth part of the book contains one chapter on Data Analytics for Digital
Forensics.

Specifically, Chap. 12, authored by Karampidis, Deligiannis and Papadourakis,
is on “Combining Genetic Algorithms and Neural Networks for File Forgery Detec-
tion.” The authors propose a digital forensic examinerwhich uses specialized forensic
software to accurately identify the various file types to determine which of themmay
contain potential evidence.
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Finally, the fifth part of the book contains one chapter on new Theoretical
Advances and Tools for Data Analytics.

Specifically, Chap. 13, authored by Passalis and Tefas, is on “Deep Learning
Analytics.” The authors present various architectures of (Deep) Neural Networks,
from simple Multilayer Perceptrons to Convolutional Neural Networks and Recur-
rent Neural Networks, and also discuss their advanced training and optimization
techniques.

In this book, we have presented some of the emerging scientific and technological
areas in which Data Analytics arises as a need and, thus, may play a significant
role in the years to come. The book has come as the third volume under the general
title MACHINE LEARNINGPARADIGMS, following two related monographs [7, 8].
Societal demand continues to pose challenging problems, which require ever more
efficient tools, methodologies, and systems to de devised to address them. Thus, the
reader may expect that additional volumes on other aspects of Machine Learning
Paradigms and their application areas will appear in the future.
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Chapter 2
A Recommender System of Medical
Reports Leveraging Cognitive
Computing and Frame Semantics

Danilo Dessì, Diego Reforgiato Recupero, Gianni Fenu
and Sergio Consoli

Abstract During the last decades, a huge amount of data have been collected in clin-
ical databases in the form of medical reports, laboratory results, treatment plans, etc.,
representing patients health status. Hence, digital information available for patient-
oriented decision making has increased drastically but it is often not mined and
analyzed in depth since: (i) medical documents are often unstructured and therefore
difficult to analyze automatically, (ii) doctors traditionally rely on their experience to
recognize an illness, give a diagnosis, and prescribe medications. However doctors
experience can be limited by the cases they are treated so far and medication errors
can occur frequently. In addition, it is generally hard and time-consuming inferring
information for comparing unstructured data and evaluating similarities between
heterogeneous resources. Technologies as Data Mining, Natural Language Process-
ing, and Machine Learning can provide possibilities to explore and exploit potential
knowledge from diagnosis history records and help doctors to prescribe medication
correctly to decrease medication error effectively. In this paper, we design and imple-
ment a medical recommender system that is able to cluster a collection of medical
reports on features detected by IBMWatson and Framester, two emerging tools from,
respectively, Cognitive Computing and Frame Semantics, and then, giving a medical
report from a specific patient as input, to recommend similar other medical reports
from patients who had analogues symptoms. Experiments and results have proved
the quality of the resulting clustering and recommendations, and the key role that
these innovative services can play on the biomedical sector. The proposed system is
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able to classify new medical cases thus supporting physicians to take more correct
and reliable actions about specific diagnosis and cares.

Keywords Health recommender systems · Data mining · Cognitive computation
Personal health records · Clustering · Knowledge inference · Personalized
medicine · Relevance computation · Biomedical text-mining

2.1 Introduction

During the last decades a lot of data have been collected in textual clinical datasets
representing patients’ health states (e.g. medical reports, treatment plans, laboratory
results, clinical records, surgical transcriptions, researches results etc.).Hence, digital
data available for patient-oriented decision making has extremely grown but is not
often mined and analyzed. Therefore, efficient access to information becomes hard
for end-users [1]. In order to overcome text data overload and transform the text into
useful and understandable source of knowledge, automated processing methods are
required. Undoubtedly, this data can be exploited for figuring out relevant insights in
the healthcare industry through data mining and machine learning techniques. These
can work as a potential base for developing recommender systems which employ
documents as items, and try to suggest diagnosis for new patients who present a
clinical state similar to those that have been previously evaluated.

Recommender systems can be divided into three main categories: collaborative,
content-based, and hybrid systems. Collaborative recommender systems work on
experience gathered from previous user experiences, i.e. exploiting items which
have been previously chosen by other users similar to a target in order to predict
similar needs. Content-based recommender systems focus on the characteristics of
items, e.g. when searching for a car, the recommendation output could be based on
its price, brand, and color. Finally, hybrid recommender systems combine features of
context-based and collaborative systems [2]. Hereafter, we focus on content-based
recommender systems.

Content-based recommender systems usually rely on descriptions of people and
items to build models which can be exploited for suggesting items similar to those a
target person already had in the past [3]. They often employ retrieval approaches as
a Vector Space Model (VSM), e.g. bag-of-words, as in [4]. A VSM is a model where
each item is represented in a N -dimensional space and each dimension is related
to a word of the documents collection. Many times, word-based approaches have
not been able to figure out features for good results raising problems of accuracy.
Therefore, data should be more deeply analyzed to yield a better understanding of
users’ state. One main challenge with medical reports is that a lot of information
is stored by using the natural language, which suffers from the classical problem
of ambiguity. Polysemy, troponymy, metonymy, n-grams expressions, entity recog-
nition and disambiguation are common inherent problems of traditional methods
largely employed in literature for dealing with textual resources. They make hard
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to elaborate the contained information by means of machines, preventing the stor-
ing and sharing between different agents, processes and systems. As a consequence,
recent studies have started to employ Semantic Web and knowledge based resources
for obtaining better results.

New researches have introduced Semantic Web techniques combining ontologies
and knowledge-based resources for shifting from word-based to concept-based rep-
resentations of textual resources. This implies an increasing adoption of Semantic
Web resources, tools and best practices for discovering the best features which play
significant roles into unstructured texts, enabling high level categorization of con-
tents. New systems, usually named Cognitive Computing systems, have earned a lot
of attention for figuring out relevant insights from textual data. One system is IBM
Watson1 which can understand concepts, entities, sentiments, keywords, etc. from
unstructured text through its Natural Language Understanding2 service.

WordNet [5] and FrameNet [6], among others, are two of the most important
linguistic open data resources that have been illustrated several times. WordNet is a
lexical database that defines synsets as groups of synonyms. Each synset represents a
unique meaning, which is semantically related to other meanings through derivation,
hyponym/hypernymy, meronymy/holonymy, antonymy, entailment, etc. relations.
FrameNet contains frames, which contextualize a general situation or state. Each
frame includes semantic roles known as frame elementswhich are activated by lexical
units of the speech (e.g. different verbs evoke different frames). However, its limited
coverage and non-standard semantics are two major barriers for its wide adoption on
natural language data analysis. To overcome these issues, a novel frame semantic tool,
Framester [7], has been recently proposed. Framester works as a graph-linked data
hub between open data systems as FrameNet, BabelNet [8] andWordNet, providing a
dense interlinking between existing resources and enabling a novel formal semantics
for frames. Framester can perform semantic frames and BabelNet synsets detection
which may improve matchings between meanings of data expressed by different
words. It is public available through an online interface3 and an API.4

Technologies as DataMining, Natural Language Processing, andMachine Learn-
ing can provide novel alternatives to explore and exploit potential retrieved knowl-
edge from historical medical records, and help doctors to prescribe medication
correctly to decrease medication errors effectively. In fact, text and data mining
approaches have been already employed in healthcare for saving time, money and
life [9–11].

Knowledge based techniques and tools, if reliable, can support medical staff in
diagnosis, prevention and treatment of diseases, providing suggestions based on past
medical cases. This chapter shows how to build a content-based recommender system
within the healthcare domain leveraging Semantic Web technologies and cognitive
computing tools.

1https://www.ibm.com/watson/.
2https://www.ibm.com/watson/services/natural-language-understanding/.
3https://lipn.univ-paris13.fr/framester/en/wfd_html/.
4https://github.com/framester/Framester/wiki/Framester-Documentation.

https://www.ibm.com/watson/
https://www.ibm.com/watson/services/natural-language-understanding/
https://lipn.univ-paris13.fr/framester/en/wfd_html/
https://github.com/framester/Framester/wiki/Framester-Documentation
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Moreover, we performed tests on a real dataset showing enhancements in embed-
ding Semantic Web and Cognitive Computing tools. We examined which features
better detect distinct characteristics from texts, and result suitable to cluster medical
documents in order to provide high quality recommendations.

The chapter is organized as follows. First, we present the research on biomedical
text analysis in Sect. 2.2. Then, we describe our recommender system in Sect. 2.3.
In Sect. 2.4, we show our experiments and discuss the results we obtained. Finally,
Sect. 2.5 proposes future development of our system and directions where we are
headed.

2.2 State of the Art

It would be impossible to enumerate the numerousmedical questions dealt with com-
putational approaches for clinical enhancements. Here, we focus on an overview of
the most interesting and promising text, data mining and machine learning methods,
and their applications, to discover insightful information from textual data in order
to support the development of a novel content-based recommender system.

2.2.1 Biomedical Information Retrieval

In recent years, many retrieval tools have appeared and have been used on textual
resources for extracting relevant and insightful semantics [12, 13]. These tools usu-
ally exploit statistical techniques, even though there have been recently based on open
linked data and machine learning techniques. Medical text processing is not a new
question, but extracting biomedical data into a well-defined structural storage still
remains a complex task [14]. Dealingwith variousmedical domains does not help the
development of systems to support medical activity. Because biomedical information
is continuously being created in textual form more than ever before, there have been
a lot of efforts for coding information into databases, and developing automatic pro-
cesses which aim at finding useful ways to represent and organize data [15]. Medical
text processing on medical domain, in particular using Natural Language Processing
(NLP) approaches, has been explored into many other works [10, 11]. In general,
researchers have usually tried to overcome text-depending issues focusing on classic
entity recognition and text disambiguation techniques to create a domain-specific
semantic content for the analysis of medical reports [14, 16, 17].

To alleviate textual inherit issues, some proposals have started to adopt Semantic
Web practices in the medical system development. The first competition [18] on
medical text-mining was run in 2002 during the Knowledge Discovery in Databases
(KDD) Challenge Cup. Participants faced with a curation problem for assessing
medical documents from the FlyBase dataset in order to determine whether a docu-
ment should be curated based on the presence of experimental evidence ofDrosophila
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gene products. Exploiting Part-of-Speech (POS) tagging and semantic controls deter-
mined by examining the training documents and by focusing on figures captions, a
collection of manually constructed rules obtained best results on the presence of
experimental evidence for the document clustering [19]. In [20] the authors used a
Support Vector Machine which was trained on MEDLINE abstracts to distinguish
abstracts containing information on protein-protein interactions, prior to curate this
information into their BIND database. They used a bag-of-words model with clas-
sification techniques and discovered that classifiers could minimize the number of
abstracts that the practitioners employed to read by about two-thirds.

Authors in [21] have proposed a new concept-basedmodel which exploits various
text mining approaches and their combinations for improving text clustering. They
propose a labeler which evaluates the semantic contribute of each word in sentences,
outperforming traditionalmethods and discovering that the semantics is less sensitive
to noise.More recent approaches are based on semantic analysis which enables learn-
ing more accurate features defined by means of external knowledge bases. In [22]
authors make able systems to face with challenges by exploiting cultural and lin-
guistic background knowledge for better interpreting unstructured documents and
reasoning on their content. In [23] an item recommender system has been provided
for recommendation tasks of various resources (e.g. movies and books) exploiting
Word Sense Disambiguation techniques based onWordNet lexical ontology formap-
ping contents by means of synsets. Similar techniques are studied today in medical
domain.

2.2.2 Biomedical Classification

In this section,we present classificationmethodswhich have been adopted for dealing
with unstructured clinical notes over past years.

Classification is a fundamental component in the biomedical domain due to its
widespread utility in applications such as medical diagnosis and identification of
genetic causes of disease. In [20] authors exploit various classification techniques
as described in Sect. 2.2.1. One more approach on MEDLINE documents was pro-
posed by [24] where authors applied a semi-supervised spectral approach technique
for clustering contents over two types of constraint: must-link constraints on docu-
ment pairswith high (MeSH)-semantic or global-content similarities, and cannot-link
constraints on those with low similarities. The authors proved the good performance
of their new method on MEDLINE documents, improving performance of linear
combination methods and several well-known semisupervised clustering methods.

Authors in [25] experiment multi-label classification techniques by means of
combinations of bag-of-words models, and adopt time series and dimensionality
reduction approaches on the MIMIC II dataset. In [26], authors implemented a
Support Vector Machine classifier on n-gram features retrieved from clinical notes
of the Beth Israel Deaconess Medical Center to identify the mechanical ventila-
tion and diagnosis of neonatal and adult patients. A Convolutional Neural Network
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classification approach has been proposed by [27] to build models which enable to
generate context based representation of health related information at sentence level.
Predefined disease labels have been adopted by [28] to classify free text clinical
notes. They propose two techniques Sampled Classifier Chains (SCC) and Ensemble
of Sampled Classifier Chains (ESCC), which extend their dataset with selected labels
in order to obtain a relationship between disease and classification.

Performances of some classification methods applied on clinical notes have been
recently evaluated in [29]. Authors focused on feature selection techniques inves-
tigating different approaches of transformation methods in order to improve the
multi-label classification task. They report advantages of using filtering techniques
and hybrid feature selection methods. One more recent work where classification
methods have been evaluated is [30]. The best results have been obtained when a
hierarchical approach to tag a document by identifying the relevant sentences for
each label has been exploited.

2.2.3 Biomedical Clustering

In this section, we describe clustering methods applied to biomedical texts, and
discuss recent works.

The clustering is the unsupervised task of finding groups of similar items by
segmenting a collection into partitions called clusters, where items in the same cluster
are more similar to each other than those in other clusters. In our work, biomedical
text clustering items are medical reports. In general, document clustering can show
various insights considering different levels of granularity of texts (i.e. clusters can
be composed by whole documents, paragraphs, sentences or terms). In this case,
the clustering can be employed as a tool for organizing and browsing documents in
order to enhance the retrieval of information [31]. In biomedical domain, it could be
essential to investigate patterns of a set of medical reports on features of different
stuff so that similar patients can be treated concurrently in similar way.

An interesting medical document clustering has been proposed by [32] where
authors exploited an ontology-based term similarity to index terms in a set of med-
ical documents. They used a spherical k-means clustering algorithm on PubMed
documents sets in order to evaluate the proposed similarity technique.

In [33] authors employed the KNN clustering method for evaluating a new sim-
ilarity measure based on the semantic connection between words of a electronic
medical report set. Authors in [34] performed cluster analysis on medical posts of
online health communities for recognizing various types of content. They found that
clusters can be associated to common categories as treatments, procedures, medica-
tions and so on.A framework based on clustering analysis has been developed by [35]
for exploring health related topic automatically in online communities integrating
data with medical domain specific knowledge.
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Features as biomedical concepts and semantic relationships were identified with
the help of ad-hoc ontologies for building a graph representation in order to enhance
the recognition of categories by means of clustering techniques in [9].

2.2.4 Biomedical Recommendation

In literature, several systems refer to medicine for identifying active relations of new
patients states with past ones, but few of them exploit natural language or text mining
for accomplishing recommendation tasks. In [36], authors describe a recommenda-
tion procedure which uses similarity measures for finding relations between online
users’ health data and medical information of Wikipedia to increase patients’ auton-
omy in their personal health. The task to predict future health risks by means of a
recommendation technique has been proposed by [37], where authors developed an
engine called CARE in order to predict the future diseases risks of patients. To pro-
vide more accurate and personalized doctor recommendations, authors in [38] mined
emotions from previous users’ ratings adopting a topic model technique for develop-
ing a system named iDoctor. To engender advances on health recommender systems,
the ACM Conference on Recommender Systems hosted a workshop in years 2016
and 2017 where specific-purpose health recommender systems have been presented,
but no one focused on textual resources as narrative medical reports. In addition,
these systems deal with clinical data in order to provide specific online services
which target patients as end-users, but there are not systems which exploit data for
supporting diagnosis fruition and physicians’ work.

2.2.5 Cognitive Computing and IBM Watson

With the terms Cognitive Computing systems we refer to those smart systems that
learn at scale, can learn with purpose, and recently have modules for interacting
directly with humans. They are being developed to reduce costs, increase efficiency,
accelerate discovery, make essential connections in large amounts of data. With the
rapid growth of the availability ofmassive amounts of data,CognitiveComputing sys-
tems provide new opportunities for augmenting human expertise in a broad range of
domains. Embedding Cognitive Computing services in novel systems results funda-
mental for dealingwith previous unmanageable issues. Inmedical domain, Cognitive
Computing systems can play a relevant role for supporting activities of practitioners,
providing understandable access to clinical data and enhancing the precision of the
medicine. In our research, we have employed themost promising Cognitive Comput-
ing system, IBM Watson5 which provides a cloud suite of services by means of the

5https://www.ibm.com/watson/.

https://www.ibm.com/watson/
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IBM Cloud6 platform for dealing with huge amount of data, and returns interesting
features that can capture medical insights. More specifically, we employed the out-
comes of the Natural Language Understanding service7 which has been developed
for analyzing textual data and, therefore, it is suitable for managing unstructured and
narrative contents of medical reports.

2.2.6 Frame Semantics and Framester

Frame semantics is a linguistic theory that defines a meaning as a coherent structure
of related concepts [39]. To relate various concepts, knowledge-based resources are
usually employed as corner stones of semantic technological approaches. A content-
based recommender system aware of semantics has the ability to interpret natural
language texts and makes conclusions on their content. In order to embed frame
semantics in our recommender system we exploits Framester, a novel data linked
resource that works as a hub between linked open data systems as FrameNet, Babel-
Net and WordNet. It is a new frame-based ontological resource that leverages an
inter-operable predicate space formalized according to frame semantics [6] and semi-
otics [40].

2.3 Architecture of Our System

In this section, we describe themodules of our systemwhich needs proper techniques
for representing items and comparing new and old users’ states. An overview of our
system is depicted in Fig. 2.1. The reader can see:

• Medical Reports Collection. This is the set of reports on which the system can
learn about past clinical historical cases.

• Content Analyzer Module. The module takes as an input the collection of reports
and the new report that the user (e.g. a physician) wants to evaluate. It embeds
various resources for mining features from textual components of medical reports.

• Represented Medical Reports. This is the output given back by the Content Ana-
lyzer Module. The output is formatted so that machine learning algorithms can be
easily applied.

• Machine Learning Module. This module implements a set of classification and
clustering algorithms that are used for building models which describe patients’
profiles.

• Clinical Patients Profiles. They are profiles that have been built by algorithms that
had been employed in the Machine Learning Module.

6https://www.ibm.com/cloud/.
7https://www.ibm.com/watson/services/natural-language-understanding/.

https://www.ibm.com/cloud/
https://www.ibm.com/watson/services/natural-language-understanding/
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Fig. 2.1 Architecture of the content-based recommender system

• Recommender Module. The Recommender Module matches the new medical
report features with the known patients’ profile in order to make a list of rec-
ommendations.

2.3.1 Content Analyzer Module

TheContentAnalyzerModule takes as an input the collection of unstructuredmedical
reports and produces a structured documents representation which enables the auto-
matic computation ofmachine learning techniques performed by theMachine Learn-
ing Module. In addition, it must mine new unknown medical reports. In this section,
the description of the model, the features and their characteristics are described.

2.3.1.1 Item Representation

For applying machine learning algorithms, data must be represented by sets of fea-
tures usually called attributes. For example, to recommend books, attributes adopted
to describe a book can be authors, editor, genre etc. When items are described by
the same set of attributes and there are known values of these attributes, they are
represented in structured data that can be employed for automatic computations. In
case of biomedical textual documents there are not well-defined attributes, and tex-
tual features can raise difficulties when the system learns about patients. The main
problem is that traditional term-based method can fail to capture the semantics of
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clinical states of patients. For example, if more words can be used to indicate the
same pathology (e.g. tumors could be indicated with the names neoplasms, malig-
nancies etc.) relevant information can be lost if two clinical profiles do not contain
the same word. In this context, semantic analysis of data plays a significant role
and promises surprising results for solving these issues. More specifically, we have
employed words coming from IBMWatson which is a leading Cognitive Computing
tool, and Framester a novel hub between semantic resources. Subsequently, in this
section we show features that can be extracted from medical textual resources and
discuss about advantages of each one.

2.3.1.2 Vector Space Models

A Vector Space Model (VSM) is a spatial representation. For example, in a word-
based VSM each document is represented over a N -dimensional space, where each
dimension corresponds to a word that belongs to the whole set of terms of the
given collection of documents. Let D = {d1, d2, . . . , dk} be a collection of medical
reports and A = {a1, a2, . . . , an} the set of attributes employed for representing them.
A can be built by means of a natural language process or semantic content explo-
ration pipeline which applies methods (e.g. the English stop word and stemming
steps) for representing D. Each medical report di is represented by a vector of val-
ues di = {v1i , v2i , . . . , vni } where each value vki indicates the degree of relation
between the attribute ak and the document di . Attributes can have various natures
such as words, n-grams, semantic features which describe contents, and so on. In
our recommender system we have employed 6 different types of attributes: Term
Frequency-Inverse Document Frequency, Concepts, Keywords, Entities, BabelNet
Synsets, and Frames.

2.3.1.3 Term Frequency-Inverse Document Frequency

This is a bag-of-word model where attributes are words within the collection. For
assigning a value to each word w, we have employed the Term Frequency-Inverse
Document Frequency (TF-IDF) technique in which (i) uncommon words are not less
relevant from frequent ones, (ii) a word that occurs many times in a document is
not less relevant than a single one, and (iii) the length of documents does not play a
significant role for the comparison of documents. To put it more simply, words that
frequently occur within a document, but rarely in the whole collection, have more
probability to be relevant in the document. The TF-IDF formula is showed in (2.1)
wherewki is the number of occurrences of the wordwk in the document di , |di | is the
size of the document expressed as number of words, N is the number of documents
in the collection, and nk is the number of documents where the word wk occurs at
least once.

T F − I DF(wk, di ) = wki

|di | · log N

nk
(2.1)
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In order to prevent that longer texts have higher probability to be chosen by a
recommender system, TF-IDF values are usually normalized in a range [0,1].

To avoid that frequent and no-relevant data (e.g. words that do not carry any
meaning for the medical purpose as articles the, a, an, preposition about, therefore,
at, etc.) appear in the TF-IDF features, the module performs some cleaning steps on
the input texts. It precisely removes numeric data, punctuation, and stop-words. In
fact, they are considered unnecessary and their remotion serves for (i) reducing the
size of the VSM and (ii) for the subsequent efficiency of using a smaller space of
features. All terms are taken in their lower case shape, avoiding to consider more
times different representations of the same word (e.g. Cardiac and cardiac).

2.3.1.4 Concepts

Concepts can be defined as cognitive units which model perceived abstract subjects.
They depend on the ability to process domain dependent knowledge and efficiently
learn insights which become fundamental keys in the meaning of contents. Concepts
can embody structures and representation of real words discovered in text, hence,
they enable capturing high level abstraction reducing the complexity of the com-
putation space. Moreover, they enable the specialization of employed attributes for
representing documents in the VSM. IBMWatson can be employed for discovering
automatically concepts related to the medical domain from natural language texts. It
assigns a weight to each concept we have used for building the VSM.More precisely,
given a collection of medical reports we use as set of attributes A the union of almost
fifty concepts returned by IBM Watson from each medical report.

2.3.1.5 Keywords

Keywords are words of texts that enable listing the content of a report, releasing
information about which words result relevant for describing the content of a docu-
ment. Keywords are automatically detected by IBMWatson which provides a weight
for each one. The VSM model is built as in the case of concepts.

2.3.1.6 Entities

Entities are actors that make actions in a text. Specifically to the medical domain,
they can be people (e.g. physicians or nurses), illnesses (e.g. tumor), medicine names
and so on. By capturing entities, it is possible to find relations between different
documents if they share similar actors, especially when they are specific (for example
if in a subset of documents D′ physicians are cardiologists and in another subset D′′
they are physiotherapists, the entities are distinct and enable better separation of the
document subsets in different topics). As with the previous IBM Watson features, a
weight is returned for each entity and indicates its influence in a document.



18 D. Dessì et al.

2.3.1.7 BabelNet Synsets

BabelNet synsets are unique unambiguous identifiers of sets of words which share
the same meaning. We have chosen these synsets because (i) they are the result of
the integration of various linguistic and semantic resources as WordNet, Wikipedia,
FrameNet, among others, and (ii) they are directly provided by Framester. Differently
from IBM Watson features, we do not have weights, hence, only the presence of
BabelNet synsets have been considered by means of boolean flags into the Content
Analyzer Module.

2.3.1.8 Semantic Frames

A semantic frame is a coherent group of concepts such that complete knowledge of
one concept depends on the knowledge of all them in a context. Given a text, they are
activated by nouns and verbs. Each frame can have multiple hierarchical levels that
indicate its abstractions. For example, in Fig. 2.2, the word cardiology is abstracted
by frames Medical_specialties and Cure. It should be underlined that frames are
different from IBMWatson concepts because they do not depend on the application
domain, but on relations that words have into linguistic and knowledge resources
Framester adopts. As with the BabelNet synsets, we use the frames presence in the
VSM.

2.3.1.9 The Course of Dimensionality Problem

The course of dimensionality problem refers to the issue that regards the great size of
the number of attributes required to describe the target collection. The VSM suffers
of this problem, hence, it needs to be managed into content-based applications as our

Fig. 2.2 Part of framester result on the sentence “consider cardiology consult and further evaluation
if clinically indicated”
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recommender system. One common method intensively applied in order to solve the
issue is the Singular Value Decomposition (SVD). Let A = {a1, a2, . . . , an} be the
set of attributes and D = {d1, d2, . . . , di } be the collection of our documents. The
VSM is usually represented by a matrix M of size |D| × |A|. M can be disjointed in
three components M = USV T where S is a diagonal matrix containing the largest
singular values, U is a matrix where columns are left singular vectors, and V is a
matrix where columns define right singular values. In order to reduce complexity of
data, the module applies a truncation which consists in holding only the largest k sin-
gular values, removing others which can be considered less relevant. This technique
is known in literature as Truncated-SVD (TSVD). The module adopts the matrix
M ′ = U × S which has a number of rows equivalent to the number of considered
documents with a smaller number of attributes (columns) than the original matrix M .
Besides decreasing the overall computational costs, an advantage of using the TSVD
is deleting noise elements that might deteriorate the list of final recommendations.
We want to point out that the value of k requires a trade-off between the amount of
remaining and neglecting data to avoid the loss of information. Its value depends on
the set of attributes A which characterizes the used collection.

2.3.2 Machine Learning Module

The Machine Learning Module receives a VSM as an input and returns a model
which recognizes clinical patients’ states. Its current version includes two clustering
algorithms which are applied on all VSMs. The clustering techniques the module
implements enable to deal with unsupervised data. They are (i) Hierarchical cluster-
ing algorithm and (ii) K-means clustering algorithm.

In this sectionwe explain in depth how the chosen clustering algorithmswork, and
discuss about advantages they enable. Moreover, we show which machine learning
algorithms might be employed in our system underlying which are requirements for
an enhanced recommendation.

2.3.2.1 Hierarchical Clustering

Hierarchical Clustering builds a clusters hierarchy, or in otherwords, a tree of clusters
which is usually called dendrogram. Each cluster contains children that are clusters
as well, unless for the leafs of the tree. Sibling clusters split documents that are
contained in the common parent cluster. A hierarchical clustering algorithm can be
either agglomerative or divisive. In its agglomerative version, the algorithm starts
with single elements of the collection, then it merges elements together based on a
chosen measure (e.g. Euclidean distance). The agglomerative process is iterated as
long as a unique cluster that covers all collection documents is obtained. The divisive
variant of the algorithm starts with one cluster of all documents and recursively splits
the most appropriate clusters according to a given criteria (e.g. splitting the largest
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cluster in each iteration.). The method continues its execution until a stop criterion
(e.g a given number of clusters) is achieved. Our recommender system implements
an agglomerative clustering, since we are interested in building groups looking for
similarities starting from pairs of documents.

The hierarchical clustering algorithms are easily applicable on each kind of data,
enable a manageable granularity of clusters and can be applied with any type of
similarity measures. For these reasons, we felt that this type of clustering approach
can lead good results on medical domain.

2.3.2.2 K-means Clustering

The K-means Clustering is a partition method. It builds a set of clusters minimizing
the sum of squared distance between elements of a cluster and its center. The results
is a single partition of data without any structure and, hence, can have advantages
on applications which involve large sets of data for which the construction of a
hierarchical structure can be onerous. The algorithm requires the number of clusters
k as an input. This number is used to allocate k random centers which will be
employed to build clusters. At beginning, it assigns each element to the cluster with
the nearest center. Iteratively, centers are updated based on the built clusters and
elements are moved into the cluster with their nearest center.

2.3.2.3 Similarity Measures

Precise clustering requires an accurate definition of the closeness between documents
represented in the VSM. The closeness can bemeasured by either the pair-wised sim-
ilarity or distance. A variety of similarity or distance measures have been proposed
and discussed in literature. Our Machine Learning Module adopts the Cosine and
Euclidean measures. The Cosine similarity quantifies the angle between two doc-
uments expressed by vectors. Its formula applied on two vectors vp and vq can be
observed in (2.2).

CosS(vp, vq) = vp vq

‖ vp ‖‖ vq ‖ (2.2)

CosS values 1 when vp and vq are completely similar, and 0 otherwise.
The Euclidean distance EucD between two vectors vp and vq is defined as usual

in (2.3).

EucD(vp, vq) =
√∑

i

(vp(i) − vq(i))2 (2.3)

Differently from the Cosine similarity, the Euclidean distance has not a lim-
ited range of values, therefore, it needs to be scaled before used for the similarity
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evaluation. For such reason themodule adopts the formula (2.4) for scalingEuclidean-
based values.

EucS(vp, vq) = 1

1 + EucD(vp, vq)
(2.4)

2.3.3 Recommendation Module

This module uses the clinical patients’ profiles for suggesting possible past medical
cases that are similar to the newone bymatching the newmedical case against clinical
profiles’ clusterings of medical reports to be recommended. More specifically, the
Recommendation Module takes a new medical report representation r and predicts
whether there are clinical patients’ profiles p1, . . . , pn that are interesting according
to the relevance with r . It performs strategies to rank documents, and top-ranked
ones are included in the list of recommendations that are provided to the final user.
For doing so, the module computes the closeness between a new medical reports
and clusters. In detail, given a new patients’ medical report r and a clustering C =
{c1, . . . , cn}, the module finds the cluster ci which has the closest center to r . Then
elements within ci are ranked from the most to the least similar to r . The produced
ranking is used for finding the closest k medical reports as the final recommendation
list.

2.4 Experiments

2.4.1 The Test Dataset

The employed dataset is a collection of no-labeled medical reports. It is freely avail-
able from the open-source iDASH repository.8 In the dataset there are 2362 reports
written in English. On the average, each report contains 400 words (ranging from
138 words for the shortest document to 1048 words for the longest one). There are
singleton medical reports which might not have similarities with others, hence, for
avoiding making unclear clustering groups they should be placed in one-element
clusters.

Reports can be medical transcription samples including clinical notes, care plans,
medical examinations, radiology reports etc. In the dataset, categories, their amount
and distribution across reports, are not explicitly reported, although categories can be
deduced from reports content (e.g. there are reports concerning heart issues whose
can be placed in a category heart). The lack of predefined schema and the wide
vocabulary of used terms make hard the categorization. Moreover, file names refer

8https://idash-data.ucsd.edu/.

https://idash-data.ucsd.edu/
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to specific diseases or body parts issues that could be exploited to classify directly
contents, but there could be ambiguous terms whichmay or may not refer to the same
disease. Examples of medical reports names which can involve the same topic and
discuss about the same issue are cardiac-catheterization and hearth-catheterization.
As a consequence, these medical reports might be inappropriate to test supervised
approaches, but they are suitable to test our unsupervised system which can manage
unlabeled data.

2.4.2 Experiment Setup

2.4.2.1 Data Cleaning

Data cleaning is necessary in order to provide the same valid English text to the
Content Analyzer Module services. First of all, we have cleaned all medical reports
from HTML tags, removed all tables and structured format styles in order to obtain
simple plain texts. Then we have matched reports words against those provided by
WordNet, sending the wordw′ and getting the wordw′′ which has been placed in the
text. At the end, only English text with correct grammar and punctuation composes
the collection of medical reports.

2.4.2.2 Content Analyzer Module Setup

TheContentAnalyzerModule has been configured for providingmoreVSMsmodels
which have been built on various features as described in Sect. 2.3.1. More precisely,
let ri be the i-th medical report and f j be the j-th feature of a selected type. The
outcomes of the module are:

• 5 BinaryVSMs: they include amatrix representation for the Concepts, Keywords,
Entities, BabelNet Synsets and Semantic Frames features. Binary means that if
f j occurs within the inferred set of features of the medical reports ri , in the VSM
model M their relation is indicated by M[i, j] = 1, otherwise M[i, j] = 0;

• 4 Weighted VSMs: they include a matrix representation for the Concepts, Key-
words, Entities, and TD-IDF features. Weighted means that M[i, j] = weight ,
where weight has been calculated exploiting the Natural Language Understand-
ing service of IBM Watson or the TF-IDF approach as described above, and rep-
resents how strong is the relation between the medical report ri and the feature f j ,
otherwise M[i, j] = 0;

• 5 Counted VSMs: they include a matrix representation for the Concepts, Key-
words, Entities, BabelNet Synsets and Semantic Frames features. Counted means
that M[i, j] = count where count is the number of times that a feature f j occurs
within the set of features of the medical reports ri , otherwise M[i, j] = 0;
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Fig. 2.3 Samples of VSMs built on concepts extracted from three medical reports. Samples are
related to a binary b weighted and c counted VSM

Formore details on the threementioned distances, the reader can look at examples
of VSMs built on concepts extracted from three medical reports of the test dataset in
Fig. 2.3. In the first row of eachVSM, there are concepts that form the N -dimensional
space. In the other rows, there are the names of reports on the first columns followed
by values that indicate the degree of relation between the medical report and the i-th
concept. The reader notices that (a) is built using the binary relation, (b) is built using
the weighted relation and (c) is built using the counted relation.

2.4.2.3 Machine Learning Module Setup

The Machine Learning Module applied both clustering methods on all VSMs. In
order to obtain high quality clusters, we set the module for exploiting the Silhouette
width measure. Given a cluster c, its Silhouette width value s(c) is computed as
showed in Eq. (2.5) where w(c) is the average dissimilarity within c and o(c) is the
lowest average dissimilarity of c to any other cluster.

s(c) = o(c) − w(c)

max{o(c), w(c)} (2.5)

Values of Silhouette width range from −1 to 1. When the value is closer to 1, it
means that the clusters are well separated; when the value is closer to 0, it might be
difficult to detect the decision boundary; when the value is closer to−1, it means that
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elements assigned to a cluster might have been erroneously assigned. In general, we
can consider good clusterings those that have high average values of Silhouettewidth.
Unsurprisingly, the value of the Silhouette width depends on the type of features of
the VSM under processing.

Hierarchical clustering. After the hierarchical clustering has been computed, the
resulting dendrogram has been iteratively cut starting from its head, in order to
increase the number of clusters for each iteration. In doing so, various clusterings
obtained with different cut values have been produced. As a reminder, in our dataset
we do not know how many groups can be formed. Therefore, we have exploited the
highest value of average Silhouette width values in order to cut dendrogram where
the clustering showed the best separation between medical reports.

K-means clustering. K-means Clustering has been performed with different values
of k as number of clusters. For each value of k, the average Silhouette width measure
has been computed similarly to hierarchical clustering setup. Then the clustering
with the highest average value of Silhouette width has been hold as the output of the
module.

2.4.3 Recommendation Module Setup

The recommendation module has been setup to receive an unknown medical report
and a number k which represents the number of recommendations. In our experiments
the adopted value of k is 10.

2.4.4 Results

At the current state, the quality of results of our recommender systemmainly depends
on the Content Analyzer Module and Machine Learning Module. In fact, a good
quality of clusters means that medical reports similar to a new one can be correctly
detected in the test dataset. First, for obtaining good clustering the featuresmust allow
a good separation of reports, and second the clustering algorithm must recognize
which the best divisions are. Therefore, in this section we discuss about the most
representative features of our dataset and the clustering algorithms performance.
Results of clusterings quality can be observed in Figs. 2.4, 2.5, 2.6, 2.7 and 2.8.

The sets of features which have formed the best division of medical reports into
clusters are those that havebeen computedusing IBMWatson. In fact, they reachgood
levels of silhouette width. In more details, concepts and entities in their weighted and
binary mappings have showed good performances in capturing medical information
from medical reports of the test dataset. This fact suggests that the relevance of an
entity or a concept into amedical report does not depend on the number of times that it
appears.We can say that their role depends on the relations they have into reports, and
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Fig. 2.4 Theaverage and standarddeviationvalues of the silhouettewidthmeasure of the clusterings
computed on the TF-IDF measure. a Hierarchical clustering. b K-means clustering

Fig. 2.5 Theaverage and standarddeviationvalues of the silhouettewidthmeasure of the clusterings
computed on IBM Watson features. a Hierarchical clustering on cosine distance. b Hierarchical
clustering on Euclidean distance
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Fig. 2.6 Theaverage and standarddeviationvalues of the silhouettewidthmeasure of the clusterings
computed on IBMWatson features. a K-means clustering on cosine distance. bK-means clustering
on Euclidean distance

more influent their actions are, stronger their relevance is. Considering the number
of times that a concept or an entity appears we do not add any additional information
in our representative VSM. Keywords do not have showed good performances like
entities and concepts but they could be considered as good alternatives in those cases
where detecting entities and concepts can be hard.

Framester features do not have reached good results in the clusterings. This can
depend on the fact that they are more abstract and not directly connected to the
medical domain. Moreover, our test dataset could negatively influence this types of
features since medical reports are strongly specific on patients’ medical states. By
contrast, they can result useful for those medical reports that describe the state of
patientsmore in general without too clinical details (e.g. a starting examination visit).
As for Framester features, the TF-IDF does not have showed good performances and
same motivations can be observed.

One more point to consider is how the distance between two medical reports is
computed. Results suggest that the cosine distance ismore reliable than the Euclidean
distance. Nevertheless, it is important underlying how they seem keeping a similar
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Fig. 2.7 The average and standard deviation values of the silhouette width measure of the cluster-
ings computed on Framester features. a Hierarchical clustering on cosine distance. b Hierarchical
clustering on Euclidean distance

Fig. 2.8 Theaverage and standarddeviationvalues of the silhouettewidthmeasure of the clusterings
computed on Framester features. a K-means clustering on cosine distance. b K-means clustering
on Euclidean distance

Fig. 2.9 An example of list
of recommendations built by
our recommender system
using as new report that
called heart-catheterization-
angiography-1
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behavior on different features. To name an example, entities-binary and entities-
weighted show a similar behavior both for cosine and for Euclidean distance.

Hierarchical clustering have outperformed the results of the K-means clustering,
hence, if the recommender systemwould have been employed on a real medical case,
the hierarchical clustering should be used. The agglomerative approach seems to be
more suitable for finding medical cases similar to a new one.

Finally, to show how recommendation module has worked the reader can look at
example in Fig. 2.9. The figure lists 10 medical reports of our test dataset that are
returned by our recommender system when the report called heart-catheterization-
angiography-1 has been adopted for the evaluation of a new clinical state of a patient.
The example shows how returned recommendations are correlated to heart issues and,
hence, that our approach in building a recommender system can effectively recognize
medical contents in order to suggest relevant past clinical cases.

2.5 Conclusion and Future Trends

Recommender systems are employed in many fields to help users to find important
products and services for them. Similar approaches can be headed for providing
diagnosis, thus supporting physicians in their work. In this chapter we presented
a content-based recommender system within the medical domain, by providing an
overviewof recent information retrieval and semantic enrichment toolswe employed.
Our work addressed the challenge to find out which types of information can be
directly processed by machines on large collections of medical reports, combining
emergent cognitive computing systems in order to return reliable recommendation
results. We discussed about the quality of features related to the representation of
the medical reports content, underlying how they can capture the semantics from
unstructured texts.

Subsequently, we discuss about two clustering approaches our recommender
system currently implements. We used them to handle with various VSMs and
explained their advantages and uses based on the type of dataset. In order to deal with
classes of reports, the Machine Learning Module can be integrated with classifica-
tion approaches and we aim at finishing this improvement in the immediate future.
At the moment, we have not considered this evolution since it results hard to find
datasets for a significant validation of classification tasks. We would like to underlie
how recommender systems are substantial opportunities to progress in data science
for the health-care field. For doing so, new resources and open datasets are required
to enable further improvement of methods and designation of algorithms in clinical
context.
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Chapter 3
Classification Methods in Image Analysis
with a Special Focus on Medical
Analytics

Lucio Amelio and Alessia Amelio

Abstract This paper describes the design and application of classification meth-
ods for image analysis and processing. Accordingly, the main trends and challenges
of the machine learning are presented in multiple contexts where the image anal-
ysis plays a very important role, including security and biometrics, aerospace and
satellite monitoring, document analysis, natural language understanding, and infor-
mation retrieval. This is accomplished by introducing a categorisation of the most
challenging classification methods according to the thematic context and classifica-
tion typology. Hence, supervised and unsupervised classification methods are pre-
sented and discussed. It is followed by a special focus on the medical context, where
the classification methods for image analysis are of prior importance in supporting
the medical diagnosis process. Accordingly, the second part of the paper surveys the
recent and current research in medical analytics where the image classification is a
key aspect, and tracks the horizon of the research for future challenges in the field.

Keywords Classification · Clustering · Image analysis ·Medical analytics
Pattern recognition

3.1 Introduction

One of the first applications of digital imaging dates back in 1920s in the news-
paper industry with the Bartlane cable picture transfer service, where images were
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coded and transferred by the submarine cable between London and New York and
reconstructed at the receiver on a telegraph printer [71]. From that time, different
attempts were performed to improve the quality of the Bartlane system introducing
new reproduction methods based on photographic strategies and increasing the num-
ber of tones of the images. However, the plenty of techniques that characterise the
digital image processing were introduced starting from 1960s at the Jet Propulsion
Laboratory, Massachusetts Institute of Technology, Bell Laboratories, University of
Maryland, and some other research centers, in different fields of interest, including
satellite imagery, character recognition, medical imaging and picture enhancement
[98]. In particular, in 1964 computers were adopted for improving the quality of
images in different space missions, including the Apollo landing. However, pro-
cessing an image was hard and expensive at that time due to the limited hardware
resources in terms of computer storage and CPU power. Starting from the 1970s,
with the increase of the computer power and the availability of dedicated hardware,
the techniques of image processing have become more accessible, because images
could be also processed in real-time. In particular, the digital image processing has
started to be used in the medical context, with the invention of the tomography in
1979. Because computers increased their speed and power, they could be used for
processing images as a dedicated hardware. However, they still were not able to
manage intensive and specialised image processing operations. Lately, starting from
2000s with the proliferation of last generation high-power fast and performant com-
puters, the digital image processing has become the most common form of operating
on images with fast and cheap methods.

Over the years, the digital image processing has been enriched with complex
techniques, which can be categorised as: (i) classification, (ii) multi-scale signal
processing, (iii) feature extraction, (iv) pattern recognition, and (v) projection [98].

In this paper, we focus our analysis on classification approaches in digital image
processing,which is one of themost important applications of statistical classification
in data mining. They consist of giving a category to an image or elements of an image
using statistical and machine learning methods. Usually, these methods require a low
level processing of the image before their application, whose description is out the
scope of this paper, which can be noise removal and/or image sharpening for making
more visible the contours inside the image. Reader can refer to [47] for a depth
explanation about these pre-processing techniques.

The paper is organised as follows. Section 3.2 provides a general background
of the basic concepts underlying the image classification. Section 3.3 describes the
main approaches of feature representation for image classification. Sections 3.4–3.6
present some relevant image classification methods respectively in the contexts of
security and biometrics, aerospace and satellite monitoring, document analysis and
language understanding. Section 3.7 describes some important methods of image
classification in information retrieval. Section 3.8 introduces a categorisation of the
medical imaging from a clinical point of view and describes the most important
image classification methods for each category. Then, the horizon of the research is
described together with a few challenges for future work in this direction. At the end,
Sect. 3.9 draws conclusions.
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3.2 Background

Image classification in its most general meaning is the process of inferring one or
more categories for one or a set of images, the regions or the pixels composing the
images. Basically, the image classification can be: (i) supervised, or (ii) unsupervised,
commonly referred as clustering. Accordingly, the supervised image classification
can be at: (i) image, (ii) object, or (iii) pixel-level. On the contrary, the unsupervised
image classification or clustering can be at: (i) image, or (ii) pixel-level. Figure 3.1
shows an overview of the hierarchy of image classification methods.

When unsupervised classification or clustering at image-level is performed, we
are given a set of images whose categories are unknown. The aim is to find groups
of images with similar characteristics which define the categories. Figure 3.2 depicts
the process of unsupervised classification or clustering of an image set composed of
twenty elements. Images of the same semantic class belong to the same cluster, for
a total of five clusters. On the contrary, the unsupervised classification at pixel-level
is employed for grouping the image pixels based on similar characteristics, in order
to find uniform image regions. This is an important step for the image segmenta-
tion. Figure 3.3 shows how the unsupervised image classification or clustering at
pixel-level determines the image segmentation. Pixels which are characterized by
homogeneous color and texture are grouped in the same cluster or image region.

In the supervised classification at image-level, we are given a set of images each
belonging to a specific category corresponding to the training set. The classifier
learns the image categories by using the training set. Then, it is able to generalize the
classification by categorizing unseen images which are not included in the training

Image 
classification 

Supervised 

Image-level Pixel-level Object-level 

Unsupervised 
or clustering 

Image-level Pixel-level 

Image 
segmentation 

Fig. 3.1 Overview of the image classification methods
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Image set 

cluster 1

cluster 2

cluster 3

cluster 4

cluster 5

Fig. 3.2 Unsupervised classification or clustering of an image set composed of twenty images. The
five clusters of images belonging to the same semantic class are differently colored and marked

Fig. 3.3 Image
unsupervised classification
or clustering at pixel-level.
The four image regions with
uniform pixels in terms of
color and texture are
bounded by different
contours

set. Figure 3.4 illustrates the image classification process at image-level. The training
set is composed of images belonging to five different categories: (i) cat, (ii) woman,
(iii) car, (iv) apple, and (v) tree. After the training phase for learning the model from
the training data, the test phase is performed on three unseen images belonging to
the three categories: (i) car, (ii) tree, and (iii) woman. These images do not belong
to the training set. At pixel-level, the training set is composed of pixels of different
categories belonging to a given image. The aim is to classify the pixels of unknown
category as belonging to a given category. This is performed after a training phase
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Training 

Testing 

Cat 

... 

Woman 

... 

Car 

... 

Apple 

... 

Tree 

... 

Image training set 

1. Car 
2. Tree 
3. Woman 

1 

3 
2 

Fig. 3.4 Supervised image classification at image-level. The image training set is divided into five
categories: (i) cat, (ii) woman, (iii) car, (iv) apple, and (v) tree. After the training phase, the classifier
is ready to classify three unseen images belonging to the following categories: (i) car, (ii) tree, and
(iii) woman

Fig. 3.5 Supervised image
classification at pixel-level.
The image pixels are
classified as belonging to one
of the seven different classes
corresponding to different
land cover types

where the classifier learns the pixel categories from the training set. Figure 3.5 shows
the process of supervised classification at pixel-level. In particular, the image pixels
are categorised in seven different classes corresponding to different land cover types.
Finally, the supervised classification at object-level employs unsupervised classifi-
cation at pixel-level for the identification of representative regions inside the image.
Then, it performs the supervised classification on the extracted regions. A complete
description of the concept of classification can be found in [99].
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An essential pre-processing step in image classification is the transformation of
the input images, objects or pixels in the feature domain. Basically, each image,
object or pixel element is represented by one or more feature vectors characterising
the main aspects by which the classification process is performed. Accordingly, a
good feature representation can achieve a more accurate image classification. In the
following,we provide a broad categorisation of themost general features employed in
image classification and describe some relevant feature representations (summarised
in Table 3.1). The reader may refer to [53, 62] for further analysis of different image
descriptors. Then, we describe themost recent trends of supervised and unsupervised
image classification at image, object and pixel-level in some of the most important
contexts of security and biometrics, aerospace and satellite monitoring, document
analysis and natural language understanding, and information retrieval.

3.3 Feature Representation for Image Classification

Prior of any classification task at image-level, the images can be represented by
different feature models, including:

• global features,
• local features [53],
• a combination of global and local features [63], and
• Bag of visual words (BoVW) [43].

For the classification at pixel-level, every image pixel can be characterised by dif-
ferent features, such as brightness, colour, and texture.

3.3.1 Global Features

The global features represent the image by using a single feature vector embedding
information about colour, texture or shape derived by all pixels. Sometimes the
feature vector combines the different aspects of colour, texture and shape. In the
last years, multiple global features have been introduced in the literature for image
classification.

Two well-known feature representations based on textural content for image clas-
sification are: (i) grey-level co-occurrence matrix (GLCM), and (ii) run-length statis-
tics (RL). In recent time, other global feature representations have also beenproposed.

3.3.1.1 Grey-Level Co-occurrence Matrix

The GLCM features, also called Haralick features [52], were computed from the
grey-level co-occurrence matrix embedding information about the frequency of
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co-occurrence of the grey levels in the image. Haralick features were originally
used for the supervised classification of photomicrograph, aerial photographic and
satellite images [52].

3.3.1.2 Run-Length Statistics

The RL statistics [32, 34, 45] were extracted from the grey-level run-length matrix.
It counted the frequency of pixel runs at the different image grey levels in a given
texture direction. A run is a sequence of consecutive pixels in the image. RL features
were originally tested for the supervised classification of different textural images,
including terrain images [45].

3.3.1.3 Other Global Features

Gueld et al. [51] evaluated different types of feature representations, i.e. texture,
structure and down-scaled features, in characterising medical images for super-
vised classification. For the texture, multiple feature representations, including three-
dimensional histograms of coarsness, contrast and directionality computed at pixel-
level, were used. For the structure, specific properties of the image edges were
extracted and adopted as features. Finally, down-scaled images were also employed
as feature representation.

Also, Amelio and Pizzuti [12] used a combination of the Haralick features and
colour centiles for representing the texture and colour image content in a process of
clustering natural images.

In order to classify farmland images, Miao et al. [75] introduced a feature repre-
sentation based on hue saturation value, hue saturation lightness and hue saturation
intensity colour space models.

Furthermore, Zhang et al. [105] proposed a texture feature vector based on the
grey-level co-occurrence matrix and a weighting factor, derived from a measure of
directionality of the image texture. The feature representation was tested for the
supervised classification of high-resolution remote sensing images.

Finally, Brodić et al. [25, 28] employed a variant of the grey-level co-occurrence
matrix for a 1-D document image coding in order to cluster documents in mul-
tiple languages, including English, French and Serbian, and German historical
documents in different scripts, including Latin and Fraktur. A variant of the run-
length matrix was also proposed for clustering documents in different historical
Croatian scripts [29].
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3.3.2 Local Features

Differently from the global features, the local features are descriptors extracted from
salient image regions which correspond to patches localised in the neighbourhood
of points of interest, also called keypoints. In particular, the local features should be
invariant to rotation, illumination and viewpoint changes.

Three widespread local image descriptors for image classification are [42]: (i)
SIFT, (ii) SURF, and (iii) local binary patterns (LBP). Also, alternative approaches
have been recently proposed in the literature.

Local descriptors are based on the concept of image gradient representing intensity
changes over the image. In particular, the image gradient is characterised by its
magnitude (intensity) and direction (orientation).

3.3.2.1 SIFT

The SIFT approach [68] finds locations and scales that are identifiable from different
views of the same object. A scale represents the image with a given smoothing effect.
Then, it discards keypoints with low contrast or poorly localised on an edge. After
that, an orientation is assigned to the remaining keypoints according to local image
properties. Finally, this data is used to create the keypoint descriptors. These are
histograms computed in a window centered on the keypoints.

3.3.2.2 SURF

Similarly to the SIFT, in the SURF approach [13] the keypoints of a given image are
represented as salient features from a scale-invariant modelling. This multiple-scale
analysis is based on the convolution of the image with discrete masks at different
scales (box filters). In the second step, orientation invariant descriptors are detected
by using local gradient statistics (intensity and orientation). Both approaches were
originally experimented for supervised object classification and recognition in real-
life object images.

3.3.2.3 Local Binary Pattern

LBP features [82] are obtained by concatenating frequency histograms of digits
extracted from the image. Each digit is derived from the comparison of the center
pixel with the eight neighbouring pixels in a 8× 8 window sliding over the image.
Considering the co-occurrence of adjacent LBPs in the image plan extends the LBP
feature representation to the adjacent local binary pattern (ALBP) [80]. LBP features
were originally experimented for the supervised classification of various texture
images [82].
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3.3.2.4 Other Local Features

Dawood et al. [35] introduced an extension of the weber local descriptor (WLD) for
the supervised classification of textural images. It was accomplished by dividing the
image in small regions and computing an histogram for each region representing the
orientation from the image gradient.

Also, Brodić et al. proposed a variant of the ALBP feature representation and a
combination of ALBP and RL statistics for clustering document image codings in
different languages and scripts, e.g. Macedonian cyrillic, Slovakian latin, Serbian
latin and Serbian cyrillic [18], and in modern and vulgar Italian language [26].

In order to classify scene images, Margolin et al. [73] introduced the oriented
texture curves (OTC) descriptor. Basically, the texture of a patch was represented
by the shape properties of the curves defining colour variations of that patch along
multiple orientations.

Furthermore, Morales et al. [77] experimented the use of SIFT descriptors for
supervised ear image classification and recognition in biometric systems, showing
promising results under controlled conditions.

Finally, Gragnaniello et al. [49] introduced a local descriptor for the fingerprint
liveness detection. It captured the spatial and frequency information from the image
in order to create a bi-dimensional histogram representing the image feature vector.

3.3.3 Bag of Visual Words

The BoVW model [43] is based on the generation of a visual vocabulary which
is obtained by clustering of a large collection of local features. In particular, the
collection of local features is extracted from the training images and clustered. Each
obtained cluster divides the local feature space in representative regions which define
the visual words. The set of visual words characterises the visual vocabulary. Accord-
ing to thismodel, each image is represented by the histogramof the visual vocabulary.
It quantifies the frequency of the visual words extracted from that image.

3.3.4 Pixel-Level Features

Pixel-level features aim at generating a feature vector for each image pixel which can
include colour, texture and/or shape information retrieved at pixel-level. Different
works have been introduced in the literature employing these features for supervised
or unsupervised image classification at pixel-level.

Yang et al. [103] introduced a descriptor including colour and texture content in
terms of edge saliency, colour saliency, local maximum energy, and multiresolution
texture gradient, for supervised classification of natural images at pixel-level.
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Also, Shi and Malik [89] proposed a graph representation of the image pixels,
where nodes corresponded to the pixels andweighted edges characterised the similar-
ity between pixels in terms of brightness and spatial closeness. This representation
was employed for solving the image segmentation problem on different types of
natural images.

A similar representation was used by Amelio and Pizzuti in [11] which extended
the Shi andMalik’s method for segmentation of natural andmedical images. Another
variant embedding the colour, texture and brightness pixel characteristics at multiple
scales and orientations was introduced by Amelio and Pizzuti in [9] for the segmen-
tation of natural images, and in [10] for the segmentation of medical images of skin
lesions.

Also, Vandenbroucke et al. [95] proposed a colour-texture pixel descriptor which
considered the best subset of texture features, such as mean, median, mode and
skewness, and colour features derived by multiple colour representation systems,
computed in a neighbourhood of the reference pixel. The pixel descriptor was used
for the supervised classification of pixels in soccer images.

Finally, Lu andWeng [69] surveyed the process of supervised image classification
for remotely sensed images. In particular, they indicated different pixel-level features
which could be used for the identification of land-cover types or vegetation classes,
such as textural or contextual information, vegetation indices, spectral signatures,
multi-temporal, transformed and multi-sensor images, and ancillary data.

3.4 Security and Biometrics

The image classification characterises different aspects of a biometric system, whose
aim is securely recognising the identity of a person by measuring the anatomical as
well as behavioural features. In fact, usual tasks include the identification of images
like fingerprint, palm, face and iris of the eye [2]. A biometric image-based system
is composed of a decision-making module where the biometric traits extracted from
the input image are recognised as belonging to a given person from a database of
different persons’ biometric traits. It requires the comparison of the biometric traits
of the unknown person with a large database of biometric traits, which can be time-
consuming in large scale applications. In this context, the classification can be very
important to categorise the elements of the database into predefined classes. Hence,
the biometric traits of the unknown person can be only compared with the subset
of elements from the database belonging to the same corresponding class. In some
other cases, the classification can be used to train a model from the database of
biometric traits in order to recognise the identity of unknown human traits. This type
of classification is usually supervised at image and object-level.

In the following, we describe some important image classification methods for
biometric systems and refer to [104] for further details about the topic.
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3.4.1 Supervised Classification

In the context of fingerprint recognition, four categories of supervised image classi-
fication methods can be identified [4]: (i) heuristic-based, (ii) structure-based, (iii)
neural-based, and (iv) statistical-based. Also, differentmethods have been introduced
for the identification of other human traits, e.g. face and iris.

3.4.1.1 Heuristic-Based Methods

The heuristic-based methods consist of extracting singularity and ridge features as
landmarks to be used for the classification process. In particular, the singularity
features aim at extracting the number and position of core and delta points which
represent accurate features for the identification task. The ridge features can be
global features. Accordingly, a rule-based classifier using the number of singularities
and global ridge features obtains accurate classification performances. A rule-based
classifier is characterised by a set of rules of type: if {condition} then {conclusion},
where the condition is stated over the data, and the conclusion is a class label. These
rules are extracted from the training set and used to classify unknown instances.

3.4.1.2 Structure-Based Methods

The structure-based methods may be: (i) syntactic, or (ii) graph matching. Syntactic
methods represent each class like a grammar characterising the fingerprint. Each
fingerprint is modelled as a pattern like a string or phrase. Then, the fingerprint is
syntactically analysed and associated to that grammar ofwhich thefingerprint follows
the rules, corresponding to its class [96]. The graphmatchingmethods represent each
fingerprint by a relational graph codifying the segmented regions of homogeneous
ridge and valley orientation and their adjacency. The minimum edit distance between
the fingerprint and each class is computed. Then, posterior probability vectors are
calculated from each edit distance, and the class is selected corresponding to the
maximum probability [88].

3.4.1.3 Neural-Based Methods

Neural-based methods employ multilayer perceptron (MLP) artificial neural net-
works which are trained for identifying the class of the fingerprints. An MLP is
characterised by a layer of input neurons defining the size of the input, one or more
layers of hidden neurons, and a layer of output neurons, where the classification is
returned. Each layer is connected with the adjacent layer by a set of connections.
Each connection is equipped by a weight. An MLP can be considered as a logistic
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regression classifier. It learns a non linear-transformation by adjusting the weights in
order to map the input data into another space where it becomes linearly separable.

3.4.1.4 Statistical-Based Methods

Statistical-basedmethods use a statistical classifier for the categorisation of fixed-size
feature vectors representing the fingerprints. They include: (i) K-nearest neighbour
(KNN), and (ii) support vector machine (SVM). The KNN [7] consists in finding a
fixed number of elements from the training set which is the nearest to the test sample
according to a given distance function. Then, the test sample is classified according to
this subset by adopting a majority voting strategy. The SVM [33] aims at learning the
parameters of an hyperplane in the feature space optimally separating the elements
of the training set in the different classes. The hyperplane divides the feature space in
parts corresponding to the different classes. Then, the classification of a test sample
is performed according to its location versus the obtained hyperplane.

3.4.1.5 Other Methods

Ramesha et al. [84] introduced a biometric identification system based on face,
gender and age recognition. It employed a posterior class probability model based
on face shape features for the gender supervised classification, and an artificial
neural network using textural face features for the age supervised classification.
In the posterior class probability model, the posterior probability of observing an
age class given the features was computed according to the probability of observing
the features given the age class and the prior probability of observing the age class.
The probability values were computed from the training set. Then, a test feature
vector was classified with the label obtaining the maximum posterior probability.
Also, Ali et al. [6] proposed an iris recognition and identification system based on
object-level classification using an SVMapproach. After a phase of iris segmentation
and normalisation from which the Gabor wavelet-based features were extracted, the
SVM classifier, learnt from the iris database, was used to recognise the identity of
unknown iris.

3.5 Aerospace and Satellite Monitoring

Classification is also employed in the satellite imaging, with the main objective
to determine the land cover class of each image pixel or region. In the supervised
classification at pixel-level, the land cover classes characterising the area must be
detected. Then, a set of representative pixels for each land cover class is selected as
the training set by manual inspection of the image terrain. After that, a classifier is
learned from the training set in order to identify the land cover class of each image
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pixel. An automatic procedure for selecting the land cover classes prior of any land
use identification is the unsupervised classification or clustering at pixel-level. It
partitions the satellite image in regions which are spectrally homogeneous inside,
while there is a meaningful spectral difference between them [39].

Another type of widespread supervised classification for the satellite images is the
object-level one [15]. It applies clustering on the satellite image for the identification
of representative cover type regions. Then, it performs the supervised classification
of the extracted regions.

All these tasks are of prior importance for detecting and quantifying the land cover
change for conservation [16], e.g. forest loss and conservation.

Next, we investigate the main approaches currently used for satellite image clas-
sification. Readings about alternative techniques can be found in [94].

3.5.1 Supervised Classification

Relevant supervised image classification algorithms for satellite images are [58]:
(i) maximum likelihood classifier (MLC), (ii) minimum distance classifier (MDC),
(iii) parallelepiped classifier (PC), (iv) random forest (RF), and (v) artificial neural
network. In this context, the input of the classifiers is the feature vector representing
the spectral signature of a given pixel.

3.5.1.1 Maximum Likelihood Classifier

MLC computes the probability that a pixel belongs to a given class by following
the Bayes theorem. It requires the probability of observing the pixel given the class
(likelihood function), expressed in terms of covariance matrix andmean vector of the
class. Under the assumption of multivariate Gaussian data distribution, the unknown
pixels are assigned to the class with the highest value of log-likelihood monotone
function, which is computed from the training data.

3.5.1.2 Minimum Distance Classifier

MDC computes a mean vector of instances from each prototype class of the training
set. In order to classify a test pixel, the methodmeasures the distance (e.g. Euclidean)
between the unknown pixel and each mean vector. At the end, the pixel is assigned
to that class corresponding to the lowest spectral distance.
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3.5.1.3 Parallelepiped Classifier

PC represents the pixels in the training set in their multidimensional spectral space.
Accordingly, each prototype class of the training set describes a multidimensional
structure according to the value of its pixels. In order to classify a test pixel, it is
checked if the unknownpixel lies in a givenmultidimensional structure of the spectral
space. Then, it is assigned to its corresponding class.

3.5.1.4 Random Forest

Ma et al. [70] presented a meta-analysis of different studies proposed in the recent
literature for the identification of land cover classes. According to this analysis, the
RF classifier showed the best performances in object-level classification. RF creates
a set of tree-based classifiers, trained by random subsets of the training objects. A
tree-based classifier is a prediction model where leaves correspond to class labels
and branches correspond to feature combinations determining those class labels. The
classification of unknown objects is performed by majority voting over the set of the
classifiers.

3.5.1.5 Artificial Neural Network

Recently, Geng et al. [46] introduced a deep supervised and contractive neural net-
work for the classification of SAR images at pixel-level. The network was composed
of four layers of supervised and contractive autoencoders, which determined a mod-
elling of the features and provided the prediction of the class of tested pixels. An
autoencoder was characterised by an encoder and a decoder. The encoder provided
a coding of the input. The decoder aimed at reconstructing the input from its coding.
Hence, the autoencoder aimed at minimising the reconstruction error between the
input of the encoder and the output of the decoder. Penalty factors were included in
the autoencoders in order to improve the robustness of the classifier agains the image
noise.

3.5.2 Unsupervised Classification

Two unsupervised classificationmethods obtaining better performances in clustering
satellite image pixels are [39]: (i) fuzzy K-means, and (ii) fuzzymaximum likelihood
(ML).Both classifiers consider that everypixel is associatedwith thedifferent clusters
by a value of membership.



46 L. Amelio and A. Amelio

3.5.2.1 Fuzzy K-means

The fuzzy K-means algorithm finds the K clusters of pixels which minimise the
objective function. This is the total Euclidean distance between the pixels in each
cluster and their centroid weighted by the degree of membership of that pixel to
that cluster. The centroid of a given cluster is the mean vector of all pixels inside
that cluster weighted by the membership coefficients of each pixel to that cluster.
The algorithm for detecting the fuzzy partitioning iteratively updates the member-
ship coefficients and the cluster centroids until the objective function is optimised.
The first step of the algorithm computes the centroids from initial membership coeffi-
cients. The obtained centroids are used for updating themembership coefficients. The
procedure is iterated until there are small variations in the membership coefficients.

3.5.2.2 Fuzzy Maximum Likelihood

In the fuzzyMLclustering, the pixels are assumed to be realisations of randomvectors
independently selected from K multivariate normally distributed populations which
correspond to the pixel clusters. Accordingly, the random vectors are expressed in
terms of covariance matrix and expected value. The aim of the method is the max-
imisation of the posterior probability of observing the clustering given the pixel data.
It can be expressed as the minimisation of the log-likelihood of observing the pixel
data given the clustering. This function represented in terms of covariance matrices
and expected values of the pixel categories defines the cost function weighted by the
membership coefficients of a given pixel to a given cluster. In the fuzzy ML clus-
tering, these membership coefficients are computed as the posterior probabilities of
observing the cluster given the pixel data in that cluster.

3.6 Document Analysis and Language Understanding

The supervised classification at image-level in document analysis aims at identifying
the category of a given document. Some categories correspond to different document
types, such as letter, newspaper, journal paper, form, etc. Other categories may define
language classes, such as Italian andEnglish, script classes, such as Latin and Fraktur,
orthography classes, dialect or sub-dialect classes.

On the contrary, the unsupervised classification at image-level is adopted for
detecting classes of documents with similar characteristics according to different
criteria, e.g. similar content, language or script. In the handwriting context, it can be
used for grouping documents from the same writer (writer identification).

Finally, the image segmentation is used for the discrimination of different objects
inside the document, e.g. text, stamp and logo, resulting in faster document identifi-
cation and retrieval.
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The input of the classifier at image-level is a fixed-size feature vector representing
the document image instance or the pixel matrix of the document image.

In the following,we describe some relevant approaches introduced in the literature
for the classification of document images, and refer to [81] for further details about
the topic.

3.6.1 Supervised Classification

The supervised document image classification methods at image-level can be cate-
gorised as [30]: (i) statistical methods, (ii) structural methods, (iii) knowledge-based
methods, (iv) combination of multiple classifiers, and (v) multi-stage classification.

3.6.1.1 Statistical Methods

Statistical methods include: (i) KNN classifier, (ii) decision tree, (iii) MLP artificial
neural network, (iv) SVM classifier, (v) Naive Bayes, and (vi) convolutional neural
network (CNN).

Adecision tree is a tree-based classifier built from the training set,where leaf nodes
correspond to the classes and internal nodes are feature condition points which divide
instances with different characteristics. The class of a test instance is the leaf node
along the path in the tree tracked by the feature values of the instance.

The Naive Bayes method assumes the independence of the features on a given
class. Accordingly, the posterior probability of the class given the feature values of
an instance can be defined in terms of prior probabilities of the class, and product of
likelihood of each feature value given the class. The probability values are computed
from the training set. The class determining the highest posterior probability on the
test instance corresponds to the predicted value. The Naive Bayes classifier was
adopted in [17, 20, 22] for the identification of documents in different orthography
styles, i.e. old and newGlagolitic, and Slavonic-Serbian and Serbian languages. Also,
the Naive Bayes and SVM classifiers were employed in [23] for the recognition of
documents in the evolved Slavonic-Serbian into modern Serbian language, and in
[21] for the recognition of documents in different pronunciations of the Shtokavian
dialect. Also, the KNN and Naive Bayes classifiers were adopted in [27] for the
identification of a minority language like Serbian among widespread in the world
languages, i.e. German, Spanish, English and French.

A CNN is an artificial neural network characterised by a set of convolutional
layers, by which the input matrix of pixels is processed. The output of these layers
is classified by adopting two or three fully-connected layers. Kang et al. [60] trained
a CNN for the identification of documents of different type, e.g. letter, news, note,
email, and tax-forms.
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3.6.1.2 Structural Methods

The structural methods generate models, represented by objects like trees or graphs,
for each document class from the training set. Then, an unknown document is
classified according to the minimum distance computed with the generated docu-
ment class models. Different methods can be employed for generating class models.

A first method is a decision tree which can be extended to manage document
tree-based representations in order to classify documents. Accordingly, the leaves of
the classifier are labeled trees and the internal nodes correspond to shared sub-trees.
The classifier is generated using operations of insertion, descending and splitting,
according to sub-tree similarity matching.

A second method extends the KNN classifier for managing tree-based representa-
tions of documents in order to classify pages. The adopted distance for the classifier
is a tree version of the edit distance.

3.6.1.3 Knowledge-Based Methods

The knowledge-based methods [86] generate a set of rules, a hierarchy of frames or
similar representations from training document data. They model the expert knowl-
edge about the categorisation of the documents in the different classes. Unknown
documents are classified according to the generated rules or other representations. A
method for generating the set of rules is using Inductive Logic Programming on the
training set of labeled documents [40]. In particular, a set of definite clauses opti-
mally covering the training set instances is generated. Each clause is composed of a
head representing the class label, and a body which is the combination of different
feature values. The algorithm starts by selecting a seed instance and generating a set
of clauses covering that instance. Then, a preference criterion is used for selecting
the best clause from the set. Finally, all instances covered by the selected clause are
discarded from the set. The procedure is iterated until all instances are covered by a
clause.

3.6.1.4 Combination of Multiple Classifiers

The combined classifiers consist in different classification methods which are com-
bined in different modalities, e.g. hierarchical, in order to improve the final docu-
ment classification result. Accordingly, three different classifiers, KNN, MLP and
tree matching, can be employed for form classification [55]. The tree matching is
a structural classifier which represents the form content like a tree structure. Docu-
ment image features are used as input to KNN and MLP. On the contrary, structural
features based on layout are used as input to the tree matching classifier. The com-
bination of the different classifiers can be performed by adopting a hierarchical or
parallel strategy with majority voting. In the first case, the classifiers are applied for
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reducing the number of candidate labels. Then, the structural classifier is employed
on the data labeled by the other classifiers in order to detect the final labelling.

3.6.1.5 Multi-stage Classification

Finally, the multi-stage classification methods produce an increasingly refined clas-
sification of the document from an initial classification with a small number of coarse
classes. Accordingly, these methods require different class models and classification
approaches to be used. A similar method could provide a two-phase classifier where
in the first phase the documents are categorised as journal papers or business letters,
or business letters from different senders, and in the second phase the business letters
are categorised in more refined classes or different message types are identified.

3.6.2 Unsupervised Classification

Different approaches for the unsupervised classification of document images include:
(i) evolutionary computation methods, and (ii) statistical methods.

3.6.2.1 Evolutionary Computation Methods

Brodić et al. [28] proposed Genetic Algorithms Image Clustering for Document
Analysis (GA-ICDA), a graph-based genetic algorithm for document image database
clustering. The algorithm generated a weighted undirected graph, where nodes were
the document images, and edges connected the n most similar and spatially close
nodes. Then, a genetic algorithm,which optimised theweightedmodularity function,
was employed for detecting the graph communities, corresponding to document
image clusters. A high weighted modularity corresponded to a solution where each
node community was well-connected with edges of high weight, while connections
among communities were low-weighted and sparse. This realised clusters of similar
documents, which were dissimilar each others. The genetic algorithm was based on
the generation of an initial population of chromosomes, each representing a possible
partitioning of the graph in node communities. After that, the weighted modularity
function was computed on the individuals of the chromosome population. Then,
operators of mutation and crossover were applied on the chromosomes for changing
the node membership to communities. The mutation randomly changed one gene of
the chromosome. The uniform crossover applied on a pair of parent chromosomes
generated a child randomly selecting the genes from the first or the second parent.
The last two steps were iterated until a termination condition was satisfied.

The traditional algorithm used the Manhattan distance for the discrimination of
documents given in different languages [28], i.e. English, French, Serbian and Slove-
nian. A variant of the algorithm used the Euclidean distance for the discrimination
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of documents given in closely related languages [24], i.e. Serbian and Croatian. An
extension of GA-ICDA, called Genetic Algorithms Image Clustering for Document
Analysis-Plus (GA-ICDA+) [26], was adopted for clustering documents given in
languages evolved over time, i.e. Italian language evolved from Italian vulgar to
modern Italian. GA-ICDA+ introduced a more flexible parameterisation in the simi-
larity computation, and the managing of singleton clusters in the genetic procedure.

GA-ICDA was also employed for the discrimination of German historical docu-
ments given in different scripts [25], i.e. Latin and Fraktur, the discrimination of doc-
uments given in South-Slavic scripts [29], i.e. Cyrillic, Latin and Glagolitic, and the
discrimination of documents given in multiple languages with different scripts [18],
e.g. Macedonian Cyrillic, Serbian Cyrillic and Slovakian Latin. Finally, a reduced
version of GA-ICDA+, only considering the parameterisation in the similarity com-
putation, was used in [19] for clustering historical documents in old Cyrillic, angular
and round Glagolitic as well as Antiqua and Fraktur scripts.

3.6.2.2 Statistical Methods

Diem et al. [38] proposed a semi-automatic document image clusteringmethod based
on multiple features. They represented layout characteristics, such as: (i) supporting
material, e.g. paper colour and texture, (ii) structure, e.g. font height and font slant,
and (iii) writing, e.g. writing colour and writer identification. The user selected the
number of desired clusters. Then, a hierarchical procedure based on the K-means
algorithm was employed for clustering the documents at multiple levels according
to the different feature subsets. The K-means algorithm detects the clustering which
minimises the total Euclidean distance between the instances in each cluster and
their centroid. The number K of clusters is an input to the algorithm. The first step
randomly selects K initial centroids. Then, each instance is assigned to the nearest
centroid in terms of Euclidean distance. A centroid is computed as the mean value
on the data belonging to that cluster. After that, new K centroids are computed
according to the new assignment of the instances to the clusters. The last two steps
of the algorithm are iterated until the K centroids do not meaningfully change their
location.

Also, Dey et al. [37] introduced a consensus-based segmentation method for doc-
ument images. It extracted from the document image a set of foreground blocks, each
characterised by different features. Then, similarity values were computed between
the blocks according to each feature using a statistical test. After that, clustering of
the blocks was performed according to the consensus of the similarity values for the
different features. This clustering procedure was employed together with a classifier
in order to recognise the block type, e.g. stamp, logo and noise.
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3.7 Information Retrieval

The image classification approaches considered as “information retrieval” include
methods for the classification of natural texture-colour images. Because of the high
variability of these methods, we describe some examples of supervised and unsuper-
vised classification at image and pixel-level. A critical overview of supervised and
unsupervised image classification methods can be found in [3, 72].

3.7.1 Supervised Classification

Kanan and Cottrell [59] proposed a supervised classification method at image-level
for object, faces and flowers images based on sequential fixation-based visual atten-
tion. A sequential fixation was a random sampling T times of the saliency map
corresponding to a sort of image segmentation. Hence, the posterior probability of
observing the class given the fixation feature vector acquired in a time period T from
the image was computed in terms of prior probability of observing the class and
the product over time of the probabilities of observing the feature vector given the
class. The classification of a test image was performed by computing the probability
terms according to the training set. Finally, the class obtaining the highest posterior
probability was assigned to the test image.

Also, Hiremath and Bhusnurmath [56] employed the KNN classifier for super-
vised classification at image-level of colour and texture images. The input to the
classifier was represented by features extracted from the RGB colour space and a
variant of the local binary patters.

In the context of supervised classification at pixel-level, Zhu et al. [106] proposed
a method for shadow identification in monochromatic natural images. The method
employed a random forest of decision trees, each learned from a random sample of
the training set, which provided a probability distribution for each image pixel over
the shadow classes. Then, a sampling strategy from each distribution was used as
input for estimating the marginal distribution over the class of each pixel, by which
the likelihood of a pixel to be assigned to a given class was obtained.

3.7.2 Unsupervised Classification

Amelio and Pizzuti [12] introduced Genetic Algorithms Image Clustering (GA-IC),
an unsupervised method at image-level for clustering databases of natural colour-
texture images. The method was based on the construction of a weighted undi-
rected graph, where nodes represented images, and edges connected the most similar
images according to the Manhattan distance of the related feature vectors. Then, a
genetic algorithm optimising the weighted modularity function was employed on
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the obtained graph for detecting the node communities corresponding to image clus-
ters. The adopted genetic algorithm was the same introduced for GA-ICDA in Sect.
3.6.2, with the difference that node communities represented by the chromosome
corresponded to groups of images.

Also, Amelio and Pizzuti [8] proposed an image segmentation method called
Genetic Normalized Cut (GeNCut). It represented the image as a weighted undi-
rected graph, where nodes were associated to the image pixels, and edges connected
the nearest neighbour pixels. They were spatially close and similar pixels according
to a criterion of brightness homogeneity. Then, a genetic algorithm, minimising the
weighted normalised cut, was applied on the image graph in order to detect the node
clusters which were pixel regions. The weighted normalised cut considered the total
weight of the edges among node clusters. It was minimised when the pixel regions
were homogeneous inside, and spatially distant and dissimilar in brightness each oth-
ers. The employed genetic algorithm was the same proposed in GA-ICDA (see Sect.
3.6.2), except that node clusters represented by the chromosome were pixel regions,
and the adopted objective function was the weighted normalised cut. The method
was further tested on a variety of images, including satellite, medical, faces and nat-
ural images [11]. GeNCut was further extended to Color Genetic Normalized Cut
(C-GeNCut) for including colour and texture features in the similarity computation
of the pixels [9], and tested on different types of natural and human scenes.

3.8 Classification in Image-Based Medical Analytics

The image classification methods are also an essential part of the medical diagnostic
process, assisting the physician during the achievement of the patient’s general well-
ness. These methods can represent a huge help in the global treatment of the disease
from the aspects of secondary prevention to the management of the main conse-
quences and prognostic perspective. In particular, the methods of medical image
classification can be used to quickly identify a specific disease, or signs of it, in an
apparently healthy person visualising and recognising elements to deeply study with
further accurate exams (secondary prevention). Also, techniques of image classifi-
cation can help the physician during the accurate diagnosis and/or the treatment of
a known disease. A last important utility can be found in the follow-up process of
diseases, giving a visualisation of patient’s conditions during future time, predicting
eventual symptoms return and addressing the patient to the best quality of life.

In the following, a categorisation of medical images is introduced according to
a clinical and general point of view. It includes a first section of diagnostic inspec-
tive acquisition, covering two of the most common fields of pure inspective imaging
which are: (i) dermatology, and (ii) ophthalmology. Then, a second section is charac-
terised by the main different fields of nuclear medicine imaging: (i) scintigraphy, (ii)
single-photon emission computed tomography (SPECT), and (iii) positron emission
tomography (PET). At the end, a third and last section is related to the general fields
of clinical-sided radiology: (i) ultrasonography, (ii) computed tomography (CT), (iii)
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Fig. 3.6 Overview of the main fields of medical imaging

magnetic resonance imaging (MRI), and (iv) X-ray. According to this categorisation,
shown in Fig. 3.6, some relevant techniques of image classification are described and
discussed.

Readers can refer to [36, 100] for further details about classification methods in
medical imaging.

3.8.1 Diagnostic Inspective Acquisition Imaging

The diagnostic inspective acquisition imaging, including dermatology and ophthal-
mology, consists of a visualisation of direct images that can be obtained during the
inspective part of the medical examination. It is performed through the utilisation
of specific medical instruments, such as fundus camera for the digital capturing of
retinal fundus images and generic cameras for dermatological images. Figure 3.7
shows a sample of retinal image captured by a fundus camera and a dermatological
image captured by a generic camera.



54 L. Amelio and A. Amelio

Fig. 3.7 Diagnostic inspective acquisition imaging: a retinal fundus image, and b melanoma der-
matological image

3.8.1.1 Dermatology

In dermatology, supervised image classification at object-level is used to determine
the eventual progression of skin lesions, focusing on the different inspective appear-
ance and diversity from no pathological lesions. Also, some works are finalised to
the comparison of different skin lesion types, e.g. trying to differentiate melanoma
cancerous lesions from other cancer types such as squamous cell carcinoma (differ-
ential diagnosis). Furthermore, image segmentation is used to extract lesion’s borders
which can be later analysed by supervised image classification algorithms.

In particular, KNN and SVM classifiers were used for the identification of skin
lesions from images [91]. First, a region growing algorithmwas adopted for segment-
ing the skin lesions in the image. Region growing randomly selected seed pixels as
initial regions. Then, it increased the region size by clustering neighbour pixels to
each seed until the pixels were similar. After that, the extracted lesion segments
represented by colour and texture features were classified by using KNN and SVM.
The SVM classifier was also employed for lesion severity classification from skin
images [1]. In the first step, image segmentation was performed for extracting the
lesion regions. Then, multiple features were computed from the extracted regions,
e.g. central shape asymmetry, colour asymmetry and border irregularity. In the second
step, a BoVWmodel of concepts was created by classifying the extracted features in
semantic categories using SVM. The lesion severity was computed as the sum of the
scores associated with the semantic concepts. Furthermore, CNN was used for the
identification of skin lesions [41]. Input to the network was the skin lesion image.
The network was trained for recognising fine-grained classes of skin lesions, which
determined a probability distribution over the classes. In order to compute the prob-
ability on coarser-level classes of skin lesions, the probability of their descendants
was summed. The algorithm was tested for the discrimination of keratinocyte carci-
nomas and benign seborrheic keratoses, and for the distinction between malignant
melanomas and benign nevi.

In the context of image segmentation, Amelio and Pizzuti [10] proposed the
application of C-GeNCut on skin lesion images for the identification of the lesion
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borders. In particular, the algorithmwas tested on images representing different types
of melanoma.

A wider review of classification algorithms for skin lesion images can be found
in [44].

3.8.1.2 Ophthalmology

On the contrary, in ophthalmology, supervised and unsupervised image classification
methods can be used to check retinal vessels, state to monitor the progression and the
eventual diagnosis of diabetic retinopathy. Eventually, these methods can be applied
to studymacular diseases in different expressions or can be used to recognise different
types of no retinal pathologies such as cataract and glaucoma.

In this context, K-means clustering algorithm was employed for segmenting reti-
nal blood vessels from fundus images [54]. It could be used for analysing the status
of the retinal blood vessels in order to capture the advancement of the diabetes.

Also, CNN was used for the supervised classification at image-level of retinal
images derived from the fundus inspection [31]. In particular, the CNN was capable
of classifying the retinal images in multiple categories of normal retina and retina
affected by different diseases. Also, the SVM classifier was employed for the iden-
tification of ophthalmic images in order to recognise the pediatric cataract [97].

A detailed survey about fundus image analysis for the diagnosis of glaucoma is
reported in [74].

3.8.2 Nuclear Medicine Imaging

Nuclear medicine imaging, including scintigraphy, SPECT and PET, is based on the
acquisition of radiation emitted from inside the patient instead of using external radi-
ation sources. In particular, small amounts of radioactive material called radiotracers
are injected in the patient’s body. When the radiotracers reach the interested area,
they emit radiation which is captured by a specific instrument in order to generate
the image.

In the scintigraphy and SPECT, radiotracers based on emission of gamma rays
are injected in the patient’s body. On the contrary, in PET imaging the radiotracers
emit positrons. Among the different types of imaging, PET and SPECT imaging give
a 3D view, while the scintigraphy provides a 2D view.

Figure 3.8 shows a sample of scintigraphy, SPECT and PET images. Further
details about nuclear medicine imaging and instrumentation can be found in [61].
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Fig. 3.8 Nuclear medicine imaging: a scintigraphy of prostatic cancer, b brain SPECT image, and
c brain PET image

3.8.2.1 Scintigraphy

The classification of scintigraphy images mostly involves object-level supervised
algorithms whose aim is the recognition of multiple bone illnesses from features
extracted from the scintigraphy.

Among the others, a knowledge-based algorithm was proposed for the identifica-
tion of different pathologies from bone scintigraphy [87]. First, an image segmen-
tation method was introduced for segmenting the whole-body bone scintigraphy for
further diagnosis on single bones. Then, a set of parameterised knowledge-based
rules was adopted for supporting image processing algorithms in detecting reference
points of the anterior and posterior whole-body skeletal regions, e.g. shoulders, head,
pelvis, thorax. It determined parameterised bone images according to the bone refer-
ence points, which were the input to an SVM classifier. The output of the SVMwas a
class label corresponding to some bone pathology, e.g. lesion, malignom, metastasis,
degenerative changes, inflammation, or no pathologies.

3.8.2.2 Single-Photon Emission Computed Tomography

Differently from the scintigraphy, the classification methods for SPECT images aim
at recognising specific regions of brain and body tissues in order to identify benign
versus malignant pathologies, e.g. tumour pathologies, neurodegenerative patholo-
gies (Alzheimer, Parkinson disease), or other types of diseases.

Among the others, the SVM classifier was adopted for the supervised classifica-
tion at object-level of SPECT images in order to identify the Alzheimer disease [48].
First, a gaussian mixture model (GMM) was used for approximating the intensity
profile of the image. In the GMM, the data was realisation of a probability distri-
bution as the sum of k gaussians, with parameters given by the expectation values
μi and covariance matrices �i , i = 1, ..., k. The aim was to estimate the parameters
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which maximised the likelihood of a GMM with k elements using an expectation
maximisation (EM) algorithm. EMwas based on a hidden variable, which was added
to simplify the maximisation of the likelihood. The procedure was characterised by
a first step of expectation, where it was estimated the distribution of the hidden vari-
able given the data and the value of the parameters. Then, a step of maximisation
used the hidden variable for changing the parameters’ value in order to maximise
the likelihood of the data and of the hidden variable. The output of this procedure
was a set of k regions characterising the image. From each region, mean intensities
were computed which determined a final feature vector of the image. At the end, the
SVM was trained using the obtained feature vectors in order to classify unknown
brain images as normal or affected by the Alzheimer disease. Another supervised
classification system at object-level used the random forest classifier for the recog-
nition of brain SPECT images affected by the Alzheimer disease [85]. A first step of
identification of meaningful image regions was employed for detecting the most dis-
criminant features in order to train the classifier. At the end, unknown brain images
were classified by the random forest as normal or abnormal.

3.8.2.3 Positron Emission Tomography

The aim of the classification of PET images is relatively similar to the SPECT
image classification. Also in this context, the SVM classifier was used for the super-
vised classification at image-level of brain images for the automatic diagnosis of the
Alzheimer disease [76]. The classifier was trained by images represented by a set of
texture feature vectors. Textural features were extracted by an extension in 3D of the
LBP operators. At the end, unknown images were classified as normal or affected by
the Alzheimer disease. At object-level, the random forest classifier was employed
on PET images for the automatic identification of the lymphoma area [50]. The PET
image was hierarchically decomposed in meaningful regions embedding the spatial
and spectral information of the image. This was represented as a tree data structure
where each node corresponded to a given region, with associated features represent-
ing shape, texture or intensity of the region. Then, the random forest classifier was
trained on these features in order to classify each node of the tree with three possible
labels: lesions, organs and non-relevant parts.

Finally, in the context of the image segmentation, an extension of the fuzzy
K-means was introduced for the segmentation of tumour masses from PET images,
e.g. laryngeal squamous cell carcinoma [14]. In particular, spatial information and a
method for managing the segmentation of heterogeneous lesions were integrated in
the clustering algorithm.
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3.8.3 Clinical Radiology Imaging

Clinical radiology imaging consists of a visualisation of images that can be obtained
during the routinary general radiological approach to the patient. The different tech-
niques comprehend various types of images, not based on the same physical laws but
grouped here from a diagnostic point of view. Figure 3.9 shows a sample of breast
ultrasonic image, liver CT image, head MRI image, and chest X-ray image.

3.8.3.1 Ultrasonography

Ultrasonography imaging is based on images obtained and scanned from a sound
wave source instrument (ultrasound probe) that provides the visualisation of different
types of tissues. In medical clinical diagnosis, ecography is usually essential and fast,

Fig. 3.9 Clinical radiology imaging: a breast ultrasonic image, b liver CT image, c head MRI
image, and d chest X-ray image
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letting to the physic a quick and substantial comprehension of a specific group of
symptoms and associated disease. The reader can refer to [93] for a wider description
of the ultrasonography imaging.

Among the image segmentation methods, a bayesian non-parametric clustering
was employed for segmenting breast ultrasound images in order to discriminate a
breast cancer lesion from the background [83]. The feature vectors characterising
the images were considered to be the realisation of a mixture of distributions, whose
parameters followed a Dirichlet process. The objective was the estimation of the set
of parameters and set of mixture components such that the probability of observing
the parameters given the data wasmaximised. Also, the K-means clustering was used
in the segmentation of ultrasonic images for supporting detection and classification
of different stages of chronic kidney disease [57]. After a pre-processing step of
cleaning and noise removal and a step of manual selection of regions of interest
(ROIs), the K-means segmented each ROI into five local regions, in order to detect
the borders of renal pelvis and parenchyma.According to the distribution of black and
white pixels in the different regions, the stages of the patients with chronic kidney
disease could be detected. Further methods of image segmentation for ultrasonic
images can be found in [79].

In the context of supervised classification at image-level, CNN and SVMmethods
were adopted inside a system for the diagnosis of the cirrhosis from ultrasonic images
[67]. A pre-processing step included the extraction of liver capsules from the images.
Then, a CNN was trained according to the liver capsules. It was used for computing
features from patches composing the capsules. At the end, an SVMwas trained from
labeled features and used for the classification of unknown images into normal or
abnormal cases.

3.8.3.2 Computed Tomography Scan

On the contrary, CT imaging is based on images obtained with X-ray from a 3D point
of view using a tomograph. CT scan is today a needful part of medical diagnosis,
irreplaceable and fast. It lets to the physic a global understanding of the patient’s state,
giving the possibility to analyse even regions not directly affected by the pathology
but associated with the pathology progression.

In this context, the CNN method was employed for the supervised classification
at image-level of optical coherence tomography (OCT) images. The aim was the
identification of normal OCT macular images as well as OCT images of patients
affected by age-based macular degeneration [65]. The input of the CNN was the
OCT macular image. After a training phase of the neural network, an unknown
OCT macular image could be classified as normal or abnormal. Deep learning in
terms of CNN, deep neural network (DNN) and stacked autoencoder (SAE), was
also used for the supervised classification at image-level of benign and malignant
lung nodules from CT images [90]. The DNN was composed of an input layer,
an output layer and a set of fully connected hidden layers with increasing number
of neurons. Each hidden layer was a nonlinear transformation of the output layer.
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The SAE was characterised by multiple autoencoders which were combined in a
network with different hidden layers, an input layer and an output layer. In the
training phase, labeled CT lung nodule images were used as input for training the
networks modelling the images at different size for each hidden layer. In the first
training step, all weights of the networks were randomly set. Then, the output value
was forward propagated according to the functions defined at neuron-level. After
that, the weights were re-computed backward in order to minimise the error. Given
an unknown image as input, the output of the networks was the classification of the
lung nodule as benign or malignant. Results demonstrated that CNN obtained the
highest accuracy in classification of lung nodules.

In the context of the image segmentation, fuzzy K-means was adopted for the
segmentation of the liver region from CT images [66]. This is of prior importance
for building 3D models of the liver in order to automatically detect liver diseases.

3.8.3.3 Magnetic Resonance Imaging

Differently from the previous images, MRI is a type of medical image based on the
spin orientation variation of hydrogen atoms exposed to a variable magnetic field.
Such variation is employed by the MRI scanner for generating the image. These
types of images are used for a huge spectrum of diseases, usually when CT scan
imaging is not so appropriate, or directly in the study of specific pathologies.

In this context, deep learning CNN was widely adopted for the supervised classi-
fication of brain tumour magnetic resonance images [5]. In particular, three architec-
tures of CNN were used in the state-of-the-art for solving this task: (i) Patch-Wise
CNN, (ii) Semantic-Wise CNN, and (iii) Cascaded CNN. A Patch-Wise CNN identi-
fied a N × N patch in the neighbourhood of each image pixel and trained the network
from these patches and their class labels in order to identify normal or abnormal
(tumour) part. In some cases, the CNN employed multiple pathways, each trained
from patches of different size. The final output was given by a neural network which
learned a model from the single outputs in order to detect the final classification.
Semantic-Wise CNN realised a supervised classification at pixel-level using autoen-
coders. Finally, cascaded CNN was characterised by a first network which provided
a first classification, and a second network receiving as input the outputs of the first
network in order to refine the classification. Also, the SVM classifier was used for
the supervised classification of brain MR images in order to identify patients with
normal condition, Alzheimer’s disease or mild cognitive impairment [101]. Textural
features as well as region-based local features were extracted from the image and
given as input to the SVM classifier for the patient’s condition identification.

In the context of the image segmentation, an extended version of the fuzzy
K-means was introduced for the segmentation of brain MRI images [92]. It is of
prior importance for the identification and further analysis of brain structures, e.g.
cerebrospinal fluid and white matter. In particular, the optimisation function of the
fuzzy K-means was modified for considering also intensity inhomogeneity, making
the segmentation more robust to noise.



3 Classification Methods in Image Analysis with a Special … 61

3.8.3.4 X-ray

Finally, X-ray images are the most common and direct type of medical images. They
allow a rapid analysis of specific anatomical districts such as chest, abdomen or
bones. An X-ray image is based on the exposure of the patient to a flow of photons.
It provides a rapid realisation of a clinical condition, helping identifying regions to
check with more accurate radiological approaches.

The CNN classifier was also used in the X-ray imaging for the supervised
classification at image-level of images showing the presence/absence and position
(low/normal) of an endotracheal tube on chest/abdominal radiographs, which is an
important task for the radiologist [64]. Obtained results showed that CNN performed
well for the differentiation of chest and abdominal radiographs. On the contrary,more
training images were needed for obtaining high accuracy in more difficult cases, i.e.
differentiation of presence and absence, and low and normal position of an endo-
tracheal tube. Also, CNN was adopted for the identification of vessel regions in
contrast to the background in angiography images [78], which is of prior importance
for the diagnosis of the coronary artery disease. The input image was scanned by
a fixed-size window which progressively extracted patches as input to the CNN.
The output indicated if the central pixel of the patch was inside a vessel region or
outside. At the end, the trained CNN was employed for identifying the vessels loca-
tions inside the patches of the input image, and dividing the image in two regions
of vessel/background. Finally, SVM and KNN classifiers were employed for the
supervised classification of esophageal X-ray images in order to identify normal or
different cancerous images [102]. After a pre-processing step where the image was
resized to a small region of interest and enhanced, a feature vector was extracted from
the image and the most discriminative features selected. After that, SVM and KNN
were trained using the selected features for classifying different types of esophageal
cancer images.

3.8.4 Horizon of the Research and Future Challenges

The utility offered by these techniques is a great tool supposed to guide the sanitary
operator through the entire diagnostic process. The direction taken from these studies
is clearly projected to the futurewhere the several ideas, day after day, paint a universe
rich of innovation and technology.

From a clinical point of view, the possibility (economical and time related) to
access to imaging instrumentation that can apply and utilise these algorithms as fast
as possible, is crucial to let these methods concretely enter into the medical common
approach. Today, there are a lot of horizons that can be discussed, going from the
emergency medicine to the pure radiology. A first future challenge could be a simple
camera system, taking pictures of the patient’s face from different angles. Then, it
can be used before the medical examination to auto-check the images and identify
eventual cranial nerve paralysis or facial bone fractures. In fact, deviation of the
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muscular normal position or signs of traumatic wounds or fractures can be detected
and analysed so that the physician, in a second time, can directly focus on these
lesions. All this can be imagined as a support during the triage assessment even
before the real medical intervention, aimed to create a first classification of the
patient identifying regions of interest to treat or study deeper with different types of
radiological exams (CT). Another challenge could be the utilisation of these image
classification methods with portable ultrasound machines. This could let the physi-
cian to have an assisted and real-time oriented diagnosis using a portable device
everywhere it is needed, for example in contexts of disaster medicine, or at home for
fragile elderly patients or at risk ones. Another interesting idea could be the intro-
duction of new image classification methods to be used in a smart monitoring system
for stroke patients. This kind of patients very often require a serial CT monitoring
to check the eventual progressions of central nervous system (CNS) lesions or even
the appearance of new ones. The hypothetical existence of an imaging confronta-
tion system for CT images could help the physician during the monitoring of the
patient’s neurological state, highlighting variations of the cerebral lesions during the
post-acute phase. A last context for the application of image classification algorithms
could be represented by the radioguided surgery. In fact, smart image recognition
systems could be used to closely assist in real-time the surgeon during the different
phases of the surgery that require a radiological assistance.

Some of the proposed ideas could be the object of our future research.

3.9 Conclusions

This paper surveyed the most recent trends in supervised and unsupervised image
classification. This was accomplished by providing a general overview of the image
classification problem in all main aspects. Then, the analysis was focused on the
main applicative contexts where the image classification has played an essential
role, including security and biometrics, aerospace and satellitemonitoring, document
image processing and language understanding, and information retrieval. At the end,
the most relevant methods of image classification in the medical analytics were
presented according to an introduced categorisation froma clinical perspective. Itwas
the startingpoint for shedding light on the future challenges of the image classification
in the medical context, which are of prior importance for improving the diagnosis
process. Accordingly, this paper could be a valid support for newcomers as well as
students who approach for the first time to the image classification problem. Also, it
can be particularly useful to teachers and researchers in academia as well as industry
in order to present the advancement of the state-of-the-art and promote the design
and development of new methods in image classification.
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Chapter 4
Medical Data Mining for Heart Diseases
and the Future of Sequential Mining
in Medical Field

Carine Bou Rjeily, Georges Badr, Amir Hajjarm El Hassani
and Emmanuel Andres

Abstract Data Mining in general is the act of extracting interesting patterns and
discovering non-trivial knowledge from a large amount of data. Medical data mining
can be used to understand the events happened in the past, i.e. studying a patients
vital signs to understand his complications and discover why he has died, or to
predict the future by analyzing the events that had happened. In this chapter we
are presenting an overview on studies that use data mining to predict heart failure
and heart diseases classes. We will also focus on one of the trendiest data-mining
field, namely the Sequential Mining, which is a very promising paradigm. Due to its
important results in many fields, this chapter will also cover all its extensions from
Sequential Pattern Mining, to Sequential Rule Mining and Sequence Prediction.
Pattern Mining is the discovery of important and unexpected patterns or information
andwas introduced in 1990with the well-knownApriori. Sequential PatternsMining
aims to extract and analyze frequent subsequences from sequences of events or
items with time constraint. The importance of a sequence can be measured based
on different factors such as the frequency of their occurrence, their length and their
profit. In 1995, Agrawal et al. introduced a new Apriori algorithm supporting time
constraints named AprioriAll. The algorithm studied the transactions through time,
in order to extract frequent patterns from the sequences of products related to a
customer. Time dimension is a very important factor in analyzing medical data,
making it necessary to present a positioning of Sequential Mining in the medical
domain.
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4.1 Introduction

TheWorldHealth Organization estimates that every yearmore than 12million deaths
are caused by heart diseases. The term Heart disease includes all the diseases related
to the heart. Cardiovascular diseases cause half of deaths in the United States and
other developed countries. It shows to be the primary reason of the death worldwide.
Medical data mining is very important for exploring the hidden patterns in data. Dis-
covering hidden patterns, which are the significant information from data according
to the user, is very useful for clinical diagnosis. Heart failure (HF) is a complex
clinical pathology [1–3]. It burdens or even disables the circulatory circuit of the
body, because the ventricle whose main role is to distribute blood is handicapped.
The symptoms that reveal themselves are as follows: breathlessness, ankle swelling
and fatigue These symptoms may be accompanied by elevated jugular venous pres-
sure, pulmonary crackles, and peripheral edema, due to structural and/or functional
cardiac or non-cardiac abnormalities. Heart failure is a condition that contributes
greatly in the rise of mortality rates. A study lead by the European Society of Car-
diology (ESC)1 shows that 26 million adults globally are diagnosed with HF, with
3.6 million new entrants every year. It is estimated that not less than 17–45% of
the patients suffering from HF succumb within the first year and the remaining will
not make it beyond 5years. The expenses related to heart failure treatments repre-
sent around 1–2% of gross healthcare costs. Most of these costs are associated with
regular re-entering to the hospital.

The phenomenon of heart failure has become so widespread with costs rising
beyond belief, reduced quality of life and increased mortality. HF is now classified
as an epidemic hitting the entire world and Europe in particular. The scale at which
heart failure is being met highlights the need for regular check-ups in order to attain
an early diagnosis and an immediate treatment. The clinical procedure involving the
diagnosis includes a history and physical examination through ancillary tests (blood
tests, radiography, electrocardiography, echocardiography). The analysis of the data
obtained through the previously mentioned tests gives away several criteria (e.g.
Framingham, Boston, the Gothenburg and the ESC criteria) that help detect any risk
of HF [4]. The process of diagnosis is followed by a process of classification in which
is determined the severity of HF exposure using either the New York Heart Associ-
ation (NYHA) or the American College of Cardiology/American Heart Association
(ACC/AHA)2 Guidelines classification systems. These systems allow them to find
the most appropriate treatment (medication treatment, guidelines regarding nutrition
and physical activity exercising) to be followed [5].

1https://www.escardio.org/.
2http://www.acc.org/.

https://www.escardio.org/
http://www.acc.org/
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Many progresses were made in understanding the complexity of the pathologi-
cal and physiological aspects of HF. However analyzing and interpreting the huge
amount of complicated data into an appropriate therapeutic diagnosis with the right
results is a quite challenging task. But the fact that it is possible to combine these
factors up to a certain point and extract a usually successful treatment, prevention and
recovery plan is a sign of the good things to come. Thanks to that, it is now possible
to improve patients quality of life, prevent condition worsening while maintaining
medical costs at the decrease. This explains the increasing popularity in the usage and
application of machine learning techniques to analyze, predict and classify medical
data. The classification methods are at the center of focus of data mining techniques
in the eyes research groups. Accurate classification of disease stage or subtypes per-
mits treatments and interventions to be executed in an efficient and targeted way and
allows the patients progress to be assessed and controlled. The data of patients and
hospitals need first to be collected and organized to form the hospital or medical
information system. After that, the technics of data mining give the user the ability
to find novel and important patterns in data.

In this chapter, we will present some studies about data mining and heart diseases,
where data mining algorithms, classification and clustering algorithms where used
to predict heart failure or to classify the heart disease of a patient. A light description
of each algorithm is firstly presented. Later, Sequential Mining (SM) algorithms
and their usage in medical domain will be covered. A description of the algorithms
and their extensions is presented with a performance and memory consumption
comparison for some of the existing Sequential Pattern Mining (SPM) algorithms.
Before concluding, a discussion for new ideas for SM that can be useful for medical
purposes and other values based applications

4.2 Classical Data Mining Technics and Heart Diseases

Data mining is the process of discovering interesting, meaningful and actionable
patterns hidden in large amounts of data. Using data mining in medicine will reduce
the cost of hospitalization and help doctors in the diagnosis of patients. Themost used
data mining techniques in medicine are classification and clustering. Lately SM has
been introduced in this domain and showed to be efficient. SM in medicine will be
discussed later. In this paragraph we will cover some existing studies that implement
data mining in healthcare; in this chapter we are strictly interested in heart diseases.
Data-mining techniques have two main tasks: predictive data mining and descriptive
data mining.

1. Predictive Data Mining: is the fact of using some variables to predict unknown
or future values of other variables. The most important practices in predictive
data mining are:
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• Classification: given a set of records with different attributes, the idea is to
find a model to relate the class attribute in function of the others. The main
goal is to assign a class as accurately as possible to previously unseen records.

• Regression: it is the function of estimating or predicting some continuous
value called the target attribute. This value of the target is a function of the
other attributes (predictors).

2. Descriptive Data Mining: Find human-interpretable patterns that describe the
data

• Clustering: it is the fact of discovering groups of similar instances in a way
the instances in the same cluster should be more similar to one another. On
the other hand, data of different clusters should be less similar to one another.

• Association rules extraction: given a set of records of attributes, the idea is
to discover dependency rules among attributes. This will help in predicting
occurrence of an item based on occurrences of others.

4.2.1 Popular Data Mining Algorithms

Before presenting the studies that use data mining for detecting, predicting or clas-
sifying heart diseases, we will list some important algorithms used in this field e.g.
Decision tree, Nave Bayes, k-means, Artificial Neural Network and others.

Decision Tree

Decision Trees (DT) is a way to display the data. It uses a tree-like graph as predictive
model. The goal of DTs is to create a model to predict a result or a value based
on input variables. The results are an important classification and widely used for
decision-making. This technic is a popular tool in machine learning that help to
find the appropriate strategy to reach the satisfying conclusions because it can be
transformed to a set of important rules by matching the root nodes to the leaf nodes
[6].

C4.5

is a decision tree based classifier method founded on information gain and pruning to
detect important results. The advantage of C4.5 algorithm is that it is fast and gives
a clear output easy to be studied [7].

ID3 Algorithm

Iterative Dichotomiser 3 builds a decision tree that classifies objects by testing the
values of the properties. It uses the top down fashion using a set of objects and the
specification of properties. The idea is to test the property at each node of the tree and
based on the results, the objects are set. This process will recursively continue until
all the sub trees contain homogeneous sets that respect the criteria of classification.
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Those will become leaf nodes. The property is tested to divide the given candidate
set to the most similar subsets [8].

Support Vector Machine (SVM)

This method classifies data into two classes. It is very similar to C4.5 but it does not
use Decision trees. SVM aims to maximize the distance between the hyper plane and
the closest two data points from each following class. This distance is called margin.
This process decreases the risk of misclassification [9].

Naive Bayes (NB)

This technique is a probabilistic classifier that uses Bayes theorem. The NB theorem
is the following: P(C |X) = P(X |C) × P(C)/P(X). Given the class variable, NB
classifiers say that the value of any feature is independent of any other given feature.
X is the data and C is the class. P(X) is constant or the same for all the classes. NB
works well on large data set, knowing that is based on the condition that attributes
value are conditionally independent which is unrealistic [10].

Artificial Neural Network (ANN)

A neural network is based on the idea of biological neural networks; it is performed
on the computer to do some tasks like clustering, pattern reorganization and clas-
sification. ANN is a nonlinear statistical data model because complex relationships
between inputs and outputs are modeled. The structure of ANN is affected by the
flow of information because this structure changes and learns based on the traversing
input and output in the neural network [11].

CART

CART algorithm is based on Classification And Regression Trees methodology. The
classification tree is used to identify the class of the target categorical variable. The
regression tree is used to predict the value of the target continuous value. The CART
algorithm proceeds as follow: lets imagine a sequence of questions. The answer of
each question leads to the next question if it exists. The answer of the questions are
a tree structure where the terminal nodes indicate that there are no more questions
or in computational term, queries [12].

Regression

This statistical concept determines theweight of the relationship between a dependent
and a fix variable Y and other independent variables. The used regression techniques
are linear and multiple linear regression but for complicated data studies non-linear
regression methods are performed.

J48

The J48 algorithm is developed by WEKA3 [13] project team. It is a decision tree
implementation of ID3. The advantage of J48 is that it doesnt need a discretization
for numeric attributes.

3https://www.cs.waikato.ac.nz/ml/weka/.

https://www.cs.waikato.ac.nz/ml/weka/
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Fuzzy Logic

Was mainly developed for controlling issues but can also be used in data mining.
Fuzzy logic tends to simulate human perception of the environment. In classical
logic, the only accepted values are true or false. In fuzzy logic, the truth is a result of
partial knowledge. It falls in a range between 0 and 1. It depends on mathematical
methods to calculate the degree of truth of a numerical value, called membership
functions [14].

K-means

K-means works very well in large datasets. The idea of K-mean Algorithm is the
creation of k groups where a set of given input of objects is divided by groups, where
each group contains the more similar objects. Those groups are called clusters. K-
means is a semi supervised learning method, because it can learn the clusters without
any information about which cluster a particular observation should belong to [15].

Association Rules

Association Rules are based on the well-known if/then statements and can be used
to find the relationships between data in a warehouse that can appear to be unrelated.
An association rule is composed from two parts, the antecedent (if) and a consequent
(then). After analyzing data the set of frequent if/else patterns contains the Asso-
ciation rules. The support and confidence, defined later, define the most important
relationships.

Random Forests

Random Forests are learning methods also known as Random Decision Forests [16,
17]. This method is used for classification, regression and other tasks. The idea
behind these methods is building many decision trees at training time and outputting
the class of the individual trees (classification) or their mean prediction (regression).

4.2.2 Data Mining and Heart Diseases

Many papers in the literature investigate in the study of heart diseases and especially
heart failure. Researchers try to predict HF and its types, discover the causes, the
symptoms and classes of heart diseases. Below, we are presenting some of the most
important and recent related works that used data mining techniques. The results of
these works showed the importance of data mining in medical field.

In 2016, a fuzzy-cart algorithm used to predict potential heart disease was devel-
oped by Suganya et al. [18]. The authors use an efficient approach for extracting
significant patterns from the heart disease data warehouses for the efficient predic-
tion of heart attack. The fuzziness is to remove uncertainty of the measured data. The
CART-means clustering algorithm was used to cluster the warehouse containing the
heart disease data. Frequent items were then extracted using the CART algorithm.
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Thus, all the frequent patterns that occur more than the predefined threshold were
taken as reference for the prediction of heart attack.

Another research in [19] explores the Random Forests algorithm on long-term
ECG time series in order to congestive heart failure (CHF). Several databases were
used to get ECG signals (check the databases in [20]). Two phases were needed for
the study: feature extraction and classification. Compared to other algorithms (e.g
C4.5, K-nearest neighbor, SVM, ANN, ) the random forest algorithm showed 100%
classification accuracy.

In [21], Pandey et al. used a J48 decision tree classifier over the medical dataset
available in [22] to predict heart disease. The data was divided into a training set and
a testing set with a 60–40% ratio. The obtained accuracy reached 75.73%.

Same dataset was processed by Bashir et al. [23] who proposed a framework that
uses majority vote based novel classifier ensemble to combine different data mining
classifiers. The classifier used three different concepts namely, Nave Bayes, Decision
Tree and Support Vector Machine. They obtained 82% accuracy, 74% sensitivity and
93% specificity for heart disease dataset.

Again, data mining appeared to be efficient in the prediction of HF in [24] where
a framework containing CART, ID3 and decision trees was used. This framework
applies a tenfold cross validation on the given dataset and the accuracies obtained are
the following: CART decision tree gave the highest accuracy with 83.49% followed
by DT with 82.50% and finally the ID3 with 72.93%.

The study ofGharehchopogh et al. [25]was based on artificial neural networks and
a set of 40 patient to detect HF. The used attributes were gender, age, blood pressure,
and smoking habit. The normal values of these attributes were used to compare them
with the ones taken from patients. Only two patients were not classified correctly
with 95% True positive rate.

The authors, Uppin et al. [26], used 7 out of 13 attributes of [22] and implement
them in a C4.5 decision tree classifier. Their main purpose was to reduce the number
of attributes to avoid the redundant features. Results showed an accuracy of 85.96%.

The K-means cluster in [27] was used in order to diagnose heart disease. They
obtained an accuracy of 83.9% by applying the inlier method with two clusters. An
alternative for conventional decision tree was proposed by Bohacik et al. [28]. This
method differs from the classic one by splitting each part of the decision tree multiple
times while the classic method splits only leaf nodes. A dataset from Hull LifeLab 4

containing 9 parameters and 2 prediction classes was used. A tenfold cross validation
was used resulting a 77.65% of accuracy.

Similarly to [19], ECG recordings were used in Melillo et al. [29] with CART
decision tree. This method was able to classify patients according to their risk factors
of heart disease and achieved 85.4% of accuracy.

In [2], risk level appeared again, but here with the C4.5 decision tree classifier.
C4.5 was used with the dataset in [22] to predict and classify heart failure into 5
risk levels. The results were pretty satisfying with 86.5% sensitivity and 86.53%
accuracy.

4http://www.hull.ac.uk/.

http://www.hull.ac.uk/
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Sathish et al. in 2015 uses the Pruning Classification Association Rule (PCAR)
data mining technique for the prediction of heart disease [30]. It is an efficient
approach for mining association rules to predict heart attack. Authors end up by
showing the validity of using association rules on medical data, for the association
rules have combinatorial nature and can act with medical data records that contains
categorical, numerical and time attributes.

Isler in 2016 [31] analyzed the heart rate variability to distinguish patients with
systolic Congestive Heart Failure (CHF) from patients with diastolic CHF. Authors
performed the classification using a multi-layer perception and the nearest neighbor.
The study was performed on a total of 30 patients: 18 of them having systolic CHF
and 12 having diastolic CHF. The maximum accuracy is obtained as 96.43% with
MLP classifier.

The objective of Shah et al. 2015 [32]was to separate the heart failurewith ejection
fraction (HFpEF) subtypes. Their studywas based on397patients.Datawas collected
from detailed clinical, laboratory, electrocardiographic phenotypes. 67 continuous
variables were extracted and given as input to a phenomapping analysis algorithm.
The study results in an improved classification of heterogeneous clinical syndromes.

The authors in [33] tried to find the association among frequent and infrequent
attributes of a dataset using the Attribute Association. Their main goal was to find
the strength or the relation between the symptoms and their frequencies and how
their influence in Coronary Vascular Disease (CVD).

Far from the classification and clustering, the well-known Apriori algorithm,
Predictive Apriori and Tertius were used on the UCI Cleveland dataset in [34]. First
rules based on gender (male or female) were extracted, then other attributes were
considered to classify the patients and indicates sick and healthy conditions.

In [35] the authors used both classification modeling techniques, and association
classification technique to predict the risk to have a heart failure. For effective heart
disease prediction K-means clustering with the decision tree method were applied.
Again the Cleveland Clinic Foundation Heart Disease dataset with 13 attributes was
used. The maximum prediction accuracy calculated was 83.9% after testing different
combinations for the centroid.

13 attributes to different medical profiles were taken from the Cleveland Dataset.
The authors in [36] analyzed the extracted data with many algorithms like Decision
Trees, Nave Bayes and Neural Network. Moreover, and to find significant relation-
ships in heart diseases, the authors used the Apriori algorithm, along with MAFIA
algorithm. And finally the prediction process, for predicting and analyzing the type
of heart disease for each patient was based on Decision Trees, Nave Bayes, and
Association Rules.

Frequent item sets were used in [37] to predict the heart disease risk. The gener-
ation of the frequent itemsets was based on some symptoms and minimum support
value given by the user. Experiments were performed on a simulated dataset with
1000 records of patients with 19 attributes. The proposed method showed efficient
results in identifying risk level of heart disease in comparison of Apriori, Semi-
Apriori, and Association rule mining algorithms.
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New approach were adopted by Subramanian et al. [38] to predict Coronary Heart
Disease but this time by extracting hidden knowledge from the text documents, using
text mining. The collected data was mapped into a structured format and based on
the rules generated by the Apriori Algorithm (defined in Sequential Ming section)
the predictions were made with efficient and accurate results.

A scoring model that allows the detection of HF and its severity was proposed
by Yang et al. [39]. This model is based on Support Vector Machine (SVM) model.
Patients were classified into 3 groups according to their heart health: HF group,
HF-prone group and healthy group. Results showed a maximum accuracy of 87.5%.

The literature is full of other researches that were conducted in order to predict
heart disease and help medical agent to diagnose the severity. These methods include
SVM, the C4.5 decision tree classifier, Fuzzy logic, CART algorithm, genetic algo-
rithm, feature subset selection, swarm optimization algorithm, etc. In the current
section, we presented a quick overview on some recent existing works that have
explored the popular data mining technics to diagnose and predict heart diseases.

4.3 Sequential Mining in Medical Domain

In this section we will present some studies about using the sequential Mining
paradigm in the medical field. Authors exploits this technic to help mining med-
ical records and for better decision-making. Sequential mining and its extension will
be discussed later on, so the readers will have a clear idea about the algorithms of
SM and know which one is appropriate for their medical studies. To our knowledge,
the usage of SM algorithms is still limited. Below some of the latest works on SM
in the medical field.

Recently in [40, 41] the latest Sequence Prediction algorithm CPT+ was used to
predict the existing or the absence of heart failure as well as its classes. The algorithm
first analyzes the training sequences and then tries to predict the next element in a new
given sequence. Authors had the idea to consider patients vital signs as a sequence
of elements. Two datasets were downloaded from the UCI repository. Each record
contains 13 input attributes (patients vital signs) and one class attribute. The first
dataset was to indicate the presence or the absence of heart failure and was used
in [41]. The accuracy achieved is 87.03%. This accuracy proves that a sequence
prediction algorithm CPT+ can be useful to predict if a patient has or not a heart
disease.

Other experiments were conducted on the second dataset [40]. The last attribute
indicates the class of the patient depending to hisHF severity. The class or the severity
was defined by The New York Heart Association classifies. The heart disease is
divided into four different classes based on patient symptoms. In this paper, CPT+,
the Sequence prediction algorithm was used to predict to which of the 4 classes of
heart disease the patient belongs. The used dataset is the Cleveland Clinic Foundation
heart disease dataset. The accuracy of the prediction reaches 90.5%.
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The SPM algorithm SPADE [42] was used in [43] in order to predict potential
illness one can develop based in past or current data. Amedical database (The Health
Improvement Network (THIN)) containing medical records of UK was used. The
idea was to find rules between age, gender and patients medical history to highlight a
susceptible future illness. As a result, additional information is generated presenting
the likelihood of re-infection. This knowledge would considerably improve health-
care and reduce its costs.

In [44], authors relied on pattern mining approach to analyze electronic health
records (EHRs) and classify temporal data. They used real-world clinical records
of patients who potentially develop heparin-induced thrombocytopenia. Each record
has multiple time series of collected variable for a specific patient e.g. laboratory
tests, medication orders and physiological parameters. Additional information such
as past diseases, surgical intervention, etc. are also available.

In 2014, the authors of [45] used SPM to predict the next prescribed medications.
The CSPADE algorithm, a new version of the well-known SPADE, was used to
mine the sequential patterns of diabetes medication prescriptions at different levels:
drug class and generic drug level. CSPADE algorithm was used for a test set of
patients to identify temporal patterns of medications prescribed for diabetes. The
result is temporal relationships from the mined patterns. Resulted knowledge was
use to generate rules to predict the next diabetes medication prescribed.

A short list for the usage of SPM in medical fields was presented. All related
works and authors agree that it is a very promising approach. For that we are going
to detail the SM and its algorithms, as well as the extensions in the next section.

4.4 Sequential Mining

In this part, we will adopt our classification of sequential mining algorithms that
classify the algorithms into three main categories: SP Mining, Sequential Rule (SR)
Mining, and Sequence Prediction [46]. Three new extensions of SPM will be added
to this chapter to cover all the existing techniques and the most important algorithms
in this field.

First of all, it is important to mention that all the SM algorithms belonging to
the same category, e.g. all the sequential pattern-mining algorithms return the same
sequences as result of mining. They only differ in term of performance and memory
consumption. Similarly, for the sequence prediction algorithms, all the algorithms of
this category return the same next element of a given sequence. In this part, we will
discuss the ideas and the techniques on which are based the algorithms. Then, we
will present a performance andmemory consumption comparison for some important
algorithms in the SPM category.

Nomatter where wewant to use the SM approach, before choosing any algorithm,
we have to ask those three questions: (1) What is the type of data to be analyzed,
Numeric or symbols? (2) What is the type of patterns to be extracted? (3) How this
patterns or knowledge will be used?
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In the following paragraphs, the reader will be able to construct a general idea of
SM algorithm, and will be able to choose the appropriate one for his studies if he is
willing to work on SM.

4.4.1 Important Terms and Notations

Before presenting the algorithms and their classification, it is important to define
some basic terms used in sequential pattern mining in order to understand the mining
process. These terms are commonly used in data mining Processes and especially in
Sequential patterns mining.

1. An item is an entity that can have multiple attributes: date, size, color, etc.
2. I = {i1, . . . , in} is a non-empty set of items. A k-item set is an itemset with k

items.
3. A sequence “S” is an ordered list of item sets. An itemset Xy in a sequence,

with 1 � y � L , is called a transaction. L denotes the length of the sequence,
which refers to the number of its transactions. S = {(a, b); (b, c); (e, d)} this
means that the items a and b are occurring together in the same time, while the
items b and c are occurring together although in the same time but after a and b
happening together and so on.

4. A Sequential Database (SDB) is a list of sequences with a sequence ID (SID)
(cf. Table4.1).

5. A sequence β can have a sub-sequence α, thus β a super-sequence of α.
6. A sequential rule r , denoted X → Y , is a relationship between two unordered

itemsets X , Y ⊆ I where X ∩ Y = ∅. X → Y means that if items of X appear
in a sequence, items of Y will also occur in the same sequence.

7. The support of a rule r in a sequence database SDB is defined as the number
of sequences that contains X ∪ Y divided by the number of sequences in the
database:

supSDB(r) = |{s; s ∈ SDB ∧ r ∧ S}|
|SDB| (4.1)

8. The confidence of a rule r in a sequence database SDB is defined as the number of
sequences that contains X ∪ Y , divided by the number of sequences that contains
X :

Table 4.1 A sequence
database

SID Sequence

1 〈{a, b}, {c}, { f, g}, {g}, {e}〉
2 〈{a, d}, {c}, {b}, {a, b, e, f }〉
3 〈{a}, {b}, { f }, {e}〉
4 〈{b}, { f, g}〉
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con f SDB(r) = |{s; s ∈ SDB ∧ r ∨ S}|
|SDB| (4.2)

9. A rule r is a frequent sequential rule i f f supSDB(r) � minsup, withminsup ∈
[0, 1] is a threshold set by the user.

10. A rule r is a valid sequential rule i f f it is frequent and con f SDB(r) �
mincon f , with mincon f ∈ [0, 1] is a threshold set by the user.

11. Apriori-based [47]: Many mining algorithms are based on this technique. The
main idea is to create a list of the most frequent items with respect to minsup
and mincon f . The list is increased progressively considering the support and
the confidence.

12. Sequential rule mining is to find all frequent and valid sequential rules in a SDB
[48].

13. Patten Growth [49] is a method for extracting frequent sequences by partitioning
the search space and then saving the frequent item sets using a tree structure.
Extraction is done by concatenating to the processed sequence (called prefix
sequence) frequent items with respect to its prefix sequence. This method can be
seen as depth-first traversal algorithm and eliminates the necessity to repetitively
scan all the SDB.

14. Searching processes

• Depth-First Search (DFS) is a searching process that traverses or searches tree
or graph data structures. A node in the graph or tree is considered as the root
where the search begins. In case of graph, some arbitrary nodes are selected as
the root and explores as far as possible along each branch before backtracking.

• Breadth-First Search (BFS) is a searching process for searching in trees or
graph structures. It starts at the root like (DFS) and explores the neighbor
nodes first, before starting exploring the next level neighbors.

Let β = 〈β1 . . . βn〉 and α = 〈α1 . . . αm〉 be two sequences where m � n.
15. Sequence α is called the prefix of βi f f ∀i ∈ [1 . . .m], αi = βi

16. Sequence β = 〈β1 . . . βn〉 is called the projection of some sequence S with
regards to α, i f f :

• β � s
• α is a prefix of β

• There exists no proper super-sequence β of β such that β � s and β also has
a prefix

17. Sequence γ = 〈βm+1 . . . βn〉 is called the suffix of s with regards to α. β is then
the concatenation of α and γ . Let SDB be a sequence database

18. Horizontal database: each entry in a horizontal database is a sequence as shown
in Table4.1.

19. Vertical database: each entry represents an itemand indicates the list of sequences
where the item appears and the position(s) where it appears [50] (cf. Table4.2).
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Table 4.2 A Vertical database for the sequence database of Table4.1

a b c d

SID Itemsets SID Itemsets SID Itemsets SID Itemsets

1 1 1 1 1 2 1

2 1,4 2 3,4 2 2 2 1

3 1 3 2 3 3

4 4 1 4 4

e f g

SID Itemsets SID Itemsets SID Itemsets

1 5 1 3 1 3,4

2 4 2 4 2

3 4 3 3 3

4 4 2 4 2

Table 4.3 Projected database
with regards to prefix a

〈a〉—projected database

〈{_, b}, {c}, { f, g}, {g}, {e}〉
〈{_, d}, {c}, {b}, {a, b, e, f }〉
〈{b}, { f }, {e}〉
〈〉

20. Projected database: theα-projected database, denoted by SDB|a , is the collection
of suffixes of sequences in SDB with regards to prefix α. Table4.3 shows an
example of the projected database considering “a” as prefix.

4.4.2 Sequential Patterns Mining

The only difference between Sequential pattern mining and Frequent pattern mining
is that the first approach takes into consideration the notion of time, or the order of
events. For example, in the diagnosis of a patient with heart disease, when measuring
his vital signs such as weight and heart pressure for example, we care about which
abnormal sign appears before the other and specifically in the prediction of a heart
failure. Nowadays, data mining handles two types of data: sequences and time series.
A time-series is an ordered list of numbers; a sequence is an ordered list of symbols
[51]. Both of them take a sequence as input. Time series is used more to represent
data, as it gives a graph representation for the data. Time series is very useful for
temperature analysis representation, stock and items prices. Sequential pattern Min-
ing is better in representing nominal values such an ordered list of items purchased
by a customer, a sequence of words, a web page clicks, DNA research sequences
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Sequential pattern mining was first introduced by Agrawal and Srikant [48], as
a solution for the problem of discovering and mining interesting subsequences in a
set of sequences. SPM can also be used with time series even if it was originally
designed to support sequences. This is done by converting time-series to sequences
using discretization techniques. This conversion can be done using transformation
techniques such SAX and iSAX [52, 53] and others [54]. In this chapter we focus
on Sequential Mining taking sequences as input. This chapter will be based on our
classification that has been detailed in [46]. It classifies the SM into three categories:
Sequential PatternMining, Sequential RuleMining and Sequence Prediction. In [46],
we mentioned some extensions of SM essential categories, in this chapter we will
cover more extensions and put on the spot the techniques on which the algorithms
are based.

All the SPM algorithms aim to discover the frequent subsequences which are
important to the user. The traditional technique used in algorithms is to calculate the
support of each sequence in a given Sequence database to find the one(s) whomeet or
overcome theminimum support threshold giving by the user. All the SPM algorithms
have the same output for a same given database and a same minimum support.
The difference between the algorithms is in the method of discovering patterns. A
sequence containing n items in a sequence database for example, can have up to
2n – 1 distinct subsequences, then, we need to adopt methods that are efficient and
realistic. These methods, including data structures and different strategies discussed
further, decide which algorithm is more efficient, more performing and less memory
consuming.

4.4.3 General and Specific Techniques Used by SPM
Algorithms

In this sectionwewill go from general to specific. Asmentioned before, we classified
the algorithms in three main categories. In this part, we will discuss the techniques
used in these three categories: SPM, Sequential Rule Mining and Sequence Predic-
tion.

Starting from the general, all SPM algorithms follow a lexicographical order,
which is the order of processing items in the search spaces (defined in the important
terms and definition section).

All the SPM algorithms explore the search space of sequential patterns by per-
forming two basic strategies called s-extensions and i-extensions that are used to
generate a (k + 1)-sequence from a k-sequence.

A sequence Sa = {A1, A2, . . . , Ani } is a prefix of a sequence Sb = {B1, B2, . . . ,

Bmi }, if n < m, A1 = B1, A2 = B2, …, An−1 = Bm−1 and An is equal to the first
|An |items of Bn according to the ¬ order [49]. The following example will clarify
the idea: the sequence (b) is a prefix of the sequence (a, b), (c), and the sequence
(a)(c) is a prefix of the sequence (a), (c, d). Sb is said to be an s-extension of a
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sequence Sa = {I1, I2, . . . , In} with an item x , if Sb = {I1, I2, . . . , Ih, {x}}, i.e. Sa
is a prefix of Sb and the item x appears in an item set occurring after all the item
sets of Sa . For example, the sequences {(a), (a)} and {(a), (b)} and {(a), (c)} are
s-extensions of the sequence {(a)}. A sequence Sc is said to be an i-extension of Sa
with an item x , if Sc = Sa = {I1, I2, ...Ih ∪ {x}}, Sa is a prefix of Sc and the item x
is appended to the last item set of Sa , and the item x is the last one in Ih according
to the lexicographical order. For example, the sequences {(a, b)} and {(a, c)} are
i-extensions of the sequence {(a)}.

Referring to [47], the basic SPM algorithms are GSP (1996), SPADE (2001),
SPAM (2002), PrefixSpan (2004), LAPIN (2005), CM-SPADE and CM-SPAM
(2014). Only the GSP algorithm [48] uses the breadth-first search strategy, while
the others use depth-first search strategy. An efficient algorithm must be designed in
a way to avoid scanning all the searching space, which is called Pruning. The first
pruning mechanism was used by the extension of the well-known Apriori, Apriori-
ALL (the first sequential Pattern mining algorithm) [50], and then in GSP.

After AprioriALL, the GSP, an Apriori-like studied SPs. The database in GSP is
scanned multiple times. The first pass determines the support of each item, which
is the number of data sequences that include the item. It counts the occurrences of
singleton transactions (containing one element) in the given database (one scan of
the whole database). After this process, non-frequent items are removed, and each
transaction consists now of its original frequent items. This result will be the input
of the GSP algorithm. Like Apriori, GSP algorithm makes multiple database scans.
At the first pass, all single items of length 1 sequences (1-sequences) are counted.
At the second pass, frequent 1-sequences are used to define the sets of candidate
2-sequences are mined, and another scan is made to calculate their support. Same
process is used to discover the candidate 3-sequences but using frequent 2-sequences,
and so on until no more frequent sequences are found. GSP algorithm is composed
of two techniques:

1. Candidate Generation: Only candidates withminimum support or above are con-
served until no new candidates are found. This technique generates an enormous
number of candidate sequences and then tests each one with respect of the user-
defined minsup. After the first scan of the database and obtaining frequent (k
– 1)-frequent sequences F(k – 1), a joining procedure of F(k – 1) with itself is
made and any infrequent sequence is pruned if at least one of its subsequences
is not frequent.

2. Support Counting: a hash treebased search is used. Finally non-maximal frequent
sequences are removed.

The GSP algorithm also allows frequent sequences discovery with time con-
straints. It can calculate the difference between the end-time of the element just
found and the start-time of the previous element. This time is user defined and called
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maximum and minimum gap. Furthermore, it supports the concept of a sliding win-
dow (defines the interval of time between items in the same transaction).

SPADE [42] is an alternative of GSP based on the Eclat algorithm [55], an algo-
rithm for mining frequent item sets. SPADE is based on a vertical id-list database
format (refer to Table4.2) in which each sequence is associated to a list of items
in which it appears: each subsequence is originally associated to its occurrence list.
The frequent sequences can be found by using the intersection on id-lists. The size
of the id-lists is the number of sequences in which an item appears. Thus, the IDList
of any pattern allows to directly calculating its support. The support of a pattern Sa
is simply the number of distinct sequence identifiers in its IDList. SPADE reduces
the search space by aggregating SPs into equivalent classes and thus reduces the
execution time. Thereby, two k-length sequences are in the same equivalence class
if they share the same k – 1 length prefix.

In his first step, SPADE computes the support of length 1 sequences, and this
is done in a single database scan. In its second step, SPADE computes the support
of 2-sequences and this is done by transforming the vertical representation into a
horizontal representation in memory. This counting process is done with one scan of
data and uses a bi-dimensional matrix. The idea consists of joining (n – 1) sequences
using their id-lists to obtain n-subsequences. If the size of id-list is greater than
min-sup, then the sequence is frequent. The algorithm can use a breadth-first or a
depth-first search method for finding new sequences. The algorithm stops when no
more frequent sequences are found [46].

All the other algorithms, PrefixSpan, CM-SPADE, CM-SPAM, LAPIN adopts
although the properties of the vertical database representation, that is what make
them faster than GSP and Apriori-All. The ID-Lists approach shows to be very
efficient, and better than the breadth-first search approach.

Sequential PAtternMining, SPAM [56], improved the IDLists technique by intro-
ducing the bitmap representation (1 if the item exists and 0 if not) check the paper in
[56] for more details. This popular optimization of the IDList structure used in the
Spam and BitSpade [56, 57] algorithms is to encode IDLists as bit vectors. SPAM is
a memory-based algorithm and uses vector of bytes (bitmap representation) to study
the existence (1) or absence (0) of an item in a sequence after loading the database
into the memory. Candidates are generated in a tree by s-extension that adds an
item in another transaction, and by an I-extension that appends the item in the same
transaction. The candidates are verified by counting the bytes with a value of one
with the defined min-sup. Depth-first search is used to generate candidate sequences,
and various I-step pruning and s-Step pruning are used to reduce the search space,
this makes SPAM efficient for mining long sequential patterns. Vertical bitmap rep-
resentation is used to store the transactional given data, which allows an efficient
support counting as well as significant compression using bitmap. One new feature
is introduced with SPAM is that it incrementally outputs new frequent itemSets in
an online fashion.

New algorithms, CM-SPADE and CM-SPAM where designed to improve the
SPAM and BitSpade algorithms: The CM-SPAM and CM-SPADE [58] are respec-
tively the extensions of the two well know algorithms SPAM and SPADE. A new
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structure called Co-Occurrence MAP (C-MAP) is added. The latter is used to store
co-occurrence information by dividing them intoCMAPi andCMAPs sub-structures.
The first stores the items that succeed each item by i-extension and the second stores
the items that succeed each item by s-extension at least minsup times. Let S be the
sequence {I1, I2, . . . , In}. An item k is said to succeed by i-extension to an item j
in S, i f f j and k ∈ Ix for an integer x such that 1 � x � n and k >lex j . An item k
is said to succeed by s-extension to an item j in S, i f f j ∈ Iv and k ∈ Iw for some
integers v and w such that 1 � v < w � n. The i-extension of pattern P with an
item x is considered non-frequent if there exist an item i in the last itemset of P such
that (i, x) is not in CMAPi. Same for the pruning of s-extension: The s-extension of
a pattern P with an item x is infrequent if there exist an item i in P such that (i, x)
is not in CMAPs.

PrefixSpan [59] based on FPGrowth algorithm [60] that mines frequent item-
set uses a must-discussed approach namely the Pattern-growth. Algorithms that
adopt this approach avoid recursively scanning the database to find larger patterns.
Thus, they only consider the patterns actually appearing in the database. Performing
database scans is costly. Pattern-growth algorithms are based on the concept of pro-
jected database that aims to the size of databases as larger patterns are considered
by the depth-first search. The algorithm studies the prefix subsequences instead of
exploring all the possible occurrences of frequent subsequences. Then, it performs
a projection on their corresponding postfix subsequences. Frequent sequences will
grow bymining only local frequent patterns showing the efficiency of this algorithm.

Till now, we have covered three main strategies in sequential pattern mining algo-
rithms (most sequential pattern mining algorithms extends these three main strate-
gies): breadth-first algorithms that perform candidate generation used in GSP and
Aprioriall, depth-first search algorithms that perform candidate generation using the
IDList structure and its variations used in SPADE, SPAM,BitSpade, CM-SPADEand
CM-SPAM and finally the pattern-growth strategy used in FreeSpan and PrefixSpan.

The number of patterns in the search space influence directly on the time com-
plexity of SPM and on the cost (memory consumption) of the operations used for
generating and processing each itemset or subsequence. The pattern-growth tech-
nic used in SPM appears to be more efficient than other methods, because it only
considers patterns actually appearing in database. But CM-SPADE outperforms the
PrefixSpan algorithm. It may be, because the high cost of scanning the database
and performing projections. In [58] the study shows that CM-SPADE is faster than
PrefixSpan.

In Table4.4, we present a comparison between some frequent sequential pattern
algorithms based on the dataset existing in [61]. This comparison cover the size of
the database, the value of the given minimum support, the execution time I seconds
and the memory consumption in MB. This Study was done in our previous work in
[46].
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Table 4.4 Comparing some sequential pattern extraction algorithms based on [61] and extracted
from [47]

Algorithm Condition Properties

Dataset size MinSup size Execution time
(s)

Memory
consumption
(MB)

AprioriAll AVG Low Very slow Huge

Medium Slow Huge

Large Low Fail Fail

Medium Very slow Huge

GSP AVG Low >3600 800

Medium 2126 687

Large Low Fail Fail

Medium Fail Fail

SPAM AVG Low Fail Fail

Medium 136 574

Large Low Fail Fail

Medium 674 1052

SPADE AVG 2.5 times less efficient than SPAM

Large More efficient than SPAM

CM-SPADE 8 times more efficient than SPADE

Small memory overhead with large datasets

PrefixSpan AVG Low 31 13

Medium 5 10

Large Low 1958 525

Medium 798 320

FreeSpan Less efficient than PrefixSPan

Less memory consumption in case of “disk based projection”

Less efficiency in case of “memory based projection”

4.4.4 Extensions of Sequential Pattern Mining Algorithms

The essential problem in SPM is generating a lot of unwanted patterns. In some
applications, we are not interested to extract the whole frequent sequential pattern,
or we would like to extract the longest patterns where a subsequence occurs for
example. To overcome this problem, some extensions of SPM have been developed.
Manyof those extensions are discussed in [46]with an overviewof themost important
algorithms. In the following we will present a quick overview of those extensions
and we will mention some new extensions to SPM and sequential rule categories.

Every time we think about new extensions in SM, we will be based on the limi-
tations of the traditional sequential pattern mining algorithms. The basic problem in
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SPM is the huge number of patterns that may be found by the algorithms, depending
on a databases characteristics and the minsup threshold set by the users.

Outputting a huge number of patterns is a wide issue because users do not have
time or the capacity to analyze a large amount of patterns. Hence, a large number of
patterns will directly decrease the algorithms performance specifically memory and
runtime conditions.

In this section we will introduce the extensions of SPM, giving a light overview of
the existing extensions and the idea behind them. The main purpose of the following
extensions is to minimize the search space andmaximize the efficiency of algorithms
according to the need of the applications.

4.4.4.1 Closed Sequential Pattern Mining

CloSpan [62], BIDE+ [63], ClaSP [64] and CM-ClaSP are closed SPM algorithms.
To have a light idea about those algorithms, refer to our chapter in [46]. For more
details it is recommended to check the references of the papers related to each one.

In general, a Closed Sequential Pattern (CSP) is not necessary included in another
pattern having the same support. The set of CSPs is much smaller than the set of SPs
making mining more efficient. There exists no super pattern S of pattern S having
the same support of S. Then S is a closed sequential pattern, in another word, Closed
Pattern Mining means that, for the same support, the mining process will mine the
longest Pattern.

4.4.4.2 Generator Sequential Patterns

Generator sequential patterns are the set of sequential patterns that that do not sub-
sequence having the same support:

GS = {sa|sa ∈ FS ∧ �sb ∈ FSsuchthatsb � sa ∧ sup(sa) = sup(sb)}. The out-
put of algorithms based on sequential generators technic is a subset of SP. This
subset can be larger, smaller or equal as the set outputted with a closed pattern based
algorithms [65]. Generators are the smallest subsequences that describe a group of
sequences in a sequence database [66–68].

Thus, Generators are better than other representations according to the Minimum
Description Length (MDL) principle [69]. Based on [70], the generators pattern can
be also combined with close patterns to generate rules with a minimum antecedent
and a maximum consequent. This approach allows obtaining a maximum amount of
information based on a lower amount of information.

Many application such market basket analysis and classification have used gen-
erators and they showed to be more efficient comparing to the use of all patterns or
only closed Patterns [67, 68, 71].

The generators algorithms that use the efficient Pattern-growth technic are Gen-
Miner [67], FEAT [71] and FSGP [72]. The most recent algorithm, extended from
CM-SPAM named VGEN [66] outperforms FEAT and FSGP.
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4.4.4.3 Mining Maximal Sequential Patterns

Miningmaximal Sequential patterns is a concept that was introduced as an attempt to
solve the problem involving large number of patterns returned by sequential pattern
mining. This can become a sever constraint in the eyes of the useswhohas to analyze a
wide amount of data. It also deprives the concept of datamining from its initial goal of
achieving effective results which makes it useless in the eyes of the user. A Maximal
SP represents a pattern that is not included in another pattern. Maximal Patterns
mining algorithms are shown below: The MaxSP [73] is based on the PrefixSpan
algorithm. It helps save time by reducing or eliminating redundancy. The BIDE-
like mechanism that checks if a pattern is maximal is used in MaxSP. Although in
Maximal Sequential pattern Mining category, we find VMSP [74] that is based on
the SPAM search procedure that creates the pattern and detects candidate patterns
having same prefix in a recursive or repetitive manner. VMSP adopts three main
strategies: Efficient Filtering of Non-Maximal Patterns (EFN), Forward Maximal
Extension Checking (FME) and Candidate Pruning by Co-Occurrence Map (CPC).

4.4.4.4 Compressing Sequential Patterns Mining

Compressing sequential patterns mining is a kind of algorithm used to minimize the
size of mining results by aiming to reduce redundancies. GoKrimp and SeqKrimp
[75] are two examples of compressing SPs mining algorithms. Based on the Krimp
algorithm, they explore directly compressing patterns and help choosing the least
costly branch by avoiding resource-consuming candidate generations.

SeqKrimp uses a frequent closed SPs mining algorithm to produce candidate
patterns. It then absorbs this candidate and returns an adequate subset of com-
pressing patterns. Then, through a greedy approach, calculates the benefits of
adding/extending a given pattern from the candidates. This procedure goes on loop
until useful patterns run out.

In the other hand, GoKrimp adopts a similar approach but comes as an improved
extension of SeqKrimp. First to intervene is a procedure to search and find a set
of sequential patterns that compresses the data most. Second to intervene is the
Minimum description length principle which indicates that the best model is the one
that compresses the data the most. GoKrimp does not rely on any parameters, which
makes it stand out from the previously stated patterns mining procedures. Users are
thus liberated of setting a basis for the support or taking difficult decisions which can
be at the same time inaccurate and time consuming. In addition to that, a dependency
test is executed in order to take into account only the related patterns to extend a given
pattern. This technique aims to avoid the excessive tests of all possible extensions
and makes the GoKrimp more optimal than SeqKrimp.
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4.4.4.5 Top-k Sequential Patterns Mining

In SP mining algorithm, this allows the minsup parameter to be tuned to get enough
plausible patterns. It can however turn into pain as far as the user-friendliness time
factors are concerned. To alleviate this issue, Top-k Sequential Patterns mining algo-
rithms were implemented to return k SPs. TSP (Top-k Closed Sequential Patterns)
[76] performs a multi-pass mining to find and grow efficient patterns by relying on
the concept of pattern growth and projection based SP mining of PrefixSpan algo-
rithm. It then proceeds to apply a verification phase by checking the minimum length
constraint verification, which minimizes the search space.

For its database representation, TKS [77] adopts a vertical bitmap environment. It
adapts theSPAMsearch procedure to explore the search space of patterns to transform
it to a top-k algorithm. Then, TSK prolongs the most interesting patterns, meaning
that it finds patterns with high support in an early stage and discards infrequent
items. It finishes by using PMAP (Precedence MAP) data structure to eliminate any
unnecessary events in the search space.

4.4.4.6 High Utility Sequential Pattern Mining

The most popular extension in SPM is High Utility sequential Pattern Mining. This
set of frequency-based techniques creates an output consisting of several patterns.
Most of these though are not informative enough for any decision making process in
general, be it business, medical, data. In recent years, high utility pattern mining has
been combined with many algorithms that show potential in the universe of decision
making, among which we find: EFIM [4], FHM [5] and FHM+ [74] (for mining
high-utility item sets with length constraints). Many other algorithms are gradually
emerging and proving to be taken into consideration for their ability to determine
patterns which answer common business concerns such as dollar value. For instance,
lets talk about the USPAN algorithm which entered the field of SPM: it incorporates
utility into sequential pattern mining, and is designed for the purpose of mining
high utility sequential patterns. It can extract a full set of high utility sequences by
calculating the utility of a node in a lexicographic quantitative sequence tree. Thanks
to that, it will be able to provide a highly effective pruning strategy for the node and
its children. Tests were made on synthetic and real datasets that USpan efficiently
identifies high utility sequences from large-scale data with very lowminimum utility.

Adapting the behavior of sequential patternwhichwas recently establishedmining
into sequential pattern mining aims to solve the issue mentioned in the last sentence.
In total, only three papers were found in the literature. UMSP [78] for example was
established in this perspective and allows high utility mobile sequential patterns. In
this case, each item set in a sequence is associated with a location identifier. This
means that the utility in this case is contained in a single value. UMSP searches for
patterns within a structure called MTS-Tree, which is practical. Still, this algorithm
is slowed down because of the specific constraint on the sequences which permit
only the handling of certain sequences with simple structures (single item in each
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sequence element, and a single utility per item). In [79], the algorithm specifically
targets utility web log sequences. The utility of a pattern can be coupled with several
values, and the users can decide of the utility through the optimal values, which
makes up for a representation with two tree structures. This is the case for UWAS-
tree and IUWAS-tree. However, for sequence elements containing multiple items
such as [(c, 2) (b, 1)] and cannot be supported, a simple scenario is established and
consists of limiting the algorithms applicability for complex sequences. UI and US
[80] are based on traditional and usual sequential pattern mining. The calculation of
pattern utility can go in two ways: The distinct occurrences of utilities of sequences
are grouped together. The rest of the duplicate occurrences are filtered to get the
ones with highest values, which will be used to calculate the utilities. However, the
problem in [80] is that no generic framework is proposed to make a transition from
sequential pattern mining to high utility sequence analysis.

Sequential Pattern Mining algorithms, can only mine frequent sequences or sub-
sequences from a given sequence database or dataset. The importance or the usage
of these algorithms in medical field can be in term of mining frequent sequences, to
use them as training sequences for others SM mining algorithms that are important
for prediction and decision-making. Make sure you use the appropriate algorithm
for your study and your dataset. For more details check the original papers of the
algorithms.

In the following, we will discuss Sequence Prediction and the sequential Rule
Mining that are also very important in Sequential mining. In fact, even though SPM
is important, but it can only generate frequent sequence depending on the category
of the used algorithms. Thus, other extension of SM was introduced to be used in
prediction and decision-making

4.4.4.7 Sequential Rules Mining

As stated before, mining frequent sequential patterns does not always prove to be
useful for decision-making. Sequential Rule mining for sequence prediction was
established as an alternative of SPM to answer this problem. A sequential rule states
that in return to every item that occurs in a sequence, there are other items that might
occur afterward under a certain probability. Among these we find: CMDeo [81],
created to explore rules in a single sequence by engaging in a breadth-first search
to determine the space and extract all valid rules of size 1 * 1 respecting minimum
support and confidence. Similar to Apriori, CMDeo generates a huge amount of
valid rules by applying a left and a right expansion. There is also RuleGrowth [82]
which explores sequential rules for more than just one sequence. It is based on the
pattern-growth approach in finding the sequential rules that explores rules between
two items and expands their left and right. We also find CMRules [83], a rational
alternative to CMDeo, since it searches for the association rules to minimize the
search environment, and then excludes any rules that do not respectminimum support
and confidence. Finally, theres the ERMiner (Equivalence class based sequential
Rule Miner) [84] algorithm that offers a database representation based on a vertical
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representation. It mines the search space through equivalent classes to generate rules
with the same antecedent or consequent.

4.4.4.8 Top-k Sequential Rules Mining

Specifying the number of sequential rules to be found can help overcoming the diffi-
culties faced when fine-tuning sequential rules parameters like minsup and minconf.

TopSeqRule [85] was the initiator in dealing with the top-k sequential rules min-
ing. Thanks to its RuleGrowth search strategy integrated with the general process
for mining top-k patterns, it manages to generate rules for several sequences. To
maximize results, it isolates most interesting rules and narrows the search space
by increasing minsup. TNS [86] is on the other hand able to discover the top-k
non-redundant sequential rules. It does that by relying on and adaptation of the
TopSeqRule to mine the top-k rules.

4.4.4.9 Sequential Rules with Window Size Constraints

Those algorithms are used to mine patterns that are limited within a time interval.
TRuleGrowth [49] is based on RuleGrowth algorithm as its name suggests but with
a sliding window constraint.

4.4.4.10 Mining High-Utility Sequential Rules Mining

The problem of mining high-utility sequential rule mining is similar to high-utility
sequential pattern mining. However, a key advantage of high-utility sequential rule
mining is that discovered rules provide information about the probability of a con-
sequent knowing the antecedent. High-utility sequential patterns do not consider the
confidence that a pattern will be followed. HUSRM [87] is the latest algorithm, pub-
lished in 2015 to mine sequential rule. The input of HUSRM is a sequence database
with utility information, a minimum utility threshold called min_utility that is a pos-
itive integer, and similar to the other sequential rule mining algorithms, minimum
confidence threshold (a double value in the [0,1] interval, a maximum antecedent
size (a positive integer) and a maximum consequent size (a positive integer).

4.4.4.11 Sequence Prediction

A huge importance is accorded to determining the next element in a sequence. Given
a set of sequences, the main purpose of sequence Prediction Algorithms is to predict
the next element in a sequence S. this extension of SM can be and showed to be
very efficient in medical predictions and classifications The main algorithms in that
regard are CPT and CPT+.
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CPT (Compact Prediction Tree) [88] is prediction model that guarantees no losses
by using all information in the sequence for its prediction. It consists of two phases:
training and prediction. The first has a role of compressing the sequences into a pre-
diction tree. A given sequence S is found by finding all sequences that contains the
last x items from S regardless of the order and the position. CPT is more efficient than
other existent algorithms PPM (Prediction by Partial Matching) [89], DG (Depen-
dency Graph) [90] and All-K-th-Order Markov [91]. CPT+ [92] is a more elaborated
version of CPT where Frequent Subsequence Compression (FSC), Simple Branch
compression (SBC) and Prediction with improved Noise Reduction (PNR) strategies
were added to improve prediction time and accuracy.

4.5 Discussion

Many classification and clustering algorithms are used inmedical domain as shown in
(Data mining and healthcare section). We also introduced some applications where
Sequential Mining has been used and showed a great accuracy in prediction and
classification. Medical datasets are based on attributes and values, and any patient
diagnosis is influenced by the notion of time, and the order of the happening events.
For further work we can think about merging the classification principal with the
Sequential Mining Principal, so we respect the notion of time and still benefit from
IF-Else-based strategy of Classification algorithms, which take the values of many
attributes in order to classify the data.

On other hand, and after introducing the high utility Sequential Rule mining,
that has a sequential dataset and a minimum utility value as input, and which helps
mining the informative patterns, why not thinking about giving multiple minimum
utility values where we have multiple attributes and mining patterns according to
those specific minimum utility for each attribute specified by the user. This idea may
help in analyzing sequential medical data and also in the prediction of any abnormal
state for a patient.

4.6 Conclusion

Data mining is a very wide and important field, discovering and analyzing patterns;
Medical data mining appeared recently to help in medical diagnosis and decision-
making. In this chapter, we focused in datamining techniques used in the diagnosis of
heart diseases and the prediction of Heart Failure one of the most dangerous disease
causing the higher percentage of death worldwide. Few studies in medical field use
sequential mining principal, due to its importance in prediction and decision making,
we chose to present a study about SM and its algorithms in order to implement them
inmedical purposes and use them in the prediction of heart diseases and heart failure.
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In the discussion paragraph, we gave some ideas about the usage of SM in medical
field. As future works, we will try to develop a SM algorithm that handles the values
of attributes of medical data [42].
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Chapter 5
Machine Learning Methods
for the Protein Fold Recognition Problem

Katarzyna Stapor, Irena Roterman-Konieczna and Piotr Fabian

Abstract The protein fold recognition problem is crucial in bioinformatics. It is
usually solved using sequence comparison methods but when proteins similar in
structure share little in the way of sequence homology they fail and machine learning
methods are used to predict the structure of the protein. The imbalance of the data
sets, the number of outliers and the high number of classes make the task very
complex. We try to explain the methodology for building classifiers for protein fold
recognition and to cover all the major results in this field.

Keywords Supervised learning algorithm · Classifier · Features · Protein fold
recognition

5.1 Introduction

The information coding system in living systems uses nucleotide sequences in DNA.
Each nucleotide carries two bits of information. Thus, the human body operates
basing on approximately one gigabyte of information in each cell. The information
contained in theDNA strand is transcribed into the language of amino acids, of which
there are 20. TheDNAcodesmay be treated as symbols storing information. The cod-
ing of information in the world of amino acids is a record of properties. Each amino
acid carries a different characteristic expressed by its physico-chemical character-
istics. Proteins are biochemical compounds consisting of one or more polypeptides
which are single linear polymer chain of amino acids bound together by peptide
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bonds between the carboxyl and amino groups of adjacent amino acid residues [45].
The sequence of amino acids in a protein is known as primary structure and is defined
by the sequence of genes (which is encoded in the genetic code). One of the most dis-
tinguishing features of polypeptides is their ability to fold to their native structures,
i.e. the 3D (tertiary) structures, spontaneously [3] and thus it follows a decrease of
the internal energy of the system [13].

The information contained in amino acids is used for the forming of an appropriate
3D structure of a protein. The distribution of appropriate features in space is needed to
determine the function that each protein guarantees for the activity of such a complex
system like the human body. Protein’s function is strongly influenced by its structure
[5, 13, 43, 45].

However, the activity of proteins limited only to the cell is a system which is so
complex that it has not been fully reproduced in a computer program. Throughout
this multistep process of coding information leading to the construction of the right
tool, which is every protein, the transition from the amino acid sequence to the 3D
form is still a mystery despite the activities of world scientific centers (including the
CASP project, in particular—http://predictioncenter.org/).

Currently, sequencing projects rapidly produce protein sequences, but the number
of 3D protein structures increases slowly due to the expensive and time-consuming
conventional laboratory methods, namely X-ray crystallography and nuclear mag-
netic resonance (NMR). Moreover, not all proteins are amenable to experimental
structure determination. The protein sequence data banks such as Universal Pro-
tein Resource (UniProtKB/TrEMBL) [4] contain now more than 16 000 000 protein
sequence entries, while the number of stored protein structures in Protein Data Bank
(PDB) [7] is over 126 000 (current statistics is available at: http://www.rcsb.org/pd
b/statistics/holdings.do).

This leads to the necessary alternative to experimental determination of 3Dprotein
structures, the computational methods like ab initio or homology modeling ones.

Methods of predicting structures based on homology (also known as compar-
ative) modeling solve the problem by referring to structures of proteins of known
structure by transferring structural elements for a given sequence occurring in the
predicted protein [63]. The search for a set of proteins with similar sequences may be
based on the principle of amino acid distribution identification. Another technique
is looking for similar sequences, but with restriction to homologous proteins. The
assumption for such a strategy lies in the fact that if the evolution kept the given
sequence, it was probably also about the behavior of the structure. If the “target”
protein (the protein for which the structure is predicted) can be additionally located
as part of the phylogenetic tree, then prediction of the structure of such a protein
is much easier due to heuristic knowledge of the evolutionary processes. Structures
of close evolutionary neighbours are treated as patterns for structure construction of
the “target” protein. Determination of the structure of proteins using homologous
sequences is carried out based on the genetic algorithm technique [57, 71]. A set
of proteins with a similar sequence (including of course the sequence of homolo-
gous proteins) is treated as a set of “parents”. Fragments of sequences that have
correspondingly high similarity are copied to the “child”, i.e. to the protein whose

http://predictioncenter.org/
http://www.rcsb.org/pdb/statistics/holdings.do
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structure is determined. If there are many “parents”, the right fragment, and there-
fore the appropriate part of the spatial structure, is inherited from each of them.
The structure of the remaining “non-inherited” fragments (with a locally different
sequence) is determined basing on other techniques, e.g. for predicting loop struc-
tures. To a structure determined in that way, conformational variability is introduced
in so-called “mutation” positions, i.e. in positions with lower reproducibility among
the compared sequences or in fragments without the equivalent in other sequences.
For the “mutation” type position, a random selection of conformation is used (ran-
dom selection of Phi and Psi angles). Of course, it is possible to combine several
methods [59]. But the hurdle exists in homology modeling when the query protein
does not have any structure-known homologous protein in the existing databases!

Another task is faced by specialists who try to predict the structure in the ab ini-
tio system, without referring to other structures and trying to develop a model that
would be universal and which would result from the mechanism of the process itself
reproducing it in the in silico version. Here the importance of proposing a structure
for detailed analysis is critical. Because of the Levinthal paradox [30] searching the
conformational space is not feasible. In addition, the duration of the folding process
observed experimentally is much shorter [3] than that would be required in sys-
tematic search all over the conformational space. There are two possible solutions
of the problem of hypervisible character of conformational space. One of them is
a technique of simplifying the structure itself, replacing the accordingly grouped
atoms with one so-called pseudo-atom [46]. The reduction of structure elements
significantly reduces the calculation time. Quickly searched space with a signifi-
cantly reduced number of variables eliminates unlikely conformations. The danger
of such an approach lies in the necessity of using a pseudo-force field equipped
with pseudo-parameters—variables and parameters not measurable experimentally.
Another technique to reduce the complexity of the system is to reduce the dimensions
of the conformational space by introducing a large step for conformational changes,
which also significantly reduces the calculation time by limiting space. Simplified
structures obtained by means of the aforementioned techniques, also referred to as
coarse-grained [44, 48]. After this reduced search in coarse-grained representation
the all atom model is applied for selected reasonable set of structures. The model
treating the process of folding as a two-stage introduces the concept of an early
and late intermediate, determining the conditions and specificity of each of them
was proposed in [5, 43, 61]. The specificity of each stage was determined based on
experimental research and interpretation of phenomena at the cell and body level
[45].

The review of the techniques given above is a justification for looking for a tech-
nique that allows predicting the structure of a polypeptide chain preferred by a
given set of amino acids. Facing this problem, predicting3Dstructure of a protein very
often is converted to a problem of protein fold recognition, mainly usingmachine
learning based (ml-based) methods. Fold can be defined as a three-dimensional
pattern characterized by a set of major protein secondary structure conformations
with certain arrangement and their topological connections (the secondary structure
is the characterization of a protein with respect to certain local structural confor-
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mations like α-helices, β-sheets and other such as loops, turns and coils). Protein
fold recognition methods have taken central stage as fold information could facili-
tate the identification of a protein tertiary structure and function. Machine learning
based methods for protein fold recognition assume that the number of protein folds
in the universe is limited, according to [20] about 1000 and therefore, the protein
fold recognition can be viewed as a fold classification problem: the construction of
a classifier using the set of protein derived features whose fold (class) is known.

Manydifferent fold recognition classifiers have beenproposedwith still increasing
accuracy and themain aimof this article is to cover all themajor results in this exciting
field.

The organization of the rest of this paper is as follows. The next, second section
explains the main ideas and approaches to supervised learning of classifiers, the
single and the ensemble-based ones. Third section is the introduction to the use of
deep learning methods for generating new, “deep” features that can be effectively
used in pattern recognition systems of new generation. Fourth section deals with the
protein feature generation methods dedicated for the purpose of fold classification in
the described later systems/methods of fold classification (fifth section). In the last
section, current problems as well as the directions for future research in the field of
machine learning-based protein fold classification are identified.

5.2 Supervised Learning

Machine learning is a branch of artificial intelligence which is concerned with the
development of learning algorithms that allow computers to evolve their behavior
based on the empirical data—the examples [1]. Based on the examples a learning
algorithm captures characteristics of interest, for example the underlying probability
distribution to automatically learn to recognize complex patterns and make intelli-
gent decisions based on data. Supervised learning is the machine learning task of
inferring a function from labeled set of examples, a training set. In machine learning
and statistics, classification is the problem of identifying to which of a set of cate-
gories a new observation belongs, on the basis of a training set of data containing
observations whose category membership is known. In the terminology of machine
learning, classification is considered an instance of supervised learning [1].

The classification problem [8] can be formally stated as follows. Suppose we
have a training dataset:

Un � {(x1, y1), . . . , (xn, yn)}

where each xi � (xi1, . . . , xid) represents an observation, yi ∈ {1, . . . , c} is a cate-
gorical variable, a class label. We seek for a function d(x) such that the value of d(x)
can be evaluated for any new observation x and such that label ŷ � d(x) predicted
for that new observation x is as close as possible to the true class label y of x. The
function d(x) known as classifier is an element of some space of possible functions,
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usually called the hypothesis space.A classification learning algorithm is a general
methodology that can be used, given a specific training dataset, to learn a specific
classifier (we don’t make here a distinction between a classier and classification
learning algorithm).

The procedure of building a classifier typically comprises the following steps [70]:

(1) data collection (on appropriate features),
(2) data preprocessing (for example normalization, outlier detection),
(3) feature selection/extraction (to avoid curse of dimensionality [8]),
(4) classifier training and validation using classification learning algorithm,
(5) classifier testing to estimate its performance (most frequently by the resampling

technique, the k-fold cross-validation [8], or if available, on a separate testing
set).

The built classifier can then be used for making predictions on new, unknown
observations.

Classifiers come in a great diversity of techniques and algorithms. Below, we only
sketch the most representative approaches, for a more complete description see the
literature (for example [1, 8, 37, 70]).

Single Classifiers

In the Bayesian decision framework, in order to measure how well a function fits
the training data, a loss function L(y, d(x)) for penalizing errors in prediction is
defined. By far, the most common is 0/1 loss function, where all misclassifications
are charged a single unit. This leads to a criterion for choosing d(x) as the expected
prediction error L(y, d(x)) (Bayes classifier):

d(x) � arg max
i

di (x) � arg max
i

f (x |i) · P(i)

where f (x |i) is a class-conditional density, P(i) is a priori probability of class i.
Many classification methods are based on the Bayes classifier including paramet-

ric and nonparametric ones according to the estimation method used. One of the
most popular parametric classifiers are Gaussian, especially, if covariance matrices
in all classes are identical, this leads to the popular Linear Discriminant Analysis
(LDA) classifier:

di (x) � xT Σ−1μi − 1

2
μT

i Σ−1μi + ln P(i)di (x)

Among nonparametric Bayes classifiers, the most popular is k nearest neighbor
(knn) classifier, inwhich the predicted class is themost frequently represented among
the k nearest neighbors from a training set.

Linear support vector machine (SVM) binary classifier [8, 70] is defined by
the optimal separating hyperplane (OSH), i.e., the one which maximizes the sepa-
ration margin which is the distance between the hyperplane and the closest training
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observations (called support vectors). In the case when the data are not linearly sep-
arable, a non linear transformation is used to map indirectly the input data vectors
into a higher dimensional Hilbert space using a kernel function K which leads to a
classifier:

d(x) � sgn

(
n∑

i�1

αi yi K (xi , x) + b

)

where 0 ≤ αi ≤ C (i � 1, . . . , n) are Lagrange multipliers, C is a regularization
parameter, b is a constant, all obtained through a numerical optimization during
learning. One of the most widely used “standard” kernel functions is the Gaussian
kernel:

K
(
xi , x j

) � exp

(
− 1

2σ 2

∥∥xi − x j

∥∥2
)

where parameter σ means the width of the kernel. The originally defined SVM is a
binary classifier and one way for using it in a multi-class classification problem is to
adopt standard techniques for combining the results of binary classifiers. The most
popular are one versus all and one versus one [8].

The multi-layer perceptron (MLP) [8] also termed feed-forward neural net-
work is a generalization of the single-layer perceptron. In fact, just three layers
(including the input layer) are enough to approximate any continuous function which
leads to a classifier of the following form:

di (x) � f2

⎛
⎝ M∑

j�0

w2
i j f1

(
d∑

r�0

w1
jr x0

r

)⎞
⎠ i � 1, . . . , c

where x0
r are inputs, w1

i j , w2
jr are components of two layers of network weights,

d is the dimensionality of the input pattern, the univariate functions f1 and f2 are
typically each set to:

f (x) � 1

1 + e−x

The parameters of the network (i.e. weights) are modified during learning to
optimize the match between outputs and targets, typically by minimizing the total
square error using a variant of gradient descent which is conveniently organized as
a backpropagation of errors [8].

A tree classifier, also known as a classification tree or a decision tree, is a
formal representation of a sequence of conditions leading to the classification of a
test sample. Classification begins in the root node. A condition regarding the feature
vector is associated with each inner node of the tree. After determining the value of
the condition, the analysis moves along the appropriate edge down the tree to one
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of the leaves, representing the classification result (one of the classes). In graphical
form, the tree is most often represented with rectangle shaped decision nodes and
with triangle shaped leaves containing class labels. If each condition divides the
set of objects into two separate subsets, we talk about binary classification trees.
If each condition concerns only one component of the feature vector, an attribute,
then we talk about a one-dimensional tree. The condition has a form of comparison
of the attribute with a constant value. For multidimensional trees, the condition is
a combination of many features. The decision tree is constructed in several steps
basing on the training set. In the first phase a tree is created by recursively dividing
the training set. In the next phase, called pruning, some branches are truncated to
improve the accuracy of the classification. The tree-building/inducing algorithm
has to solve three problems: the choice of attributes in successive steps (this affects
the division into subsets), the stop condition for divisions (this affects the size of
the tree), the allocation of elements in the leaves to classes. The first problem can
be solved by determining the measure of heterogeneity of elements belonging to a
given node, e.g. using the Gini index like in the CART method (Classification and
Regression Trees) [11]. The second problem (stop condition for divisions) can be
solved by assuming a minimum number of elements in a node. Another way to keep
the tree small is pruning—removing earlier created branches. The third problem
(assigning leaf elements to appropriate classes) is usually done by selecting the most
represented class in the leaf.

Ensemble-Based Classifiers

Ensemble methods are considered as one of the most efficient and relevant general
techniques to solve a classification problem. In a classifier ensemble, individual
(base) classifiers are integrated in some way in order to produce a final classifier that
outperforms every one of them.

There is no unifying theoretical framework for ensemble methods. For most of
them, there is actually no clear understanding of their exact mechanisms. Basically,
the process of creating an ensemble classifier consists of two main stages: ensemble
building (i.e. providing with a set of base classifiers) and output combination
(providing a combination method) [29].

Two basic methodologies for building ensemble classifiers can be distinguished.
In the first buildingmethodology, called the dependent, the output of a classifier is

used to build the next classifier. Two approaches can be used here. In the incremental
batch learning procedure, classification of the former classifier is used by the learning
algorithm to build the next classifier. In model-guided instance selection procedure,
classifier from the previous iteration is used to manipulate the training dataset for
the next iteration. The representative example is boosting. There are many boosting
algorithms. The original ones, proposed byRobert Schapire [66] works by repeatedly
running learning algorithm, for example a decision tree inducer on various distributed
training datasets and then combining the resulted classifiers. The improved adaptive
boosting method, AdaBoost [34] gives more focus to the misclassified examples by
assigning them the increasing weight.
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In the second building methodology known as independent, the base classifiers
are first trained on the disjoint or overlapping datasets created by the division of the
original training dataset and next their decisions are combined to output the final one.
The first representative ensemble method here is bagging [9] in which each classifier
is trained on a sample of examples taken with a replacement from a training dataset.
The final decision of the ensemble is the class that has been predicted the most often
(voting approach). The second well known classifier ensemble is Random Forest
[10] which uses a large number of individual, unpruned decision trees. The individual
decision tree is constructed by any top-down decision tree induction algorithm, as for
example that described in the previous section, but with the following modification:
the decision tree is not pruned and at each node, instead of choosing the best split
among all the attributes, the induction algorithm randomly samples subset of the
attributes. The majority voting is then used for final decision. There are of course
many other methods for randomization of decision trees.

It is generally accepted that each method for creating the ensemble classifier
consists of the following four building blocks [60]:

(1) training dataset,
(2) learning algorithm(s) responsible for building base classifiers on a training

dataset,
(3) diversity generator responsible for generating diverse classifiers,
(4) combiner for combining the decisions from base classifiers.

The diversity of base classifiers (i.e. having different error patterns) is even more
important than their high accuracy because extending an ensemble with new clas-
sifiers whose performances are identical provides no additional information to the
ensemble of classifiers [29].

According to Brown et al. [12], the following approaches to diversity creation in
ensembles can be distinguished: (1)manipulating the training sample (each base clas-
sifier is trained from a different training set), (2) manipulating the learning algorithm
differently for each base classifier, (3) changing the target attribute representation,
(4) partitioning the search space, (5) using various learning algorithms or ensem-
ble strategies. The mentioned bagging and boosting are examples of homogenous
classifiers which are learned on different training datasets.

Basically, there are two group of methods or combining outputs of the base clas-
sifiers in the ensemble:weighting andmeta-learning methods. Weighting methods
can be divided into [60] (a) voting or support-based, (b) trainable or untrainable,
(c) static or dynamic. Among the most representative weighting methods are major-
ity voting, performance weighting, distribution summation, Bayesian combination,
Dempster-Shafer, Naive Bayes [60]. Meta-learning relies on the classifiers built by
learning algorithms and classifications of these classifiers on training dataset. Stack-
ing, arbiter trees and grading are the best examples [60].

An important aspect of ensemble methods is to determine how many and which
base classifiers should be included in an ensemble. Several algorithms have been
proposed (for an overview see [60]).
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5.3 Deep Learning Methods in Pattern Recognition

The efficiency of machine learning depends to a large extent on the way how the data
(attributes) is represented and passed as input to the classification algorithms. There-
fore, the initial stage of processing the raw data usually involves transformations like
reduction of the dimensionality of the feature vector, filtering etc. The selection of
features and the way how they are transformed is usually not done automatically.
A desirable feature of a recognition system would be automatic “understanding”
of low-level data. This would allow much more efficient construction of classifiers.
The deep learning concept assumes transforming features in the subsequent stages
of processing so that the results obtained at a given stage are passed as inputs for the
next stage. We can talk here about a hierarchical representation of data.

Neural networks with many hidden layers are the most commonly used architec-
ture for deep learning. The signal propagation in such networks looks similar to that
used in the multi-layer perceptron (MLP) described before. However, we havemany
hidden layers here (more than one). Layers lying close to the input neurons deal
with low-level signal processing (e.g. pixel values in the image recognition task).
The higher hidden layers are responsible for transformations of features into spaces
more and more similar to the assumed result of classification.

For example, in the image recognition task, the initial layer of neurons may
deal with low-level filtering of pixel values, the next layer may discover simple
shapes—fragments of lines of different directions, the next may combine fragments
of lines with similar directions into longer sections, the next may identify geometric
figures constructed from lines, next—may classify the obtained shapes.

The basic difference between traditionally understood machine learning and deep
learning is the way how features are processed. Traditional ML methods extract
features at the initial stage and possibly transform them with algorithms developed
by humans. These algorithms are not the result of automatic learning. At the stage
of learning, transformed features are passed as input data to the learning algorithm
and finally we get a trained classifier. This is called “shallow architecture”.

In the case of deep learning methods, the system contains many layers respon-
sible for transforming features. Low-level features are subsequently transformed
into higher-level features, walking up the hierarchy of “abstraction levels”. Only
the features obtained at the highest level are passed to the training algorithm or lat-
er—recognition algorithm. The method of transforming features may be partially
controlled by the network designer, e.g. by pre-assigning weights to connections in
individual layers of the neural network. This architecture, containing many hidden
layers responsible for different layers of data abstraction, is called “deep” and resem-
bles the “deep architecture” of the human brain. Themultilayer architecture of neural
networks was known for a long time, as it is an obvious extension of a perceptron.
But before the year 2006, the results obtained with more than two hidden layers
were disappointing. Training deeper networks gave worse results. Gradient-based
algorithms got stuck in local minima and adding layers even worsened the accuracy
of classification. Connections between hidden layers away from the output are only
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slightly modified and therefore are not converting the input feature space well. In
[38] a method of training deep networks was presented. The algorithm trains one
layer at a time using unsupervised learning.

Themultilayer neural networkmay be treated as a sequence of simpler networks:
Restricted Boltzmann Machines (RBM) or autoencoders. An autoencoder is a kind
of MLP with a hidden layer containing fewer neurons than the input.

Practical tests have shown that deep layer methods implemented in the form of a
multilayer neural network cope very well with classification tasks like handwriting
recognition, speech recognition and image recognition. During the training phase,
connection weights between neurons are iteratively modified to minimize the error.
However, the meaning of these weights is usually unknown to the operator. We get a
system consisting of a known (designed) architecture of interconnected neurons and
knowledge encoded in the form of connection weights and additional parameters.
We can treat this system as a “black box” giving correct answers, but it is not easy
to tear down the rules that the network has learned.

5.4 Features of the Amino Acid Sequence

For machine learning-based protein fold classification it is necessary to represent
the underlying protein as a feature vector, i.e. a vector composed of values of the
features representing a protein. To realize that, one of the keys is to find an effective
model to represent a sample of a protein, because the performance of a fold classifier
critically depends on the features used. Several methods for the extraction of features
of amino acid sequences for protein fold classification have been developed.

The most straightforward sequential model relies on representing a query protein
as a sequence of consecutive symbols of amino acids in a specific order, but it
would fail when the query protein did not have significant homology with proteins
of known characteristics. The simplest non-sequential or discrete model of a protein
P � R1 . . . RL with L amino acid residues Ri can be expressed by its amino acid
composition (AAC):

P � [ f1, . . . , f20]

where f j ( j � 1, . . . , 20) are the normalized occurrence frequencies of the 20 native
amino acids in P.

Dubchak et al. [31, 33] first proposed away to extract global physical and chemical
propensities of the amino acid sequence as fold discriminatory features. Togetherwith
AAC a protein sequence is represented by a set of following 126 parameters divided
into six groups: (1) AAC plus the sequence length (21 features collectively denoted
by a letter C), (2) the predicted secondary structure (21 features denoted by S), (3)
hydrophobicity (21 features denoted as H), (4) normalized van derWaals volume (21
features denoted as V), (5) polarity (21 features denoted by P) and (6) polarisability
(21 features denoted by Z).
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Table 5.1 Amino acid attributes and corresponding groups

Attribute Group 1 Group 2 Group 3

Secondary structure Helix Strand Coil

Hydrophobicity Polar
R, K, E, D, Q, N

Neutral
G, A, S, T, P, H, Y

Hydrophobic
C, V, L, I, M, F, W

Polarizability (0–2.78)
G, A, S, C, T, P, D

(2.95–4.0)
N, V, E, Q, I, L

(4.43–8.08)
M, H, K, F, R, Y, W

Polarity (4.9–6.2)
L, I, F, W, C, M, V, Y

(8.0–9.2)
P, A, T, G, S

(10.4–13.0)
H, Q, R, K, N, E, D

Van der Waals
volume

(0–0.108)
G, A, S, D, T

(0.128–0.186)
C, P, N, V, E, Q, I, L

(0.219–0.409)
K, M, H, F, R, Y, W

Secondary structural information based on the three-state model: helix, strand and
coil could be accomplished using one of the existingmethods for secondary structure
prediction, for example PSI-PRED [42].

Apart from AAC characteristics (C set of features), all other features were
extracted based on the classification of all amino acids into three classes (for exam-
ple polar, neutral, and hydrophobic for hydrophobicity attribute, see Table 5.1) in
the following way. The descriptors a-composition, transition and distribution were
calculated for each attribute to describe the global percent composition of each of the
three groups in a protein, the percent frequencies with which the attribute changes
its index along the entire length of the protein, and the distribution pattern of the
attribute along the sequence, respectively. In the case of hydrophobicity, for exam-
ple, the a-composition descriptor AC consists of three numbers—the global percent
compositions of polar, neutral and hydrophobic residues in the protein (because
regarding to hydrophobicity attribute, all amino acids are divided into three groups:
polar, neutral and hydrophobic). The transition descriptor T consists of the following
three numbers—the percent frequency with which: a polar residue is followed by a
neutral one or a neutral by a polar residue and similarly with the other two types of
residues. The distribution descriptor D consists of five numbers for each of the three
groups: the fractions of the entire sequence, where the first residue of a given group
is located, and where 25, 50, 75, and 100% of those are contained. The complete
parameter vector contains 3aC + 3T + 5 · 3D � 21 components. Therefore the full
feature vector (C, S, H, V, P, Z) counts 6 · 21 � 126 features.

Pseudo amino acid composition (PseAA) was originally proposed [21] to avoid
completely losing the sequence-order information as in AAC-discrete model. In
PseAA model the first 20 factors represent the components of AAC while the addi-
tional ones incorporate some of its sequence-order information via various modes
(i.e., as a series of rank-different correlation factors along a protein chain). The
PseAA C-discrete model can be formulated as 20 + λ components [22]:
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pu �

⎧⎪⎨
⎪⎩

fu∑20
i�1 fi+w

∑λ
k�1 τk

1 ≤ u ≤ 20

wτu−20∑20
i�1 fi+w

∑λ
k�1 τk

20 + 1 ≤ u ≤ 20 + λ

where w is the weight factor and τk the k-th tier correlation factor that reflects the
sequence order correlation between all the k-th most contiguous residues:

τk � 1

L − k

L−k∑
i�1

Ji,i+k (k < L)

with

Ji,i+k � 1

3

{
[H1(Ri+k) − H1(Ri )]

2 + [H2(Ri+k) − H2(Ri )]
2

+ [M(Ri+k) − M(Ri )]
2
}

where H1(Ri ), H2(Ri ) and M(Ri ) are respectively the hydrophobicity, hydrophilicity
and side chainmass values for the amino acid Ri , λ is a parameter (before substituting
these values special normalization is used, for details see [22]).

The n-th order amino acid pair composition proposed by Shamim et al. [65] is
calculated using the following formula:

f
(
Di,i+n

)
j �

N
(
Di,i+n

)
j

L − n

where N
(
Di,i+n

)
j is the number of the n-th order amino acid pair j( j � 1, . . . , 400)

in protein sequence of length L. These features encapsulate the interaction between
the i-th and (i+n)-th amino acid residues and give the local order information in
a protein. A special case of these features are bigram and spaced-bigram features
proposed by Huang et al. [39], both derived from the N-gram concept.

Besides the features extracted directly from amino acid sequences, some features
are constructed by exploiting information such as predicted secondary structure,
predicted solvent accessibility, functional domain and sequence evolution.

Secondary structure-based features are generated based on the (predicted) sec-
ondary structure profile, for example generated by PSIPRED method [42]. Such
profile comprises a state sequence, i.e. a sequence of the three possible symbols rep-
resenting states: helix (H), strand (E) and coil (C) and the three probability sequences,
each for one state, being the probability values with which the states occur along the
query amino acid sequence.

The first examples of these features are those used by Dubchak et al. [31, 33] as
described at the beginning of this section. Chen and Kurgan [15] proposed two new
features: (1) the number of different secondary structure segments (DSSS), being the
numbers of occurrences of distinct helix, strand and coil structures which length is
above a certain threshold, (2) the arrangement of DSSS: there are 33 � 27 possible
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segment arrangements, i.e. class-class-class where class= ‘H’, ‘E’ and ‘C’. Similarly
to n-th order amino acid pair composition features, Shamim et al. [65] defined the
secondary structural state frequencies of amino acids pairs which are calculated as:

f
(

Di,i+n
k

)
j
�

N
(

Di,i+n
k

)
j

L − n

where N
(

Di,i+n
k

)
j
is the number of the n-th order amino acid pair j( j � 1, . . . , 400)

found in the state k=(H, E, C). Treating amino acid sequences as a time series
Yang and Chen [74] proposed the following procedure for the extraction of new
features from the PSIPREDprofile. For each of the three state sequences of secondary
structural elements they first applied chaos game representation, analyzed them by
a nonlinear technique, the recurrence quantification analysis (for details see [74])
and then applied autocovariance (AC) transformation which is the covariance of the
sequence against a time-shifted version of itself:

ACl,t �
L−l∑
i�1

(
ti − t̄

)(
ti+l − t̄

)
/(L − l) l � 1, . . . , lmax

where t � (t1, . . . , tL) is the input sequence, t̄ is the average of all ti , l is the distance
between two positions along the sequence, lmax is the maximum of l being the value
of the shift.

Shamim et al. [65] proposed the solvent accessibility state frequencies of amino
acids calculated as follows:

f k
i � N k

i

L

where k � (B, E) are solvent accessibility states:B—buried, E—exposed, N k
i is the

number of amino acid i in solvent accessibility state k. For calculating the frequencies
they used solvent accessibility states predicted by the method [16]. Similarly to n-th
order of amino acid pair composition features, they defined the solvent accessibility
state frequencies of amino acids pairs:

f
(

Di,i+n
k

)
j
�

N
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j

L − n

where N
(

Di,i+n
k

)
j
is the number of the n-th order amino acid pair j( j � 1, . . . , 400)

found in the accessibility state k=(B, E, I) (I—partially buried state) or secondary
structural state k=(H, E, C).

Proteins often contain several modules (domains), each with a distinct evolution-
ary origin and function. Several databases were developed to capture this kind of
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information, for example CDD database (version 2.11) [54] which covers 17 402
common protein domains and families. In [69] the functional domain (FunD) com-
position vector for representing a given protein sample was proposed. It is extracted
through the following procedure: (1) use RPS-BLAST (reverse PSI-BLAST [64]) to
compare the protein sequence with each of the 17 402 domain sequences in CDD
database, (2) if the significance threshold value is less than 0.001 for the i-th pro-
file that means the hit is found and the i-th component of the protein in 17 402-
dimensional space is assigned 1, otherwise 0.

Evolutionary-based features mainly are extracted from position-specific scoring
matrix (PSSM) profile generated by the PSI-BLASTprogram [2]. PSI-BLAST aligns
a given query amino acid sequence to the NCBI’s non-redundant database. Using
multiple sequence alignment PSI-BLAST counts a frequency of each amino acid
at each position for the query sequence and generates a 20-dimensional vector of
amino acid frequencies for each position in the query sequence, thus the element Si j

of PSSM matrix reflects the probability of amino acid i occurring at the position j.
More often than the absolute frequencies, the relative frequencies are tabulated in a
profile (i.e. relative to a probability of a sequence in a random functional site). The
generated profile considers evolutionary information, i.e. it can be used to identify
key positions of conserved amino acids and positions that undergo mutations.

Chen and Kurgan [15] extracted a profile-based composition vector (PCV) from
20-dimensional PSSM profile in a way by which the negative elements of PSSM
profile are first replaced by zeroes, and then each column is averaged. However, in
such representation valuable evolutionary information would be definitely lost. To
avoid this, Shen and Chou [69] proposed pseudo position-specific scoring matrix
(PsePSSM) by adding to the profile-based composition vector the correlation factors
defined as:

�
ξ

j � 1

L − ξ

L−ξ∑
i�1

[
Si j − S(i+ξ) j

]2
j � 1, 2, . . . , 20; ξ < L

�1
j is the correlation factor by coupling the most contiguous PSSM scores along

the protein chain for the amino acid type j, �2
j—the same as previous but for the

second-most contiguous PSSM scores, and so forth. Another approach is proposed
in [74]. Global features are extracted from PSSM matrix by first using a special
normalization followed by the consensus sequence (CS) transformation:

μ(i) � arg max
{

fi j : 1 ≤ j ≤ 20
}

1 ≤ i ≤ L

where fi j denotes the normalized value of the element Si j of PSSM, and then com-
puting:

AACC S( j) � n( j)

L
1 ≤ j ≤ 20
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where n( j) is the number of the amino acid j occurring in the CS. Additional two
global features represent the entropy of the feature set:

EC S � −
20∑
j�1

AACC S( j) ln AACC S( j)

E F M � − 1

L

L∑
i�1

20∑
j�1

fi j ln fi j

the last computed on the raw, normalized PSSM. To extract local features, they first
divide the raw, normalized PSSM into non-overlapping fragments of equal length.
Then, for each fragment s, the 20 features are computed as the average occurrence
frequency of the amino acid j in the fragment s during the evolution process (for
details see [74]). Each residue in the amino acid sequence has many physical and
chemical properties, so a sequence may be viewed as a time sequence of the cor-
responding properties. In Dong et al. [32] proposed features extracted from PSSM
using AC transformation. The result measures the correlation of the same property
between two residues separated by a distance l along the sequence:

AC(i, l) �
L−l∑
i�1

(
Si j − Si

)(
Si j+l − Si

)
/(L − l)

where i is one of the residues, L is the protein sequence length, Si j is the PSSM score
of amino acid i at position j, Si is the average score of amino acid i along the whole
sequence. They also proposed the AC transformation for two different properties
between two residues separated by l along the sequence:

CC(i1, i2, l) �
L−l∑
i�1

(
Si1 j − Si1

)(
Si2 j+l − Si2

)
/(L − l)

where i1, i2 are two different amino acids.
Slightly different from the methods described above are the feature extraction

methods based on kernels. A core component of each kernel methods (for example
the described SVM) is the kernel function, which measures the similarity between
any pair of examples. Different kernels correspond to different notions of similar-
ity and can lead to discriminative functions with different performance. One of the
early approaches for deriving a kernel function for protein classification was the
SVM-pairwise scheme [50] which presents each sequence as a vector of pairwise
similarities to all sequences in the training set. A relatively simpler feature space that
contains all possible short subsequences ranging from 3 to 8 amino acids (k-mers) is
explored in [47]. A sequence x is represented here as a vector in which a particular
dimension u (k-mer) is present in x vector (has non-zero weight) if x contains a sub-
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string that differs with u in at most a predefined number of positions (mismatches).
An alternative to measuring pairwise similarity through a dot-product of vector rep-
resentations is to calculate an explicit protein similarity measure. The method [62]
measures the similarity between a pair of protein sequences by taking into account
all the optimal local alignment scores with gaps between all of their possible sub-
sequences. In the work described in [58] they developed new kernel functions that
are derived directly from explicit similarity measures and utilize sequence profiles
constructed automatically via PSI-BLAST [2] and employed a profile-to-profile scor-
ing scheme developed by extending profile alignment method [64]. The first kernel
function, window-based, determines the similarity between the pair of sequences
by using different schemes to combine ungapped alignment scores of certain fixed-
length subsequences. The second, local alignment-based, determines the similarity
between the pair of sequences using Smith-Waterman alignments and a position
independent affine gap model, optimized for the characteristics of the scoring sys-
tem. Experiments with fold classification problem show that these kernels together
with SVM [58] are capable of producing excellent results, the overall performance
measured on DD dataset is 67.8%.

Sharma et al. proposed in [67] a bi-gram based feature extraction method. The
method is based on counting bi-gram frequencies of occurrences from PSSMderived
fromPSI-BLAST. Probabilities of transitions between elements of 400 possible pairs
of amino acids are computed. The feature vectorwas then passed to anSVMclassifier.
The highest accuracy achieved by the bi-gram technique on the DD dataset in this
case was 69.5%.

In [14], authors propose a method called proFold with a feature vector composed
of four feature groups: DSSP features, the amino acid composition and physicochem-
ical properties (AAsCPP), the PSSM feature group and the functional domain com-
position (FunD) feature group. DSSP features are derived from secondary structure
states, reduced from eight to four groups. There are 40 DSSP-based features: state
composition, group composition, number of continuous states, continuous groups
etc. The second group contains 188 features combining amino acid composition and
physiochemical properties. Next 20 features come from the PSSMmatrix, calculated
as the average value of each column. The last group contains 17 402 binary features
computed as in [54]. These features used with an ensemble classifier gave 76.2%
accuracy on the DD dataset and even more on the EDD-dataset and TG-dataset:
93.2% and 94.3% respectively.
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5.5 Protein Fold Machine Learning-Based Classification
Methods

5.5.1 Datasets Used in the Described Experiments

Most implementations of the machine learning-based protein fold classification
methods have adopted the SCOP (Structural Classification of Proteins) architec-
ture [53], with which a query protein is classified into one of the known folds. Most
of these methods use the DD dataset for the construction of a protein fold classifier.
This dataset (training and testing one) was developed by Ding and Dubchak [31, 33].
The DD dataset contains 311 and 383 proteins for training and testing, respectively.
This dataset has been formed such that, in the training set, no two proteins have more
than 35% sequence identity to each other and each fold has seven or more proteins.
In the test dataset, proteins have no more than 40% sequence identity to each other
and have no more than 35% identity to proteins of the training set.

Theproteins from training and testing datasets belong to 27different folds (accord-
ing to SCOP [31]), representing allmajor structural classesα,β,α+β andα/β. These
are the following 27 fold types: (1) globin-like, (2) cytochrome c, (3) DNA-binding
3-helical bundle, (4) 4-helical up-and-down bundle, (5) 4-helical cytokines, (6) EF-
hand, (7) immunoglobulin-like-sandwich, (8) cupredoxins, (9) viral coat and capsid
proteins, (10) ConA-like lectins/glucanases, (11) SH-3 like barrel, (12) OB-fold, (13)
beta-trefoil, (14) trypsin-like serine proteases, (15) lipocalins, (16) (TIM)-barell, (17)
FAD (also NAD)-binding motif, (18) flavodoxin like, (19) NAD(P)-binding Ross-
mann fold, (20) P-loop, (21) thioredoxin-like, (22) ribonuclease H-like motif, (23)
hydrolases, (24) periplasmic binding protein-like, (25) β—grasp, (26) ferredoxin-
like, (27) small inhibitors, toxins, lectins. Of the above 27 fold types, types 1–6
belong to all α structural class, type 7–15 to all β class, type 16–24 to α/β class and
types 25–27 to α + β class.

Later, researchers (see for example [74]) found some duplicate pairs between the
training and testing sequences in the DD dataset. After excluding such sequences,
a new dataset called revised DD dataset (RDD) was created. Another extended DD
dataset (called EDD) was constructed by populating additional protein samples. It is
based on the Astral SCOP (http://astral.berkeley.edu/) in which any two sequences
have less than 40% identity. To cover more folds, they constructed other datasets,
comprising 86, 95, 194 and 199 folds respectively (F86, F95, F194, F199); for the
detailed description see [32, 74].

5.5.2 Methods

Supervised machine learning-based methods for protein fold prediction have gained
great interest since the work described in Craven et al. [25]. Craven et al. obtained
several sequence-derived features, i.e., average residue volume, charge and polarity

http://astral.berkeley.edu/
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composition, predicted secondary structure composition, isoelectric point, Fourier
transformof hydrophobicity function, from a set of 211 proteins belonging to 16 folds
and used the sequence attributes to train and test the following popular classifiers:
decision trees, k nearest neighbor and neural network classifiers in the 16-class fold
assignment problem.

Ding and Dubchak [31, 33] first experimented with unique one-versus-others and
one-versus-all methods using neural networks or SVMs as classifiers in multiple
binary classification tasks on a DD dataset of proteins using global description of
amino acid sequence described in the previous section. They were able to recognize
the correct fold with the accuracy of approximately 56%.

Here, the accuracy refers to the percentage of proteins whose fold has been
correctly identified on the test set.

Other researchers have tried to improve prediction performance by either incor-
porating new features (as described in the previous section) or developing novel
algorithms for multi-class classification (for example fusion of the different classi-
fiers).

A modified nearest neighbor algorithm called K-local hyperplane (HKNN) was
used by Okun [56], with the overall accuracy 57.4% on the DD dataset).

Classifying the same dataset as in Dubchak et al. [33] and input features, employ-
ing a Bayesian Network-based approach [35], Chinnasamy et al. [17] improves to
60% on the average fold recognition results reported by Dubchak et al. [33].

Nanni [55] proposed a specialized ensemble called SE of K-local hyperplane
based on random subspace and feature selection and achieved 61.1% total accuracy
on the DD dataset. Classifiers in this ensemble can be built on different subsets of
features, either disjoint or overlapping. Feature subsets for a given classifier with a
“favourite” class are found as those that best discriminate this class form others (i.e.
in the context of the defined distance measure).

For the prediction of protein folding patterns Shen and Chou proposed in [69]
the ensemble classifier, known as PFP-Pred, constructed from the nine individual
ET-KNN [27] (evidence-theoretic k-nearest neighbors) classifiers, each operating
on only one of the inputs (in order not to reduce the cluster-tolerant capacity) and
obtained the accuracy 62%. The ET-KNN rule is a pattern classification method
based on the Dempster-Shafer theory of belief functions. Near-optimal parameters
of each such component classifier were obtained using optimization procedure from
[77] resulting in the OET-KNN optimized classifier. As a protein representation
they used features from Dubchak et al. [31, 33] (except the composition) as well as
the different dimensions of pseudo-amino acid composition, i.e. with four different
values of parameter λ (see the description in the previous section), together nine
groups of features. Rather than using a combined correlation function they proposed
the alternate correlation function between hydrophobicity and hydrophilicity of the
amino acids components to reflect sequence-order effects (for details see [69]). The
outcomes of the individual classifiers were combined through a weighted voting to
give a final determination for classifying a query protein.

Chmielnicki and Stapor [18, 19] proposed a hybrid classifier of protein folds
composed of regularized Gaussian and SVM. Using feature selection algorithm to



5 Machine Learning Methods for the Protein Fold Recognition … 119

select the most informative features from those designed by Dubchak et al. [31] they
obtained accuracy 62.6% on the DD dataset.

In [36] Guo and Gao presented a hierarchical ensemble classifier named GAOEC
(Genetic-Algorithm Optimized Ensemble Classifier) for protein fold recognition.
As the component classifier they proposed a novel optimized GAET-KNN classifier
which uses GA to generate the optimal parameters in ET-KNN to maximize the
classification accuracy. Two-layer GAET-KNNs are used to classify query proteins
in the 27 folds. As in Dubchak et al. [31] six kinds of features are extracted from
every protein in the DD dataset. Six component GAET-KNN classifiers in the first
layer are used to get a potential class index for every query protein. According to the
result of the first layer, every component classifier of the second layer generates a
27-dimensional vector whose elements represent the confidence degrees of 27 folds.
The genetic algorithm is used for generating weights for the outputs of the second
layer to get the final classification result. The overall accuracy of GAOEC is 64.7%.

In [32] the protein fold recognition approach using SVM and features containing
evolutionary information extracted fromPSSMby using the described in the previous
section AC transformation is presented. Two kinds of the AC transformation were
proposed resulting in two kinds of features: (1)measuring the correlation between the
same and (2) the two different properties. Two versions of a classifier were examined:
with features (1) and the combination of (1) and (2) resulting in the performance
68.6% and 70.1% respectively (on the DD dataset using 2-fold cross-validation).
Using the EDD, F86, F199 datasets the performances computed by 5-fold cross-
validation for the combination of (1) and (2) sets of features gain 87.6%, 80.9% and
77.2%, respectively.

Kernel matrices comprise the similarity between data objects within a given input
space. Using kernel-based learning methods, the problem of heterogeneous data
sources integration can be transformed into the problem of learning the most appro-
priate combination of their kernel matrices. The approach proposed in [26] “utilizes”
four of the state-of-the-art string kernels built for proteins and combines them into
an overall composite kernel where the multinomial probit kernel machine operates.
The approach is based on the ability to embed each object description via the kernel
trick [68] into a kernel space. This produces a similarity measure between proteins
in every feature space and then, having a common measure, they combined informa-
tively these similarities into a composite kernel space on which a single multi-class
kernel machine can operate effectively. The performance obtained using this method
on the DD dataset is 68.1%.

Chen and Kurgan [15] proposed the fold recognition method PFRES using fea-
tures generated from PSI-BLAST and PSI-PRED profiles (as described in the previ-
ous section) and the voting-based ensemble of the three different classifiers: SVM,
RandomForests [10] andK-star [23]. Using the entropy-based feature selection algo-
rithm resulting in the compact representation (36 features) [76] they obtained 68.4%
accuracy on the DD dataset.

In [51] two-level classification strategy called hierarchical learning architecture
(HLA) using neural networks for protein fold recognition was proposed. It relies on
two indirect coding features (based on bigram and spaced-bigram as described in
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the previous section) as well as combinatorial fusion technique to facilitate feature
selection and combination. The resulting accuracy is 69.6% for 27 folding classes
from the DD dataset. One of the novelties is the notion of a diversity score function
between a pair of features. This parameter is used to select appropriate and diverse
features for the combination. It may be possible to achieve better results with a
combination of more than two features.

Shamim et al. [65] developed a method for protein fold recognition based on an
SVM classifier (with three different multi-class methods: one versus all, one versus
one and Crammer/Singer method [24]) that uses secondary structural state and the
solvent accessibility state frequencies of amino acids and amino acid pairs as feature
vectors (as described in the previous section). Among the feature combinations, a
combination of the secondary structural state and solvent accessibility state frequen-
cies of amino acids and first-order amino acid pairs gave the highest accuracy 70.5%
(measured using 5-fold cross-validation) on the EDD dataset.

Shen and Chou developed new method PFP-FunD for protein fold pattern recog-
nition using functional domain (FunD) composition vector and features extracted
from PsePSSM matrix (as described in the previous section) with the previously
designed OET-KNN ensemble classifier obtaining accuracy 70.5%.

Yang and Chen [74] developed fold recognition method TAXFOLD that exten-
sively exploits the sequence evolution information form PSI-BLAST profiles and
the secondary structure information form PSI-PRED profiles. A comprehensive set
of 137 features is constructed as described in the previous section which allows for
depiction of both global and local characteristics. They tested different combinations
of the extracted features. It follows that PSI-BLAST and PSI-PRED features make
complementary contributions to each other, and it is important to use both kinds
of features for enhanced protein fold recognition. The consensus sequences contain
much more evolution information than the amino acid sequences, thereby leading to
more accurate protein fold recognition. The best accuracy of TAXFOLD is 71.5%
on the DD dataset (83.2%, 86.9%, 76.5% and 72.6% on RDD, EDD, F95 and F194
datasets, respectively).

In the kernel-based learning method [75] they proposed a novel information-
theoretic approach to learn a linear combination of kernel matrices through the use
of a Kullback-Leibler divergence between the output kernel matrix and the input one.
Based on the position of the input and output kernel matrices, there are two formula-
tions of the resulted optimization problem: by a difference of convex programming
method and by a projected gradient descent algorithm. The method improves the
fold discrimination accuracy to 73.3% (on the DD dataset).

Another, but different from those described in section two group of methods used
for protein fold recognition are those based on Hidden Markov Model (HMM) [35].
The most promising result here was achieved by Deschavanne and Tuffery [28] who
employed the hidden Markov structure alphabet as an additional feature and got
accuracy 78% (on the EDD database).

Li et al. [49] created the feature vector from sequence-based features: compo-
sition vectors, predicted structure descriptors, the secondary structure information
and features based on BLAST. Additionally, a method for calculating features based
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on sequence motifs was proposed. A total number of 60 features was used with
a classifier based on random forests. The best result achieved in experiments was
73.7%.

Wei et al. proposed in [72] a novel taxonomic method combining a new feature
set with an ensemble classifier. The set of 473 features is created from the sequential
evolution information from the profiles of PSI-BLAST, local and global secondary
structure information from the profiles of PSI-PRED. The method, called PFPA,
achieves an overall accuracy of 73.6%.

The use of Deep Learning Networks brings surprisingly good results, exceeding
even 91.2% as shown in [41]. The result was obtained on the LINDAHL dataset [52].

Chen et al. proposed in [14] using a composition of features: amino acids compo-
sition, hydrophobicity, Van derWaals volume, polarity, polarizability, charge, surface
tension, secondary structure, solvent accessibility (21 features in most groups). The
feature vector was passed to an ensemble classifier involving random forests, rotation
trees and functional trees. The accuracy reaches 76.2% on the DD dataset or even
93.2 and 94.3% on specific datasets.

Authors of [40] proposed a three-stage framework PCA-DELM-LDA to extract
feature vectors from the amino acid sequences. The second stage of their methodol-
ogy, called DELM (Deep Extreme Learning Machine) is a deep model of Extreme
Learning Machine (ELM), being a single layer forward network in which the hidden
neurons are randomly generated and the output weights are tuned based on the least-
squares solutions. DELM is a stack of six layers of ELM (the detailed pseudocode
of its training is given in [40]). They applied the six original descriptors from [31]
to extract six new feature vectors from protein sequences: autocovariance, Moran,
Geary,MoreauBroto autocorrelations, conjoin trias and a local descriptor. Then PCA
has been used for dimensionality reduction. The extracted, new feature vectors have
been used with the original features by DELM to generate four, new useful „deep
features” used by Linear Discriminant Analysis (LDA) to classify an input protein
sequence into one of 27 classes. The specificity and sensitivity on the DD dataset is
98% and 52% respectively.

Table 5.2 shows a comparison of results achieved by machine learning methods
[73].

5.6 Discussion, Conclusions and Future Work

This paper is not a comparison among the existing protein fold classificationmethods,
it is only a review. To make such a comparison between performance of different
classifiers one should implement the describedmethods and use the special, dedicated
statistical tests to make sure that the differences are statistically significant. The
presentedmachine learning-basedmethods for fold recognition can solve, to a certain
degree, the intrinsic limitations of experimental methods (being time-consuming and
expensive), but several challenges remain to be addressed.
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Table 5.2 Results achieved by ml-based methods, according to [73]

Method Year Accuracy (%)

Nanni et al., Ensemble 2006 61.1

PFP-Pred, Ensemble 2006 62.1

Shamim et al., Single (SVM) 2007 60.5

PFRES, Ensemble 2007 68.4

Damoulas et al., Single (SVM) 2008 68.1

ALHK, Ensemble 2008 61.8

GAOEC, Ensemble 2008 64.7

PFP-FunDSeqE, Ensemble 2009 70.5

ACCFold_AC, Single (SVM) 2009 65.3

ACCFold_ACC, Single (SVM) 2009 66.6

Ghanty et al., Ensemble 2009 68.6

TAXFOLD, Single (SVM) 2011 71.5

Alok Sharma et al., Single (SVM) 2012 69.5

Marfold, Ensemble 2012 71.7

Kavousi et al., Ensemble 2012 73.1

PFP-RFSM, Single (RF) 2013 73.7

Feng and Hu, Ensemble 2014 70.2

PFPA, Ensemble 2015 73.6

Deep Learning Networks (T. Jo et al.) 2015 98/52a

Feng et al., Ensemble 2016 70.8

ProFold, Ensemble 2016 76.2

aDenotes specificity/sensitivity values in this one case

First, it should be noted that the reported accuracies of classifiers were estimated
by using different methods: by applying the independent test dataset or 2 (5) cross-
validation on the training dataset and sometimes using different datasets. The accu-
racies obtained using different estimation methods have different bias and variance.
Moreover, these are only the values of the point estimators, the confidence inter-
vals for example would give valuable information on the standard deviation of the
prediction error (problem 1).

Second, the benchmark dataset (e.g. DD dataset) used to evaluate the performance
of classifiers is highly imbalanced (for example the largest fold class contains 30 sam-
ples while the smallest—only 6 examples). Classifiers learned on such imbalanced
and small dataset are easily overfitting (problem 2).

Considering the nature of the protein fold prediction problem, where the fold type
of a protein can depend on a large number of protein characteristics and also noting
that the number of fold types approaches 1000, it is straightforward to see the need
for a methodological framework that can cope with a large number of classes and can
incorporate as many feature spaces as they are available. As mentioned above, the
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existing protein fold classificationmethods produced several fold discriminatory data
sources (i.e. groups of attributes such as amino acid composition, predicted secondary
structure, and selected structural and physicochemical properties of the constituent
amino acids). One of the problems is how to integrate many fold discriminatory data
sources systematically and efficiently, without resorting to ad hoc ensemble learning.
One solution are the kernel methods that have been successfully used for data fusion
in many biological applications. But the problem of integrating heterogeneous data
sources is still a challenging problem (problem 3).

It is known that performance of many classifiers (like for example widely used
SVM) depends on the size of the dataset used—a look at the DD dataset reveals
that many folds are sparsely represented. Training in such a case becomes skewed
towards populous folds labeled as positive rather than less populated folds labeled
as negative (problem 4). An alternative class structure should be developed, for
example by re-evaluation of the current class structure to determine classes which
should be aggregated or discarded, or by incorporating larger sets of folding classes.

Another source of errors in the describedmethods are inappropriate (i.e.with small
discriminatory power) features of the protein sequence. Moreover, the incorrectly
predicted features like the secondary structure or solvent accessibility ones, could
decrease classification performance. Extracting a set of highly discriminative set of
features from amino acid sequences remains a challenging problem (problem 5),
though the newest work [74] shows, that even using a single classifier but with
the carefully designed features (most discriminative), it is possible to obtain a very
good classification performance, even greater than 80%. The obtained result is very
well acceptable accuracy for the 27-class classification problem! A random classifier
would have a 3.7% (1/27×100) only. The main source of the achieved improvement
is attributed to the application of features extracted from PSI-BLAST profile which
considers evolutionary information, with suitable transformations.

New ensemble-based classifiers have demonstrated their classification power in
protein fold recognition, achieving accuracy up to 76.2%. The use of deep learn-
ing algorithms for generating new “deep” features for classification tasks have been
successfully applied in protein fold recognition giving even over 90% correct recog-
nitions for specific data sets. Deep learning networks combined with ensemble-based
classifiers will, probably, be a good alternative to improve the efficiency of protein
fold recognition. This combination is a challenge for the authors of protein fold
recognition methods (problem 6).

The probability of correctness obtained with the use of the discussed tools is not
satisfactory. This fact may, however, stem from the very essence of the objects to
which the method has been applied. Among chemical molecules, proteins demon-
strate their desirability in the formof the encoded function theyperform.This function
has a very high specificity. Thismeans that you probably should not look for a general
model based on which very diverse structures could be designed. The division into
forms called the secondary structure is a big simplification. Evolution does not create
structural forms. She creates tools. The same secondary structural form can be used
for many tasks that differentiate it. The treatment of common secondary forms is
therefore a fundamental simplification. The creation of secondary forms is aimed at
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obtaining a corresponding effect, which is not a structure as such. The high similarity
of structures with a common name “sandwich” (according to CATH nomenclature
2.60.40.10) turns out to be highly diversified from the point of view of local stability,
which significantly affects the flexibility of the structure and the associated function
of these domains [6].

The given sequences take the right structure not because of purely energy reasons.
Since the function is encoded in the structure, then the status of a given element of
the structure (secondary) must be varied despite the topological similarity. With such
a highly diversified and sophisticated functionality of proteins, one common model
for generating their structures cannot be binding.
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Chapter 6
Speech Analytics Based on Machine
Learning

Grazina Korvel, Adam Kurowski, Bozena Kostek and Andrzej Czyzewski

Abstract In this chapter, the process of speech data preparation for machine learn-
ing is discussed in detail. Examples of speech analyticsmethods applied to phonemes
and allophones are shown. Further, an approach to automatic phoneme recognition
involving optimized parametrization and a classifier belonging to machine learn-
ing algorithms is discussed. Feature vectors are built on the basis of descriptors
coming from the music information retrieval (MIR) domain. Then, phoneme clas-
sification beyond the typically used techniques is extended towards exploring Deep
Neural Networks (DNNs). This is done by combining Convolutional Neural Net-
works (CNNs) with audio data converted to the time-frequency space domain (i.e.
spectrograms) and then exported as images. In this way a two-dimensional repre-
sentation of speech feature space is employed. When preparing the phoneme dataset
for CNNs, zero padding and interpolation techniques are used. The obtained results
show an improvement in classification accuracy in the case of allophones of the
phoneme /l/, when CNNs coupled with spectrogram representation are employed.
Contrarily, in the case of vowel classification, the results are better for the approach
based on pre-selected features and a conventional machine learning algorithm.
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6.1 Introduction

Speech signal, the most natural way of human communication, is characterized by
phonemic variation, temporal structure, prosody, voice timbre and quality. It encom-
passes also aspects of the speaker’s profile such as emotions or sentiments [1–4]. All
these elements are interdependent and gathered in one-dimensional signal. The most
important task of the speech-related research is automatization and detection of the
above-mentioned elements of speech. In the speech domain, vectors of parameters
are extracted and machine learning methods are used for classifying each problem,
separately. Well-known methods such as Hidden Markov Models, Nearest Neigh-
bors, Support Vector Machines, Artificial Neural Networks, etc. and combinations
of the above are employed for that purpose [2, 5, 6]. It should also be mentioned that
a renewed interest in phonemic-level-based analyses appeared recently [7, 8], that
are applied to various areas, such as for example biometry [9].

Before speech classification takes place, a thorough analysis of speech elements
is first performed. To that end speech analytics, defined as a solution that can auto-
matically discover and analyze words, phrases, categories and themes spoken during
calls to reveal hidden insights to help surface valuable intelligence, is employed. In
this chapter we are looking at speech analytics from a new perspective. The primary
goal of the experiments carried out is an analysis, that checks whether a typical
approach to automatic speech recognition based on machine learning retains infor-
mation described above after feature extraction and compares it to the deep learning
approach, in which feature extraction process is discarded. For that purpose, stan-
dard speech acoustic parameters along with descriptors from the music information
retrieval (MIR) domain are used. We also explore Deep Neural Networks (DNNs)
approach without performing feature extraction. The DNNs let us combine the two
last above mentioned phases: feature extraction and application of soft computing
methods into one step. We convert the audio data to different spaces and then export
them as images. These two approaches are applied to phoneme and allophone clas-
sification.

6.2 Speech Phoneme Signal Analysis

In this section speech phoneme analysis is first performed.We consider speech signal
as an acoustic signal. We assume that each phoneme can be represented as a vector
of acoustic features.

First of all, before we move onto the extraction of characteristics of the speech
signal, we should show to what extent phoneme groups differ from each other. In
a general case, the character of vowel and semivowel phonemes is periodic. An
example of these phoneme signals is given in Fig. 6.1.

From Fig. 6.1 we see, that the periods of vowel and semivowel phoneme signals
are not exactly the same, but they are very similar.Meanwhile, some of the consonant
phonemes (e.g. /p/, /k/, /t/) can be considered as quasi-periodic signals in noise, and
others (e.g. /s/, /�/, /f/) are aperiodic signals (see Fig. 6.2).
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Fig. 6.1 The periodic character of phonemes: a the plot of the vowel /a/, b the plot of the semivowel
/l/

Fig. 6.2 The consonant phonemes: a the plot of the consonant /k/, b the plot of the consonant /s/

We see from examples shown in Figs. 6.1 and 6.2 that the character of phonemes
differs. Moreover, it is worth mentioning that phonemes have different variants
depending on the environment in which they occur. One should recall that pho-
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netically distinct variants of a phoneme are allophones, the occurrence of which is
usually determined by its position in the word. Therefore, in the context of speech
analytics, we should determine all properties of phonemes such as voiced, unvoiced,
noise like, periodic, etc. In addition, the same phonemes may also differ depending
on the type of a sentence.

6.3 Speech Signal Pre-processing

The state-of-the-art methods applied to speech analysis involve several steps. First
of all, the signal is converted to the appropriate space domain and preprocessing
is carrying out. In the second step, an extraction of features is performed. Finally,
Artificial Intelligence Algorithms (AIA, i.e. machine learning) are used to obtain
new knowledge from these features.

In this chapter we consider utterances recorded with the following parameters:
PCM 48 kHz; 16 bit; stereo, stored as a wav file. The sampling frequency is 48 kHz,
which means that 48,000 samples are captured per second in order to represent the
waveform. Since both channel data are identical, we examined a single channel data.

Let:

x � [x(1), x(2), . . . , x(N )]T (6.1)

be a sequence of samples of the analyzed phoneme,whereN is the number of samples.
Our goal is to extract important speech acoustic information from the data gath-

ered. Extracting the useful information from speech signal increases the performance
of the application. A broad scope of speech signal features is used for classification
tasks [10], automatic speech recognition [11], emotion recognition [2], speech mod-
eling [12], and other applications [13].

Since in the literature there is a great variety of features that have been introduced
during the last years, the focus is to be on features that have successfully been
used in Music Information Retrieval (MIR) systems [14]. Our performed research
show that using standard speech parameters along with descriptors from the music
area, the phoneme recognition accuracy is better, regardless of singular and specific
features of voice exhibited by a speaker [11]. These speech signal features can be
divided into two main groups: time- and frequency-domain features. Time domain
representation shows the time-varyingbehavior of signal,while the frequencydomain
representation shows how the energy of the signal is contained within the frequency
range. Features, extracted in one domain provide domain-related information, thus
they are not universal.

Feature extraction is to be performed on a signal divided into short-time segments.
We use this approach, which is typical for audio analysis and signal analytics, in
order to get more accurate information. The segment-based features yield a short
time description of the signal at any given time instance. It is to be noted that the
choice of the time segment length affects two aspects: quality of spectral coefficients
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Fig. 6.3 Dividing speech phoneme into short-time segments

and temporal resolution. Longer segments give a higher frequency resolution of
the Fourier spectrum. Therefore, derived coefficients are more accurate. As a result
of shorter segments, we obtain smoothing coefficients. This provides an entirely
different perspective. In the case of longer segments greater time intervals between
each of them are formed causing worse temporal resolution. Shorter segments give
us a finer resolution in time. Choosing the optimum segment length depends on a
practical application. If time domain information is to be more accurate, then shorter
segment should be applied and the other way around. Dividing speech signal into
segments is shown in Fig. 6.3.

Denoted byM is the number of the samples of the segment and by L is the number
of intervals. Therefore, the sequence of samples of the analyzed phoneme short-time
segment is as follows:

xl � [xl(1), xl(2), . . . , xl(M )]T (6.2)

where the index l � 1 . . . L.
The overview of processing steps for speech segments is given in the next section.

6.4 Speech Information Retrieval Scheme

One of the main research issues is the extraction of significant information from the
speech signal. In this chapter two feature extractionways are considered. The first one
is based on the speech analysis employing acoustic feature extracting, followed by
selected soft computing methods, as shown in Fig. 6.4. The speech signal is divided
into L segments, and a feature vector (a vector ofK acoustic coefficients) is extracted
from each of these segments.
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Fig. 6.4 Speech signal information retrieval based on recognition based on feature extraction and
machine learning approach

Fig. 6.5 Speech signal information retrieval based on a deep learning approach

Features flk(1 ≤ l ≤ L, 1 ≤ k ≤ K) presented in Fig. 6.4 are derived from the
MIR domain and are given in more detail in Sect. 6.5. It is shown in the literature
that additional features are often found by computing the first and second order
derivatives and by applying linear regression over 3–7 consecutive frames [15]. In
Fig. 6.4, it is proposed to calculatemean and variance values of the features extracted.

In the further part of this chapter deep learning is considered without actually
speech feature extracting. Deep learning has shown good results in various speech
analysis applications such as speech recognition, emotion recognition, and others [1,
3, 4]. Inspired by the success of this approach, we propose a method of speech signal
preparation for deep learning. An illustration of the application of a deep learning
approach for phoneme signal is given in Fig. 6.5.

As seen in Fig. 6.5, Deep Neural Network models learn features directly from the
spectrogram. The preparation of spectrogram for deep learning approach is described
in more detail in Sect. 6.6.
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6.5 Feature Extraction

As alreadymentioned, an essential step of speech phoneme analysis is feature extrac-
tion. The focus in this paper is on themost frequently used acoustic features borrowed
from the music domain. In this section, we outline the application of these features
for the speech signal.

6.5.1 Time Domain Features

Time domain features reflect the variation of signal amplitude with time. The most
known time domain features are Temporal Centroid (TC), ZeroCrossingRate (ZCR),
Root Mean Square (RMS). Since these parameters are commonly used in speech and
music signal analysis and are widely presented in the rich literature [6, 13], therefore
they are only mentioned here. Contrarily, in this section several dedicated parameters
proposed by Kostek and her coworkers [14] are to be further discussed.

The entire set of dedicated parameters consists of 8 parameters. The first three
parameters correspond to the number of samples exceeding levels: r1, r2, r3—equal
to RMS, 2 × RMS, 3 × RMS and are defined by formula:

pn � count(samples_exceeding_rn)

length(x(k))
(6.3)

where n = 1, 2, 3 and x(k) represent the analyzed signal fragment.
In the second step, the parameter called the ‘peak toRMS’ ratio is determined. This

parameter is calculated as the mean value of the ratio calculated in 10 sub-frames.
The last group of dedicated parameters is related to the observation of the threshold

crossing rate (TCR). The calculation procedure consists in computing number of
signal crossings in relation to zero, r1, r2, and r3 values. Parameters contained in
this group are the values resulting from the entire frame analysis.

An example of the given parameters for phonemes /a/ and /l/ is shown in Table 6.1.

Table 6.1 Time domain features for phonemes /a/ and /l/

Fraction of samples pn Peak to RMS ratio TCR values for the entire frame

/a/ 0.28740
0.07060
0.00000

2.81140 0.03320
0.01680
0.00890
0.00000

/l/ 0.32570
0.05050
0.00100

3.22070 0.01380
0.01180
0.00590
0.00069
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6.5.2 Frequency Domain Features

In the frequency domain, features are most often derived from the Fourier spectrum.
We should note that the edges of data become a step change what causes an appear-
ance of noise after the segmentation procedure. In order to reduce noise, a window
function is used. By multiplying the signal by the window function, we obtain a
smooth transition between repeated intervals because this function returns zero at
both edges. In addition, the window function makes the windowed Fourier transform
data appearing more periodic than they really are. There are many window functions
with different shapes proposed. The window functions that are commonly employed
in the digital signal processing are described by Prabhu [16].

As a result of thewindowprocedure, a significant part of the signal data is lost. The
situation can be improved by making the segments overlap. In the work by Heinzel
et al. [17] it is mentioned, that the segment overlap depends on the window function
and in addition according to requirements of the analysis.

In conclusion, we can state that in the process of applying the Fourier transform
to short signals, it is very important to set correctly processing parameters such as
the window type, window size, and the overlap ratio. In this section, examples are
generated using the following parameters: the input signal is segmented with a frame
of 1024 samples, and then for each frame the Hamming window is chosen. We use
an overlap of 50%. It should be remembered that the spectrum resolution of a 1024
point frame at 48 kHz is 47 Hz.

According to the Nyquist-Shannon sampling theorem, the sampling rate of f s kHz
allowsus for reconstructing frequencies up to fs/2kHz.To convert audio data from the
time to the frequency domain the Discrete Fourier Transform is applied. TheDiscrete
Fourier transform of the phoneme lth short-time segment xl(n) (n � 1, . . . , M ) is
computed according to the formula:

Xl(k) �
M∑

m�1

xl(m)w(m)e(−2π j)(m−1) k−1
M (6.4)

where Xl(k)(k � 1, . . . ,MFT ) are Fourier transform coefficients,MFT—the number
of Fourier transformcoefficients (MFT ≥ M ,MFT is an integer power of 2),w(m)—is
the window function.

Resulting from Eq. (6.4) is a sequence of complex numbers. In order to obtain
the magnitude spectrum, the following formula is used:

|Xl(k)| � 1

MFT

√
(Xl(k))2re + (Xl(k))2im. (6.5)

The phase in radians is given as:

� Xl(k) � atan

(
((Xl(k))im
((Xl(k))re

)
. (6.6)
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Fig. 6.6 The power spectrum of a short-time segment of the vowel /a/

Thepower spectrumPl(k) is defined as a square of theFouriermagnitude spectrum

PSl(k) � |Xl(k)|2. (6.7)

An example of the power spectrum of the short-time segment (length of segment
1024 samples) is given in Fig. 6.6.

The short-time power spectrum is used in this section to describe the speech signal
in term of flatness, envelope, and central moments such as centroid, spread, skewness
and kurtosis.

6.5.2.1 Spectral Shape Parameters

Spectral shape parameters are derived from the central moments. Often they are
computed from the magnitude spectrum [18, 19]. We are considering features that
are based on the MPEG-7 audio content description standard [20, 21]. By this stan-
dard, the equations of spectral shape parameters are defined on log-frequency power
spectrum.

Audio Spectral Centroid (ASC) provides a measure of the center of mass of the
short-time power spectrum. It is calculated as the first order central moment. The
formula is given below:

ASC �
∑MFT /2

i�1 log2
(

f (i)
1000

)
PSl(i)

∑MFT /2
i�1 PSl(i)

(6.8)

where PSl(i) is the power spectrum of lth short-time segment of the phoneme,
f (i)—the frequency corresponding to bin i,MFT—the number of Fourier transform
coefficients.
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As we see from Eq. (6.8), the measures are based on an octave frequency scale
centered at 1 kHz. In order to simplify calculation of the remaining three moments,
we need to define an auxiliary formula:

w(i) � PSl(i)∑MFT /2
i�1 PSl(i)

. (6.9)

Audio Spectral Spread (ASSp) corresponds to the root square of the second order
central moment of the spectrum and is defined by the formula:

ASSp �
√

∑MFT /2

i�1
[log2

(
f (i)

1000

)
− ASC]2w(i) (6.10)

with the Audio Spectral Centroid as defined by Eq. (6.8). As we see from Eq. (6.10),
Audio Spectral Spread is the standard deviation of the power spectrum around the
centroid. This means that a low ASSp value shows that the spectrum is concentrated
around the centroid. In the case of a high value of ASSp, the power of spectrum is
distributed across a wider range of frequencies.

Audio Spectral Skewness (ASSk) is the third order central moment divided by
the third power of the standard deviation (i.e. Audio Spectral Spread) and is given
by the formula:

ASSk �
∑MFT /2

i�1 [log2
(

f (i)
1000

)
− ASC]3w(i)

ASS3
(6.11)

Equation (6.11) defines the spectral symmetry. In the case of skewness coefficient
equals zero, a spectrum power distribution is symmetrical around its mean value.

Accordingly, the definition of Audio Spectral Kurtosis (ASK) is as follows:

ASK �
∑MFT /2

i�1 [log2
(

f (i)
1000

)
− ASC]4w(i)

ASS4
(6.12)

The spectral kurtosis defines the flatness of spectrum distribution compared to the
Gaussian distribution [6].

Examples of Spectral shape parameters and their variance values for the selected
vowel, semivowel and consonant phonemes are given in Tables 6.2 and 6.3, respec-
tively.

Form Tables 6.2 and 6.3 we see to what extent spectral shape parameters and their
variance values differ for different types of phonemes.
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Table 6.2 Spectral shape
parameters

Phoneme ASC ASSp ASSk ASK

/a/ 0.157 1.790 1.281 3.677

/u/ 1.834 2.193 −0.778 3.755

/k/ 2.911 1.753 −1.842 6.805

/s/ 3.043 1.612 −2.003 7.847

/c/ 3.114 1.453 −1.841 7.309

/t/ 2.761 1.796 −1.541 5.582

Table 6.3 Variance values of
spectral shape parameters

Phoneme ASC ASSp ASSk ASK

/a/ 0.027 0.028 0.104 0.791

/u/ 1.250 0.345 0.872 8.209

/k/ 0.033 0.071 0.068 1.724

/s/ 0.013 0.055 0.024 0.422

/c/ 0.004 0.007 0.008 0.383

/t/ 0.279 0.208 0.283 7.091

6.5.2.2 Spectral Flatness Measure

The Spectral Flatness lets us separate voiced and unvoiced speech. The spectral
flatness values lie in the interval between 0 and 1. For the unvoiced signal such as
white noise, this value is equal to 1. The more signal is voiced, the Spectral Flatness
is closer to 0. For example, for the sinusoidal signal, this value is equal to 0. Often,
the Spectral Flatness is applied to voice activity detection [22, 23].

The traditional definition of the Spectral Flatness is the ratio of the geometric
mean and arithmetic mean of the magnitude spectrum. In this chapter, we consider a
concept of the Spectral Flatness Measure (SFM), i.e., Spectral Flatness calculated on
a sub-band level, as it is used in the MPEG7 standard [20, 21]. The Spectral Flatness
Measure is defined as an averaged value for K frequency bands Pk , (1 ≤ k ≤ K).
The Spectral Flatness Measure in a single band k is calculated by the formula:

SFM (k) �
[∏Pk+1

i�Pk
PSl(i)

]1/N

1
Nsb

∑Pk+1
i�Pk

PSl(i)
(6.13)

where:

Nsb � Pk+1 − Pk + 1 (6.14)

PSl(i)—the power spectrum of lth short-time segment of the phoneme. The calcu-
lation procedure of the frequency band edges is presented by the following pseudo-
code, shown as Algorithm 1.
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The comments on Algorithm 1:

• The value of the lower edge is equal to 250 Hz.
• The multiplication factor of spectral resolution must be of the interval [−4, 3],
which means ranging from 1/16 of an octave to 8 octaves [20].

Examples of Spectral Flatness Measure values corresponding to the octave fre-
quency bands for phonemes /a/ and /l/ are given in Fig. 6.7.

For the example presented in Fig. 6.7, the number of frequency bands K = 18 and
a resolution of a quarter-octave were chosen.

As mentioned above, the Spectral Flatness Measure is defined as a value based
on mean of values obtained in the frequency bands. Examples of Spectral Flatness
Measure values for the chosen vowel, semivowel and consonant phonemes are given
in Table 6.4.

Table 6.4 The SFM values for different phonemes

Phoneme SFM Phoneme SFM Phoneme SFM

/e/ 0.5703 /l/ 0.7536 /p/ 0.8048

/a/ 0.6192 /j/ 0.7739 /g/ 0.8595

/r/ 0.689 /k/ 0.7741 /s/ 0.8998

/i/ 0.7151 /m/ 0.7963 /f/ 0.8998
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Fig. 6.7 The SFM values for phonemes /a/ and /l/

Again, from Table 6.4 we see differences in Spectral Flatness Measure values
for different phonemes, which may be helpful in a discernibility analysis between
phonemes.

6.5.2.3 Audio Spectrum Envelope

Audio Spectrum Envelope (ASE) gives us a compact representation of the power
spectrum of the speech signal. Audio Spectrum Envelope as well as Spectral Flat-
ness Measure is also considered on a sub-band level. The bands are logarithmically
distributed corresponding to a specific octave frequency. The frequency band edges
Pk(1 ≤ k ≤ K) are calculated by Algorithm 1. The main difference is that the value
of the lower edge, which is equal to 62.5 Hz.

Audio Spectrum Envelope is calculated as the sum of the power spectrum inside
frequency bands. According to the MPEG-7 standard, ASE consists of a coefficient
representing the power spectrum between 0 Hz and the low edge (i.e. between 0 and
P1), a number of coefficients representing power spectrum in bands between low
and high edges (i.e. between P1 and PK ), and a coefficient representing the power
spectral density above the high edge (i.e. between PK and fs/2, where fs is sampling
frequency). With that in mind, ASE can be calculated by the following formula:
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Fig. 6.8 The ASE comparison of two kinds of phonemes: a vowel /a/ and b the semivowel /l/

ASE(k) �

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑P1

i�0
PSl(i), k � 1

∑Pk

i�Pk−1
PSl(i), 2 ≤ k ≤ K + 1

∑fs/2

i�Pk+1
PSl(i), k � K + 2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6.15)

where:PSl(i) is the power spectral density of lth short-time segments of the phoneme,
k—the frequency band number (1 ≤ k ≤ K + 2).

As we see from Fig. 6.8, Audio Spectrum Envelope highlights significant differ-
ences between phonemes, which are not so well visible by simply comparing power
spectrum of these phonemes.

6.5.3 Mel-Frequency Cepstral Coefficients

Mel-FrequencyCepstral Coefficients (MFCCs) are themost commonly used acoustic
features in speech processing.MFCCswere introduced byMermelstein [24] as a tool
for speech recognition, and these features are successfully employed in both speech
and music areas [25].
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Fig. 6.9 The process of
MFCCs extraction

The short-
time power 
spectrum

Filter
bank

Log ∣.∣ DCT MFCC 
coefficients

TheMFCCs represent the short-term power spectrum of sound and are often used
for speech and speaker recognition [5, 26]. The MFCCs are also employed in speech
emotion recognition process [2].

The process of MFCC coefficients extraction is shown in Fig. 6.9.
Aswe see fromFig. 6.9, theMFCC feature extraction process begins with filtering

the short time power spectrum. The triangle bandpass filters that simulate character-
istics of a human ear are used. The filters are spread over the frequency range from
the lower to the upper frequency. Many studies show that the pitch is linear in low
frequencies and logarithmic in high frequencies.

Denote the boundarypoints of thefilter bankby f [n]. Let fl be the lowest frequency,
then the first boundary point f [0] � fl . The boundary points in low frequencies are
defined by the formula:

f [n] � f [n − 1] + lb (6.16)

where lb—the length of the linear band, 1 ≤ n ≤ Hl + 1,Hl—the number of linear
bands.

As we see from Eq. (6.16), the upper boundary of the frequency ranges, above
which the scale becomes logarithmic, is defined by the number of linear bands and
by their length. The boundary points in high frequencies are defined by the formula:

f [n] � Mel−1

(
Mel(Hl × (lb + 1)l) + n

Mel(fh) − Mel(Hl × (lb + 1))

M + 1

)
(6.17)

where

Mel � 2595log

(
1 +

f

700

)
, (6.18)

Hl + 1 < n ≤ H + 1,H � Hl +Hnl,Hnl—the number of nonlinear bands, fh—the
highest frequency of the filter bank.

Logmagnitude is calculated in order to obtain the real cepstrum.The energies from
filters to cepstral coefficients are converted by Discrete Cosine Transform (DCT).
DCT transforms the frequency domain into a time-like domain called quefrency
domain.

For speech recognition task usually first 12–13 coefficients are used, for the
speaker recognition—20 coefficients. Examples of the first 20 MFCCs and vari-
ance of these values are given in Figs. 6.10 and 6.11 for the phonemes /a/ and /l/
respectively.
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Fig. 6.10 MFCC values for the phonemes /a/: a the first 20 MFC coefficients and b variance of the
MFC coefficients

Fig. 6.11 MFCC values for the phonemes /l/: a the first 20 MFC coefficients and b variance of
MFC coefficients
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Fig. 6.12 Delta derivatives of the first 20 MFC coefficients for the phoneme /a/: a the first-order
dynamic coefficients (DMFCC), b the second-order dynamic coefficients (DDMFCC)

In examples given in Figs. 6.10 and 6.11, the number of linear bands Hl � 13.
The fixed length of the linear band lb �66.67 Hz was used. This value was chosen
to set the threshold between the linear and logarithmic scale close to 1000 Hz as is
often used in the literature [27].

Often the combination of MFCC coefficients are used together with its delta
derivatives (DMFCC and DDMFCC) in various speech processing tasks [28]. The
first-order dynamic coefficients (DMFCC) are calculated from the static MFCCs
using the following regression formula:

dt �
∑N

n�1 n(ct+n − ct−n)

2
∑N

n�1 n
2

(6.19)

where c is nth cepstral coefficient calculated at time t. N is the regression window
size. The second-order dynamic coefficients (DDMFCC) can be calculated by the
same formula (6.19), where c is denoted as the first-order dynamic coefficients.

Examples of delta derivatives are given in Fig. 6.12 for the phoneme /a/ and in
Fig. 6.13 for the phoneme /l/.

Data presented in Figs. 6.12 and 6.13 were obtained by employing Eq. (6.20),
where the regression window size N � 2.
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Fig. 6.13 Delta derivatives of the first 20 MFC coefficients for the phoneme /l/: a the first-order
dynamic coefficients (DMFCC), b the second-order dynamic coefficients (DDMFCC)

6.6 Data Preparation for Deep Learning

As shown earlier, the speech signal features were extracted manually. In the deep
learning approach, useful features are extracted automatically by the process—e.g.
directly from the spectrum image. In this section we propose to use spectrogram
images as the input dataset of Deep Neural Network (DNN).

A spectrogram is the visual representation of time and frequency domain features
on one level, which has found a wide use in the speech processing [29, 30]. A
spectrogram is constructed from a series of short-time Fourier transforms, which
are computed along the time domain waveform of the analyzed phoneme. It should
be emphasized that the phoneme signal is divided into short-time segments and the
window function is applied as in the case of the calculation procedure of acoustic
features described earlier. Depending on whether power or phase of each frequency
within a given time frame is shown, two types of spectrogram are used: power
spectrogram and phase spectrogram.

A review of the literature shows that the power spectrogram is often used as the
phase spectrogram. Within each short-time Fourier segment log energy is calculated
in the power spectrogram and then the obtained values of energy are converted into
grade scale of color, which is positioned at time and frequency.

We can state that a spectrogram depends on the following properties of the Fourier
transform:
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Fig. 6.14 The graphical representation of narrowband a phoneme /a/, c phoneme /l/ and wideband
b phoneme /a/, d phoneme /l/ spectrograms

• The length of the segment;
• The overlap between contiguous segments;
• The shape of the window applied to each segment.

The properties mentioned above determine the form of the spectrogram. Spec-
trogram showing the broad spectral envelope is called wideband spectrogram, while
the spectrogram using narrow filter bandwidth is identified as narrowband.

The bandwidth of the narrowband spectrogram filters is usually between 30 and
50 Hz, while the bandwidth of the wideband spectrogram filters is 300 and 500 Hz
[31]. We must pay particular attention to the relationship between the bandwidth
and the length of the segment. An example of the narrowband and wideband power
spectrograms for phonemes /a/ and /l/ is shown in Fig. 6.14.

The top plots of Fig. 6.14 are the narrowband spectrogram with a window size
of 512 samples, while the bottom plots are a wideband spectrogram with a window
size of 128 samples. The Hamming window and 50% overlap are used.

As seen from Fig. 6.14, the spectrogram is a two-dimensional graph, with the
third dimension represented by the degree of darkness. Time is shown along the
x-axis, frequency along the y-axis, while the color indicates intensity of the speech
signal against time and frequency. In grayscale the range of shades of gray refer
to intensity, i.e. darker shade indicates larger value. Comparing the top and bottom
plots of Fig. 6.14, one can see that the power spectrogram provides an analysis
of the frequency components of the signal in terms of its harmonics or formants.
The harmonic structure of spectrogram is obtained in the case of the narrow filter
bandwidth, and the wideband spectrogram reflects formants of signals.
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The power spectrogram uses the amplitude values of the Fourier transform but
ignores information of the phase values. However, Leonard [30] shows that the phase
values are also useful in signal analysis. This author presented an original approach
for representing the phase spectrogram. In addition, he defines the term “frequency
spectrogram”, inwhich the time-frequency representation is obtained from the phase.

For the purpose of searching for the best phoneme classifier in terms of its accu-
racy, a deep learning algorithm based on convolutional neural networks (CNNs) and
spectrograms with the frame length of 1024 samples and 75% overlap and Hamming
windowing as the network input were applied. For the analysis only 128 of 512 com-
ponents were used in order to restrict the analysis bandwidth to the most important
frequency range for speech processing.

Calculations were performed for 936 samples originating from 9 speakers con-
taining phonemes /l/ assigned to two groups: dark and clear. Therefore, an input
bandwidth was up to 5512.5 Hz. This results in varying number of pixels for differ-
ent spectrograms, but to train a CNN, the input dimensions of the neural network
should be the same. That is why, unifying the size of each spectrogram had to be
performed. Two methods were employed for the purpose of comparison: padding
all shorter sequences with zeros to obtain spectrograms of the length (in the time
domain) equal to the length of the longest example and applying linear interpolation
to the same length. The resulting length of spectrograms was equal to 143.

Also, for the same reason, spectrograms based on MFCC coefficients (which we
would refer to as MFCCgrams) were calculated and their dimensions were unified
in the same manner as for spectrograms. The resulting length of MFCCgrams was
equal to 73.

For each example 80 MFCC coefficients were calculated. Both types of spectro-
grams and MFCCgrams were normalized by subtracting the mean form the data and
dividing by the standard deviation (z-normalization). A sample visualization of each
stage of preprocessing is shown in Fig. 6.15.

Fig. 6.15 Graphical representation of parameters calculated for an example of a dark /l/ phoneme:
a and c spectral and MFCC coefficients padded with a minimum value present in original data are
shown, b and d represent original data, which were interpolated in order to match their length to
the length of the longest sample present in the database
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6.7 Experiment Results

Examples of application of machine learning methods to speech phoneme classifi-
cation are given in this section. For this purpose, words recorded as wav audio file
with the following parameters: PCM 48 kHz, 16 bit are used. The recorded signals
are segmented into phonemes or allophones, the latter ones divided into ‘dark’ and
‘clear’ /l/, and then the feature vector containing the above described parameters is
extracted.

6.7.1 Feature Vector Applied to Vowel Classification

The first part of this research study concerns vowel (/a/, /e/, /i/, /o/, /u/) classifi-
cation. A list of 209 words containing these phonemes was compiled. Each word
was uttered by four speakers. An experiment was performed on vowel phonemes
extracted from the recorded words. 70% of vowels sounds is used for training, 30%
ones for testing. The starting point of the analyses was the parameterization of all
considered phonemes. The parameters described in Sect. 6.5 are extracted. Then, the
extracted parameters are normalized. It was decided to normalize the values to the
range between 0 and 1. In order to reduce feature space dimensionality feature scor-
ing algorithm based on MI (Mutual Information) criteria [32] is used. In generally,
MI between two random variables X and Y can be defined by the formula:

MI �
∑

x∈X

∑

y∈Y
p(y, z) log

(
p(y, z)

p(y)p(z)

)
, (6.20)

where p(·) denotes the probability of the state.
In this experiment we have two type of variables: features and labels of these. The

labels are integer, meanwhile features are not. In order to make Eq. (6.20) applicable,
we have to quantize features. In this research the quantization approach proposed by
Pohjalainen et al. [33] is used. A feature scoring algorithm gives us a score value
for each feature to reflect its usefulness. 15 features with the highest scores were
selected for further processing. These parameters are the variance of Audio Spectral
Skewness and Audio Spectral Kurtosis, 3th and 5th variances of MFCC coefficients,
1st, 2nd, 4th, 5th and 10th delta derivatives of MFCC, 2nd, 3rd, 4th, 6th, 7th and 8th
delta delta derivatives of MFCC.

A support vector machine (SVM) algorithm [34, 35] is applied as a classifier for
this part of the experiment. The overall classification accuracy for vowel phonemes is
0.86. The accuracy of different vowel phonemes is shown in Fig. 6.16, where Multi-
Class Confusion Matrix is depicted. The obtained results show that it is possible to
discern between vowels by means of a machine learning algorithm with a sufficient
accuracy.
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Fig. 6.16 The vowel
phonemes classification
accuracy

Table 6.5 kNN accuracy results for various sets of features

TDF +
MFCC +
SFM (%)

MFCC +
SFM +
ASE2 (%)

MFCC +
SFM (%)

TDF +
MFCC +
SFM +
DDMFCC
(%)

MFCC +
SFM +
ASEV (%)

MFCC +
SFM + SSP
(%)

MFCC +
SFM +
DMFCC +
DDMFCC
(%)

92.27 92.23 92.19 92.18 92.12 92.04 92.02

6.7.2 Feature Vector Applied to Allophone Classification

In order to show that it is also applicable to employ machine learning methods to
automatic classification of allophones, in the second part of the experiment, the study
is performed in the context of the allophones of the phoneme /l/. For this purpose,
a list of ‘dark’ and ‘clear’ /l/ allophones was created [36, 37]. To recall: ‘dark’ /l/
is articulated with the back of the tongue raised towards the soft palate and occurs
word-finally or before another consonant, contrarily the ‘clear’ /l/ onset is voiceless
and voicing starts at the end of the /l/ articulation. Sounds of allophones extracted
from 1030words uttered by nine speakers were considered in this experiment. The k-
Nearest Neighbor (kNN)method [34, 35] was applied to the allophone classification.

Various sets of features were tested to achieve the best performance of the method
used. In order to select the best parameter sets, the Decision Tree algorithm [38] was
used. The results for sets of features, which resulted in the highest accuracies are pre-
sented in Table 6.5. The following abbreviations are used in Table 6.5: TDF—time
domain features, SSP—spectral shape parameters, SFM—spectral flatness measure,
ASE—mean of audio spectrum envelope, MFCC—Mel-Frequency Cepstral Coeffi-
cients, DMFCC—delta derivatives ofMFCC, andDDMFCC—delta delta derivatives
of MFCC.

As seen from Table 6.5, the optimized feature vectors enable to return high accu-
racies of the allophone classification.
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Fig. 6.17 Structure of the first network (CNN1) and the second one (CNN2)

6.7.3 Convolutional Neural Networks Applied to Allophone
Classification

As already mentioned, another approach to the recognition of the type of phonemes
consisted of using convolutional neural networks based on spectrograms as an input
data. Such an approach is widely used for the purpose of computer vision classi-
fication with very good results [7]. Two architectures of CNNs were used for the
purpose of classification. Experiments were performed using DGX Station. The net-
work structure is depicted in Fig. 6.17.

The first network (CNN1) had only one convolutional layer and generated 16 fea-
tures, whichwere then processed by a simple feed-forward neural network consisting
of two layers: 32 neurons with rectified linear unit (ReLu) activation function and 2
output neurons with softmax activation function. The output was encoded in one-hot
manner, therefore each output was associated with one of the two analyzed classes of
objects. The final decision on classification was made by choosing a class associated
with an output of a greater value. As a loss function a binary cross-entropy was cho-
sen. For the learning rate optimizer the Adam algorithm, introduced by Kingma and
Ba, was used [39]. The learning rate was set in both cases to 0.001, beta_1 and beta_2
parameters were set to 0.9 and 0.999, respectively. Calculations were performedwith
the use of Keras Python deep learning library with TensorFlow library as a back-end
[40, 41].
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Table 6.6 CNN classification accuracy results for all speakers

Network Parameters

Spectral MFCC

Padding Interpolation Padding Interpolation

Mean
(%)

Std. dev.
(%)

Mean
(%)

Std. dev.
(%)

Mean
(%)

Std. dev.
(%)

Mean
(%)

Std. dev.
(%)

CNN1 96.37 0.44 97.24 0.58 97.11 2.00 96.69 0.36

CNN2 96.12 2.20 96.36 2.41 97.68 0.99 97.19 0.36

The training phase was performed with the use of 400 randomly chosen examples
of the input data associated with both considered phoneme classes. The remaining
536 examples were used as a test set at the end of each efficiency test iteration.
Both CNN networks were tested with the use of each of four datasets, namely con-
sisting of either spectral or MFCC-based data (i.e. spectrograms/ MFCCgrams) and
padding/interpolation preprocessing of these data. 1000 trials of training and tests of
each pair of the network and a set of parameters were performed (Table 6.6).

Accuracies obtained for both network architectures are higher than for the
approach based on pre-selected features. This occurs even in the case of a sim-
pler network CNN1. For the more complicated structure of the network a slight
improvement of the performance was achieved for MFCCgrams, however the stan-
dard deviation of the accuracy in such a case is nearly twice larger than in the case
of the best case scenario for CNN1. In the case of CNN1 interpolation of spectral
coefficients allowed for improvement of the achieved, results, which was not the case
for CNN2, where the best performance was found for zero-padded MFCCgrams.

6.7.4 Convolutional Neural Networks Applied to Vowel
Classification

Analogous experiment was performed for both architectures of CNN in context of
identification of vowels. Only modifications in this case was modification of the last
layer of each neural network to support five one-hot outputs associated with five
possible vowels and the number of training epochs which in this case was set to 20.
Results of training is depicted in the form of confusion matrices in Figs. 6.18 and
6.19.

In the case of CNN1 the most problematic vowels were ‘O’ and ‘U’, which were
classes that contained the least number of examples available in the dataset. However,
CNN2 was able to overcome this problem and achieve 68% classification accuracy.
It is also worth noting that the training set in the case of both CNNs consisted of
only 40% of the overall number of available examples and the rest of them was used
as a test set. In the case of both networks preprocessing employing the interpolation



6 Speech Analytics Based on Machine Learning 153

Fig. 6.18 Confusion matrices for tests performed for CNN1 with four types of the input data
preprocessing

technique of the input parametersworks better than padding the inputwith zeros.Also
the use of MFCC as the input type of features permits to obtain higher accuracies.

6.8 Conclusions

In this chapter phoneme/allophone signal is considered as an acoustic signal, which
can be described as a set of features. To obtain useful features, we apply two ways of
data preparing. In the first approach, feature vectors are extracted, and then machine
learning method is used, while in the second approach, the speech signal is converted
into images and DNN is employed. To deal with the phoneme/allophone classifica-
tion, features, which are widely used in Music Information Retrieval are adapted to
the short speech signal elements, such as phonemes and allophones. The formulas
and calculation algorithms of these features were formulated for that purpose.

In order to test whether features coming fromMIR are useful for speech analytics,
two experiments were performed. First, the created feature vector and SVM algo-
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Fig. 6.19 Confusion matrices for tests performed for CNN2 with four types of input data prepro-
cessing

rithm along with the feature scoring algorithm based on MI criteria were applied to
the vowel classification. The overall classification accuracy for five different vowel
phonemes (/a/, /e/, /i/, /o/, /u/) was equal to 86%.

In the second experiment the feature vector was applied to classification of the
phoneme /l/ allophones. The kNN method was applied as a classifier. In order to
select the best parameter sets, the Decision Tree algorithm was used. The highest
accuracy (92.27%) has been achieved for a set of the following features: TDF,MFCC
and SFM.

For the purpose of searching for the best phoneme/allophone classifier in terms
of its accuracy, deep learning, based on convolutional neural networks (CNNs), was
applied. Spectrograms and MFCCgrams were used as the network input. Also, two
architectures of CNNs were used for the purpose of classification. The first network
had only one convolutional layer and generated 16 features, while the second one
had two convolutional layers, which generated 20 and 40 features respectively.

The CNN applied to the allophone /l/ classification outperformed the classical
machine learning approach. The best result (97.68%) was achieved in the case of the
network with two convolutional layers for zero-padded MFCCgrams.
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Similarly, an experiment with CNNs was performed for the vowel classification.
The best result (84.6%) was achieved in the case of the network with two convolu-
tional layers for the interpolatedMFCCgrams, which was nearly as good as the result
of the SVM andMI approach. However, one should take into account that the amount
of data available for this experiment was not sufficiently large for CNNs. Therefore,
in the future experiments the dataset is to be expanded, moreover additional corpora
are planned to be utilized (e.g. [42]).
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of the ISMIS 2011 contest: music information retrieval. Found. Intell. Syst. 715–724 (2011)

15. Gold,B.,Morgan,N., Ellis,D.: Speech andAudioSignal Processing: Processing andPerception
of Speech and Music, 2nd edn, 688 pp. Wiley, Inc., (2011)

16. Prabhu, K.M.M.: Window Functions and Their Applications in Signal Processing. CRC Press
(2013)

17. Heinzel, G., Rudiger, A., Schilling, R.: Spectrum and spectral density estimation by the dis-
crete Fourier transform (DFT), including a comprehensive list of window functions and some
new flat-top windows. Internal Report, Max-Planck-Institut fur Gravitations physik, Hannover
(2002)

18. Gillet, O., Richard, G.: Automatic transcription of drum loops. In: IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing, (ICASSP ‘04) (2004)

19. Hyungsuk, K., Heo, S.W.: Time-domain calculation of spectral centroid from backscattered
ultrasound signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(6) (2012)

20. Hyoung-Gook, K., Moreau, N., Sikora, T.: MPEG-7 Audio and Beyond: Audio Content Index-
ing and Retrieval. Wiley, Hoboken (2005)

21. Manjunath, B.S., Salembier, P., Sikora T.: Introduction to MPEG-7: Multimedia Content
Description Interface. Wiley (2002)

22. Ma, Y., Nishihara, A.: Efficient voice activity detection algorithm using long-term spectral
flatness measure. EURASIP J. Audio, Speech, Music Process 1–18 (2013)

23. Moattar, M.H., Homayounpour, M.M.: A simple but efficient real-time voice activity detec-
tion algorithm. In: 17th European Signal Processing Conference (EUSIPCO 2009). Glasgow,
Scotland, Aug 24–28 (2009)

24. Mermelstein, P.: Distance measures for speech recognition, psychological and instrumental.
Pattern Recognition and Artificial Intelligence, pp. 374–388. Academic, New York (1976)

25. Logan, B.: Mel frequency cepstral coefficients for music modeling. In: Proceedings of 1st
International Symposium onMusic Information Retrieval (ISMIR). Plymouth, Massachusetts,
USA (2000)

26. Nijhawan, G., Soni, M.K.: Speaker recognition usingMFCC and vector quantisation. J. Recent
Trends Eng. Technol. 11(1), 211–218 (2014)

27. Wang, Y., Lawlor, B.: Speaker recognition based on MFCC and BP neural networks. In: 28th
Irish Signals and Systems Conference (2017)

28. Ahmad, K.S., Thosar, A.S., Nirmal, J.H., Pande, V.S.: A unique approach in text independent
speaker recognition usingMFCC feature sets and probabilistic neural network. In: 2015 Eighth
International Conference on Advances in Pattern Recognition (ICAPR), 4–7 Jan 2015, pp. 1–6
(2015)

29. Dennis, J., Tran, H.D., Li, H.: Spectrogram image feature for sound event classification in
mismatched conditions. Signal Process. Lett. IEEE 18(2), 130–133 (2011)

30. Leonard, F.: Phase spectrogram and frequency spectrogram as new diagnostic tools. Mech.
Syst. Signal Process. 21(1), 125–137 (2007)

31. Lawrence, J.R., Borden, G.J., Harris K.S.: Speech Science Primer: Physiology, Acoustics, and
Perception of Speech, 6th edn, 334 pp. Lippincott Williams & Wilkins (2011)

32. Steuer, R., Daub, C.O., Selbig, J., Kurths, J.: Measuring distances between variables by mutual
information. In: Innovations in Classification, Data Science, and Information Systems, pp.
81–90 (2005)

33. Pohjalainen, J., Rasanen, O., Kadioglu, S.: Feature selection methods and their combinations
in high-dimensional classification of speaker likability, intelligibility and personality traits.
Comput. Speech Lang. 29(1), 145–171 (2015)

34. Manocha, S., Girolami, M.A.: An empirical analysis of the probabilistic K-nearest neighbour
classifier. Pattern Recogn. Lett. 28, 1818–1824 (2007)

35. Palaniappan, R., Sundaraj, K., Sundaraj, S.: A comparative study of the SVMand k-nnmachine
learning algorithms for the diagnosis of respiratory pathologies using pulmonary acoustic
signals. BMC Bioinf. 15, 1–8 (2014)



6 Speech Analytics Based on Machine Learning 157
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Chapter 7
Trends on Sentiment Analysis over Social
Networks: Pre-processing Ramifications,
Stand-Alone Classifiers and Ensemble
Averaging

Christos Troussas, Akrivi Krouska and Maria Virvou

Abstract Technology advancements gave birth to social networks during the last
decade. Many people tend to increasingly use them in order to share their personal
opinion on current topics of their everyday life as well as express their emotions
about situations in which they are interested. Hence, the emotions that are expressed
in social networks can be positive, negative or neutral. To this direction, the anal-
ysis of people’s sentiments has drawn the attention of many scientists worldwide
and offers a fertile ground for increasing research. Furthermore, a social network
that is adopted by an ever growing percentage of people is Twitter. Twitter is an
online news and social networking service where users post and interact with mes-
sages; such messages conceal people’s feelings and sentiments. Therefore, Twitter
can be seen as a source of information and holds a vast amount of data that can
be exploited for sentiment analysis research. In view of above, the purpose of this
paper is to provide a guideline for the decision of optimal pre-processing techniques
and classifiers for sentiment analysis over Twitter. In this context, three well-known
Twitter datasets (OMD, HCR and STS-Gold) were used and a set of experiments
was conducted. In particular, firstly, an extended comparison of sentiment polarity
classification methods for Twitter text and the role of text preprocessing in sentiment
analysis are discussed in depth. Secondly, four well-known learning-based classifiers
(Naive Bayes, Support Vector Machine, k-Nearest Neighbors and C4.5) have been
evaluated based on confusionmatrices. Thirdly, themost common ensemblemethods
(Bagging, Boosting, Stacking and Voting) are examined and compared to base clas-
sifiers’ results. Finally, a case study concerning the application of Twitter sentiment
analysis in an e-learning context is presented. The main result of the utilization of
the Twitter-based learning application is that the exploitation of students’ emotional
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states can be used to enhance adaptivity in the learning content as well as deliver
recommendations about activities and provide personalized assistance. Concerning
data pre-processing, the experimental results demonstrate that feature selection and
representation can affect the classification performance positively. Regarding the
selection of the proper classifier, the superiority of Naive Bayes and Support Vector
Machine, regardless of datasets, is proved, while the use of ensembles of multiple
base classifiers can improve the accuracy of Twitter sentiment analysis.

Keywords Sentiment analysis · Data preprocessing · Learning machines
Ensembles · Polarity detection · Twitter

7.1 Introduction

Over the last few years, the wide spread use of world wide web in social con-
texts has changed the form of use of the internet by allowing users to inter-
act and collaborate with each other in a social media dialogue, as creators
of user-generated content in a virtual community. An inherent tool of social
web is microblogging, which allows users to exchange small elements of con-
tent such as short sentences, individual images, or video links. Twitter is the most
widespread1 social networking microblogging service with more than 320 million
active users and approximately 500 million tweets per day.2 Tweets are short mes-
sages (no longer than 140 characters), that people share to show aspects of their
everyday life, personal opinion about different topics, such economy, environment
health care and so on. Twitter offers the possibility to users to post tweets in a con-
venient and rapid way. Hence, this vast amount of data renders Twitter a useful tool
for sentiment analysis.

Sentiment analysis refers to the use of natural language processing, statistics and
machine learningmethods to identify public sentiment towards various issues in a text
unit.3 Several methods and approaches have been proposed to automatically detect
sentiment content and have been categorized based on various attributes. Hence,
there are three main classification levels in sentiment analysis: (a) document-level,
considering the whole document a basic information unit, (b) sentence-level, identi-
fying whether the sentence is subjective or objective and determining the sentiment
expressed in subjective sentences, and (c) aspect-level, classifying the sentiment
towards different aspects of text entities [1]. There is no fundamental difference
between document and sentence level classifications, because sentences are just
short documents, and in literature they are also referred as context-level, whereas
aspect-level is mentioned as concept-level classification [2]. Moreover, the senti-
ment classification techniques can be divided into: (a) machine learning approach

1http://www.alexa.com/siteinfo/twitter.com—http://mywptips.com/top-microblogging-sites-list/.
2https://about.twitter.com/company—http://www.internetlivestats.com/.
3https://en.wikipedia.org/wiki/Sentiment_analysis.

http://www.alexa.com/siteinfo/twitter.com
http://mywptips.com/top-microblogging-sites-list/
https://about.twitter.com/company
http://www.internetlivestats.com/
https://en.wikipedia.org/wiki/Sentiment_analysis


7 Trends on Sentiment Analysis over Social Networks … 163

(supervised), using a variety of features and labeled data for training sentiment clas-
sifiers, (b) lexicon based approach (unsupervised), relying on lists of words with
predetermined emotional weight, and (c) hybrid approach, combining both tech-
niques [3]. According to the opinion dimensions that the sentiment analysis methods
attempt to measure, a taxonomy is: (a) polarity, categorized as positive, negative or
neutral using lexical resources composed of positive and negativewords, (b) strength,
indicating the intensity of sentiment according to lists of opinion words with strength
scores, and (c) emotion, extracting emotion or mood states based on a list of expres-
sions [4]. This chapter focuses on context-level classification using machine learning
approached to identify polarity.

Sentiment analysis over Twitter is the task of classifying tweets based on feeling
that the user intended to transmit, utilizing the aforementioned approaches. Twitter
sentiment analysis is a growing research area with significant applications [5]. For
instance, the extracting information is invaluable to companies, organizations and
governments alike, in order to evaluate human reaction on their services and products
[6–8]. In the educational context, e-learning systems can incorporate student emo-
tional state to the user model and provide adaptive content, recommendations about
activities or personalized assistance. Such a case is CoMoLE, an adaptive e-learning
system that uses students’ sentiment and proposes to learner motivational activities
(e.g. games, simulations, etc.) when detecting a negative emotion.Moreover, extract-
ing learner sentiment towards an ongoing course can act as feedback for the teacher
[9].

Sentiment analysis over Twitter is extremely valuable for both industry and
academia and is becoming increasingly important for web mining. Consequently,
different data pre-processing techniques have been emerged, a wide range of sen-
timent classification algorithms has been developed and novel features and hybrid
methods have been researched for more efficient and accurate results [10].

Concerning data pre-processing techniques, tweets faces several new challenges
due to the typical short length and irregular structure of such content. Hence, the
data preprocessing is a crucial step in sentiment analysis, since selecting the appro-
priate preprocessing methods, the correctly classified instances can be increased
[11]. This chapter tackles with the extended comparison of sentiment polarity clas-
sification methods for Twitter text and the role of text pre-processing in sentiment
analysis [12]. The preprocessing methods evaluated by the current research are three
different data representations: unigram, bigrams and 1-to-3 grams, and two feature
extraction filters: one based on information gain and the other based on Random
Forest algorithm. Four well-known machine learning algorithms were selected for
tweets classification, namely Naïve Bayes (NB), Support Vector Machine (SVM), k-
Nearest Neighbors (KNN) and Decision Tree (C4.5), using tenfold cross-validation
method. The experiment results demonstrating that with the feature selection and
representation can affect the classification performance positively.

Regarding the determination on the appropriate algorithms to apply and combine
for better outcomes, the current chapter, firstly, focuses on the comparative analysis
of four well-known classifiers, namely Naive Bayes (NB), Support Vector Machine
(SVM), k-NearestNeighbors (KNN)andDecisionTree (C4.5). These classifierswere
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chosen as the most representative of machine learning and tested using percentage
split test model. Secondly, it is examined the combination of multiple classifiers
in order to obtain better predictive performance. Hence, the performance of the
aforementioned learning-based classifiers is compared with the most common types
of ensembles—Bagging, Boosting, Stacking and Voting [13]. In these experiments, a
data preprocessing phase was performed based on the optimal option emerged from
preprocessing techniques evaluation and percentage split test model was used.

Finally, a case study has been presented showing a testbed for our research con-
cerning the sentiment analysis in Twitter, when used for educational purposes. More
specifically, undergraduate students of the Department of Informatics in the Uni-
versity of Piraeus were prompted to use Twitter in the contexts of object-oriented
programming tutoring. Theywere supported in utilizing Twitter modules whichwere
tailored to tutoring systems, such as content delivery, exercise answering, advice giv-
ing and so on. Many tweets were posted and the main result of these was that digital
learning through social networks can be further enhanced by reaping the benefits of
sentiment analysis.

7.2 Research Methodology

The goal of the current research is to address the following research issues:

1. Which is the role of data preprocessing techniques on classification problems?
2. Which stand-alone classifier results better accuracy?
3. Does the ensemble of algorithms outperform the stand-alone ones?
4. Does the use of multiple datasets on different domains demonstrate different

performance indicators?

In order to answer these issues, a set of experiments was conducted using different
data preprocessing options and a range of well-known classifiers. All experiments
were performed in three Twitter datasets: a dataset on the Obama-McCain Debate
(OMD), one on Health Care Reform (HCR) and one with no particular topic focus,
the Stanford Twitter Sentiment Gold Standard (STS-Gold) dataset.

Firstly, we examine the performance of several well-known learning-based clas-
sification algorithms using various preprocessing options. A weighting scheme, a
stemming library and a stop-words removal list were applied to tweets. Afterwards,
three different tokenization settings were chosen to be compared: unigram, bigram
and 1-to-3-gram. For each of these options, feature extraction methods were applied
in order to estimate if the elimination of poorly characterizing attributes can be
useful to get better classification accuracy. The methods used were: one based on
information gain and the other based on Random Forest classifier. The results of
these experiments were used in order to perform the proper preprocessing options
for the comparative analysis of following classifiers.

In regard to second research issue, it was chosen four representative and state-of-
the-art machine learning algorithms which cover different classification approaches.
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The classifiers are the Naïve Bayes (NB), Support VectorMachine (SVM), k-Nearest
Neighbors (KNN) and Decision tree (C4.5). For the validation phase, two commonly
used methods were implemented: percentage split and k-fold cross validation.

Towards the combination of sentiment analysis algorithms, we run the ensemble
algorithms, namely Bagging, AdaboostM1, Stacking and Vote, using the four base
classifiers, mentioned above. The results of these ensembles were compared to those
proceeded from the previous analysis of stand-alone classifiers.

The evaluation of models used in this research was the confusion matrix, one of
themost popular tools.4 Its focus is on the predictive capability of a model rather than
how fast the model takes to perform the classification, scalability, etc. The confusion
matrix is represented by a matrix which each row represents the instances in a pre-
dicted class, while each column represents in an actual class. Various measures, such
as error-rate, accuracy, specificity, sensitivity, and precision, and several advanced
measures, such as ROC and Precision-Recall, are derived from the confusion matrix.
One of the advantages of using this performance evaluation tool is that it can be
easily found if the model is confusing two classes (i.e. commonly mislabeling one
as another). The matrix also shows the accuracy of the classifier as the percentage of
correctly classified patterns in a given class divided by the total number of patterns in
that class. The overall (average) accuracy of the classifier is also evaluated by using
the confusion matrix.5

The preprocessing settings and the learning-based algorithmswere executed using
Weka data mining package.6 The outcomes of the implementation have been tabu-
lated. Afterwards, a descriptive analysis has been conducted to answer to research
issues (Fig. 7.1).

7.3 Twitter Datasets

Three well-known Twitter datasets were used in current experiments; a dataset on the
Obama-McCainDebate (OMD) [14], one onHealthCareReform (HCR) [15] andone
with randomly selected tweets, the Stanford Twitter Sentiment Gold Standard (STS-
Gold) dataset [16]. The reason they have been chosen is that they are available on the
Web with no charge and have been created by reputable universities for academic
scope with a significant number of tweets. Moreover, they have been used in various
researches [17]. Thus, these datasets are considered as reliable for our experiments.
The statistics of the datasets are shown in Table 7.1.

Obama-McCain Debate (OMD). The Obama-McCain Debate (OMD) dataset
was constructed from 3238 tweets crawled during the first U.S. presidential TV
debate in September 2008 [14]. Sentiment labels were acquired by using Amazon

4http://rali.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf.
5http://aimotion.blogspot.gr/2010/08/tools-for-machine-learning-performance.html.
6http://www.cs.waikato.ac.nz/ml/weka/index.html.

http://rali.iro.umontreal.ca/rali/sites/default/files/publis/SokolovaLapalme-JIPM09.pdf
http://aimotion.blogspot.gr/2010/08/tools-for-machine-learning-performance.html
http://www.cs.waikato.ac.nz/ml/weka/index.html
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Fig. 7.1 Research methodology

Table 7.1 Statistics of the three Twitter datasets used

Dataset Tweets Positive Negative

Obama-McCain Debate (OMD) 1904 709 1195

Health Care Reform (HCR) 1922 541 1381

Stanford Twitter Sentiment Gold
Standard (STS-Gold)

2034 632 1402

Mechanical Turk. The set used in this paper consisted of 709 positive and 1195
negative, on which two-third of the voters had agreed.

Health Care Reform (HCR). The Health Care Reform (HCR) dataset was built
by tweets with the hashtag #hcr (health care reform) in March 2010 [15]. A set of
2516 tweets was manually annotated by the authors with 5 labels: positive, negative,
neutral, irrelevant, unsure. For this research, a subset of 1922 tweets was consid-
ered, excluding irrelevant, unsure and neutral labeled tweets. Hence, the final dataset
included 541 positive and 1381 negative tweets.

Stanford Sentiment Gold Standard (STS-Gold). The STS-Gold dataset was
created by selecting tweets from Stanford Twitter Sentiment Corpus 10 and contains
independent sentiment labels for tweets and entities, supporting the evaluation of
tweet-based aswell as entity-based Twitter sentiment analysismodels [16]. In current
experiments, the set of 2034 tweets was used with 632 positive and 1402 negative
ones.
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7.4 Evaluation of Data Preprocessing Techniques

Preprocessing is a necessary data preparation step for sentiment classification. To
perform the preprocessing in WEKA, we use the StringToWordVector filter. This
filter allows the following configurations:

• TF-IDF weighting scheme: It is a standard approach to feature vector construc-
tion. TF-IDF stands for the “term frequency-inverse document frequency” and is a
numerical statistic that reflects how important a word is to a document in a corpus.

• Stemming: Stemming algorithmswork by removing the suffixof theword, accord-
ing to some grammatical rules. In this study, we apply the Snowball stemmer
library,7 which is the most popular and standard approach.

• Stop-words removal: It is a technique that eliminates the frequent usage words
which are meaningless and useless for the text classification. This reduces the
corpus size without losing important information. The Rainbow list8 is used for
our experiments.

• Tokenization: This setting splits the documents into words/terms, constructing a
word vector, known as bag-of-words. We propose NGramTokenizer to compare
word unigram, bigram and 1-to-3-gram.

The above preprocessing generates a huge number of attributes, many of them
being not relevant with classification. Hence, we apply the following operation:

• Feature selection: It is a process by which the number of attributes is decreased
into a better subset which can bring highest accuracy. The benefits of performing
this option on the data are the limitation of overfitting, the improvement of accuracy
and the reduction in training time. Feature Selection methods can be classified
as Filters and Wrappers. Filters are based on statistical tests, such as Infogain,
Chisquare and CFS, whileWrappers use a learning algorithm to report the optimal
subset of features. For this task,WEKAprovides theAttributeSelectionfilterwhich
allows to choose an attribute evaluationmethod and a search strategy. In this paper,
we examine three options:

a. No filter applied. We use all attributes created by StringToWordVector filter.
b. InfoGainAttributeEval, which evaluates the worth of an attribute bymeasuring

the information gain with respect to the class and we set the Ranker search
method to select attributes with IG>0, and

c. ClassifierAttributeEval, which evaluates the worth of an attribute by using a
user-specified classifier. We choose Random Forest as classifier and set the
Ranker search method to select the top 70% attributes (Table 7.2).

In order to specify the optimal settings of the preprocessing techniques and the
classifiers, we conducted a variety of experiments testing the options that would
return more accurate results. The chosen preprocessing methods, described above,

7http://snowball.tartarus.org/.
8http://www.cs.cmu.edu/~mccallum/bow/rainbow/.

http://snowball.tartarus.org/
http://www.cs.cmu.edu/~mccallum/bow/rainbow/
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Table 7.2 Preprocessing techniques applied

Preprocessing technique Applied option

Weighting scheme TF-IDF

Stemming Snowball stemmer

Stop-words removal Rainbow list

Tokenization 1. Unigram
2. Bigram
3. 1-to-3-gram

Feature selection 1. All
2. InfoGainAttributeEval/Ranker—IG>0
3. ClassifierAttributeEval-RadomForest/Ranker—top 70%

Table 7.3 Number of attributes created by attribute selection option

Dataset Attribute
selection

N-gram

Unigram Bigram 1-to-3-gram

OMD All 2150 7400 2430

IG>0 264 519 1074

Top 70% 1500 5180 1680

HCR All 3000 1835 2945

IG>0 281 645 1280

Top 70% 2100 1280 2060

STS-Gold All 2990 8420 2115

IG>0 252 354 720

Top 70% 2090 5890 1480

was applied to the three Twitter datasets and for the classification, the Naïve Bayes
Multinomial (NBM), nu-SVM type, KNN with k�19 and default settings of C4.5
were chosen. For the validation phase, the tenfold cross validation method was used.

According to n-gram and attribute selection options, a different number of
attributes was created based on which the classification was performed. Table 7.3
demonstrates that numbers. We observe that selecting the attributes with information
gain upper than zero, the resultant number of them is decreased appreciably. For the
second feature extraction, where the attributes are evaluated by Radom Forest algo-
rithm, we choose approximately the 70% of attributes ranked as more worthy. An
expected benefit of attribute selection is that algorithms train faster.

Table 7.4 demonstrates the performance of classifiers depending on the prepro-
cessing methods applied. Regarding dataset representations, the behavior is not uni-
form. There is no representation that brings systematically better results in compari-
son with the others. In general, 1-to-3-grams perform better than the other represen-
tations, having a close competition with unigram.
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Table 7.5 Relative improvement in accuracy of classifiers depending on attribute selection options

Dataset OMD HCR STS-Gold

Attribute selection IG>0 Top 70% IG>0 Top 70% IG>0 Top 70%

N-gram Classifiers

Unigram NB +7.15 +8.62 +7.75 +10.66 +6.25 +9.30

SVM +1.68 +1.32 −4.11 −0.62 +0.26 +0.05

KNN +0.89 +0.26 +0.83 0 +4.47 0

C4.5 +0.63 −0.47 +0.94 −0.36 0 −0.25

Bigram NB +13.76 +7.78 +6.97 +5.36 +16.47 +10.23

SVM −2.94 +1.26 +0.36 +0.16 −4.42 −0.73

KNN +0.63 0 0 +0.01 +0.05 0

C4.5 −0.94 −0.21 +0.26 +0.41 −0.29 +0.05

1-to-3-
gram

NB +6.82 +2.57 +8.68 +4.68 +5.11 +3.25

SVM +1.63 +1.37 −0.78 −0.37 +1.92 +0.83

KNN −2.84 −2.42 −0.16 −0.21 +0.19 0

C4.5 +0.16 −0.68 +0.67 −0.05 +0.34 +0.54

Our evaluation results indicate that the attribute selection operation improves
the performance of classification over selecting all attributes. This proceeds from
the removal of redundant and irrelevant attributes from the datasets which can be
misleading to modeling algorithms and result in overfitting. In Table 7.5, we observe
that significant accuracy rates are obtained when applying the attribute selection
based on information gain. Note particularly that in case of NB, the percentage
of correctly classified instances is increased over 7 points. Moreover, the Random
Forest algorithm as attribute selection classifier improves classification accuracy in
comparison to using all attributes. Finally, in some experiment settings, there is no
improvement in algorithms’ performance by applying an attribute selection filter, but
this is of insignificant value as the divergence is too low.

Figures 7.2, 7.3 and7.4 illustrate the level of accuracy each classifier have achieved
according to preprocessing technique applied to each dataset.

Evaluating the influence of dataset domain on preprocessing performance, we use
three different datasets, one with no specific domain tweets and the others with a
specific topic. The experiment results show that the effect of preprocessing techniques
is the same regardless of the datasets.
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Fig. 7.2 Classifiers’ accuracy related with preprocessing techniques on OMD dataset
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Fig. 7.3 Classifiers’ accuracy related with preprocessing techniques on HCR dataset

7.5 Evaluation of Stand-Alone Classifiers

This section focuses on the comparative performance evaluation of different senti-
ment approaches. Therefore, it was chosen four representative and state-of-the-art
machine learning algorithms, which are provided by Weka. Note particularly that
the selected machine learning algorithms figured on the top 10 most influential data
mining algorithms identified by the IEEE International Conference on Data Mining
(ICDM) in December 2006, the 11 algorithms implemented by 11 Ants and the Ora-
cle Data Mining (ODM) component.9 Moreover, another parameter considered for

9https://www.quora.com/What-are-the-top-10-data-mining-or-machine-learning-algorithms.

https://www.quora.com/What-are-the-top-10-data-mining-or-machine-learning-algorithms
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Fig. 7.4 Classifiers’ accuracy related with preprocessing techniques on STS-Gold dataset

Table 7.6 Experiment classifiers

Classifier Approach

Naïve Bayes (NB) Probabilistic learning algorithm

Support Vector Machines (SVM) Supervised learning model

k-Nearest Neighbor (KNN) Instance-based learning algorithm

Logistic Regression (LR) Regression model

C4.5 Decision tree

the algorithms’ election was to cover different classification approaches. Table 7.6
shows the classifiers used.

Naïve Bayes (NB). Naive Bayes classifier is a probabilistic classifier based on
applying Bayes’ theoremwith strong (naive) independence assumptions between the
features.

Support Vector Machines (SVM). A Support Vector Machine (SVM) performs
classification by finding the hyperplane that maximizes the margin between the two
classes. The vectors (cases) that define the hyperplane are the support vectors.

k-Nearest Neighbors (KNN). The k-Nearest Neighbors algorithm is a instance-
based learning, where a case is classified by a majority vote of its neighbors, with
the case being assigned to the class most common amongst its k nearest neighbors
measured by a distance function.

Decision tree (C4.5). C4.5 is an extension of earlier ID3 algorithm. C4.5 builds
decision trees from a set of training data in the same way as ID3, using the concept
of information entropy.

In order to perform the classification, a preliminary phase of text preprocessing
and feature extraction is essential. Therefore, for each dataset, the tweets were trans-
formed in a vector form by applying word tokenization, stemming and stop-words



174 C. Troussas et al.

Table 7.7 Classification results of machine learning algorithms

Classifiers Measures Datasets

OMD HCR STS-Gold

NB Accuracy (%) 87.57 85.10 88.69

Precision 0.876 0.848 0.886

Recall 0.876 0.851 0.887

F-Measure 0.873 0.841 0.884

SVM Accuracy (%) 82.49 79.20 84.10

Precision 0.836 0.820 0.849

Recall 0.825 0.792 0.841

F-Measure 0.814 0.743 0.826

KNN Accuracy (%) 74.26 73.66 73.77

Precision 0.773 0.740 0.766

Recall 0.743 0.737 0.738

F-Measure 0.704 0.631 0.660

C4.5 Accuracy (%) 74.96 74.35 73.44

Precision 0.747 0.710 0.715

Recall 0.750 0.744 0.734

F-Measure 0.733 0.676 0.680

removal except emoticons. Moreover, the most worthy and relevant to the classifi-
cation attributes were selected by measuring the information gain with respect to
the class and rejecting them with information gain less than zero. With this option,
emerged from the previous section of preprocessing evaluation, we can obtain better
accuracy results and reduce training time. Afterwards, the algorithms were run.

Table 7.7 demonstrates the classification outcomes of the four machine learning
algorithms used. The results show a close competition between NB and SVM, as
they are more efficient than others, having precision rates over 0.8 approximately
in all experiments with respective F-measure values, independently of dataset. This
attests the fact that NB and SVM classifiers are widespread in sentiment analysis
and the reason they are used in an abundance of such cases. On the other hand, the
KNN and C4.5 return not so satisfied results, having their accuracy near 74%.

Regarding the recall, the proportion of positives that are correctly identified as
such, in the majority of our experiments, the algorithms return values higher than 0.7
and near the precision rates. This results also satisfactory F-measure, which is the
weighted harmonic mean of precision and recall. In particular, NB and SVM have
around 0.8 recall as precision in all classifications of datasets. This means that the
algorithms have high probability to avoid classifying false negatives.

In this study, each algorithm was applied in three different datasets. In STS-
Gold, there is no specific domain, while the other datasets address specific topics.
The results show that despite the fact that the algorithms’ performance varies from
one dataset to the other, the comparatively well-performed classifier is the same.
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Fig. 7.5 Classification results of machine learning algorithms based on accuracy

Therefore, we conclude that NB and SVM algorithms are a reliable solution for
sentiment analysis problems regardless of the dataset (Fig. 7.5).

The aforementioned results are confirmed also by the research in [18], where
different preprocessing techniques were applied to the same datasets.

7.6 Evaluation of Ensemble Classifiers

Ensemble learning is the process by which multiple classifiers are combined in order
to obtain higher accuracy than the individual classifiers. In this work, we examine
four well-known ensemble learning techniques. A short description of each of them
follows.

Bagging (Bootstrap Aggregation) generates random samples of the training
dataset and applies the base learning algorithms on each sample. The results of these
multiple classifiers are then combinedusing averagedormajority voting. Thismethod
reduces variance of unstable procedures (e.g. decision trees) and hence improves
accuracy.

Boosting is an ensemble method that complementary models are generated by
training eachnewmodel onpreviousmodelsmis-classified.Theprocedure is repeated
until a limit is reached in the number of models or accuracy. Although boosting
outperforms bagging in some cases, it is more likely to over-fit the training data.
AdaBoost is the most representative algorithm in this family. As weak classifiers, it
is usually used rule based classifiers, one-two level trees, neural networks without
hidden layers etc.
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Stacking executes different learning algorithms on the training data and then uses
a meta-classifier which takes the predictions of each classifier as additional inputs.
This can lead to decrease in either bias or variance error depending on the combining
learner used. Stacking typically yields performance better than any single one of
the trained models. A single-layer logistic regression model is often used as the
combiner.

Voting is a straight-forward adaptation of voting for distribution classifiers.Differ-
ent combinations of probability estimates for classification are available, for instance
average of probabilities, majority voting etc. The ensemble chooses the class that
receives the largest total vote according to the combination rule.

In our experiments, we try to increase the efficiency of fourwell-known classifiers:
Naïve Bayes, SVM, KNN and C4.5, using the above ensembles. In particular, we
examine Bagging and AdaBoostM1 algorithms with these classifiers as base learner
each time, Stacking algorithm with these four classifiers and Logistic Regression
as the meta-classifier, and Vote algorithm again with these four classifiers using
the average of probabilities and majority voting combination rule each time. In all
implementations, the number of 10 interactions is performed for constructing the
ensemble models, while the preprocessing options mentioned in the previous section
were applied also. Table 7.8 shows the ensemble approaches used.

Table 7.9 demonstrates the overall picture of all ensemble approaches used. In
regard to bagging and boostingmethods,which use a base classifier trying to optimize
its performance, the results show that they return more correctly classified instances
than the stand-alone classifier and boosting outperforms bagging in most cases.
Furthermore, these approaches yield better accuracy when using weak algorithms,
such as KNN and C4.5, which is confirmed by literature.

Comparing stacking and voting, two methods that combine multiple base classi-
fiers, to each individual base classifier, we observe that these ensembles outperform
mainly the weak classifiers, KNN and C4.5. These ensembles may not necessarily
improve the performance of the best classifier in the combination; however they cer-
tainly reduce the overall risk of making a mis-classification, as it is unlikely that all
classifiers will make the same mistake. Table 7.10 represents the relative improve-
ment in accuracy of ensembles in comparison with the stand-alone classifiers. It is
worth noting that in some cases stacking and voting outperformKNN and C4.5 more
than 10 points.

Evaluating the influence of dataset domain on ensemble learning, we use three
different datasets, one with no specific domain tweets and the others with a specific
topic. The experiment results show that the comparatively well-performed approach
is the same regardless of the dataset.

Figure 7.6 illustrates the accuracy of tested ensembles on the selected datasets.
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Table 7.8 Ensemble classifiers used

Ensemble type Implementation

Bagging Bagging with base classifier:
1. NB
2. SVM
3. KNN
4. C4.5

Boosting AdaBoostM1 with base classifier:
1. NB
2. SVM
3. KNN
4. C4.5

Stacking Stacking with 4 base classifiers:
• NB
• SVM
• KNN
• C4.5
and meta-classifier:
1. LR

Voting Vote with 4 base classifiers:
• NB
• SVM
• KNN
• C4.5
and combination rule:
1. average of probabilities
2. majority voting

Table 7.9 Classification results of ensemble learning methods

Classifiers Measures Datasets

OMD HCR STS-Gold

NB Simple Accuracy (%) 87.57 85.10 88.69

Precision 0.876 0.848 0.886

Recall 0.876 0.851 0.887

F-Measure 0.873 0.841 0.884

Bagging Accuracy (%) 87.74 85.10 88.69

Precision 0.878 0.848 0.886

Recall 0.877 0.851 0.887

F-Measure 0.875 0.841 0.884

AdaBoostM1 Accuracy (%) 86.34 83.54 88.85

Precision 0.863 0.832 0.887

Recall 0.863 0.835 0.889

F-Measure 0.863 0.822 0.885

(continued)
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Table 7.9 (continued)

Classifiers Measures Datasets

OMD HCR STS-Gold

SVM Simple Accuracy (%) 82.49 79.20 84.10

Precision 0.836 0.820 0.849

Recall 0.825 0.792 0.841

F-Measure 0.814 0.743 0.826

Bagging Accuracy (%) 81.26 78.68 82.30

Precision 0.836 0.835 0.842

Recall 0.813 0.787 0.823

F-Measure 0.796 0.729 0.799

AdaBoostM1 Accuracy (%) 81.79 82.67 87.70

Precision 0.816 0.820 0.877

Recall 0.818 0.827 0.877

F-Measure 0.816 0.814 0.872

KNN Simple Accuracy (%) 74.26 73.66 73.77

Precision 0.773 0.740 0.766

Recall 0.743 0.737 0.738

F-Measure 0.704 0.631 0.660

Bagging Accuracy (%) 74.61 73.31 73.11

Precision 0.791 0.671 0.754

Recall 0.746 0.733 0.731

F-Measure 0.704 0.623 0.647

AdaBoostM1 Accuracy (%) 75.13 75.04 80.00

Precision 0.745 0.722 0.800

Recall 0.751 0.750 0.800

F-Measure 0.745 0.695 0.778

C4.5 Simple Accuracy (%) 74.96 74.35 73.44

Precision 0.747 0.710 0.715

Recall 0.750 0.744 0.734

F-Measure 0.733 0.676 0.680

Bagging Accuracy (%) 76.53 75.22 73.11

Precision 0.768 0.726 0.709

Recall 0.765 0.752 0.731

F-Measure 0.749 0.698 0.676

AdaBoostM1 Accuracy (%) 74.96 75.22 75.25

Precision 0.743 0.728 0.741

Recall 0.750 0.752 0.752

(continued)
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Table 7.9 (continued)

Classifiers Measures Datasets

OMD HCR STS-Gold

F-Measure 0.741 0.693 0.712

Combined all Stacking Accuracy (%) 87.57 85.10 89.02

Precision 0.875 0.848 0.890

Recall 0.876 0.851 0.890

F-Measure 0.874 0.841 0.886

Vote-AP Accuracy (%) 82.49 79.39 84.75

Precision 0.837 0.803 0.855

Recall 0.825 0.794 0.848

F-Measure 0.813 0.753 0.834

Vote-MV Accuracy (%) 82.84 79.38 84.75

Precision 0.840 0.803 0.855

Recall 0.828 0.794 0.848

F-Measure 0.818 0.753 0.834

Table 7.10 Relative improvement in accuracy of ensembles using stand-alone classifiers as base-
lines

Datasets Ensembles Base classifiers

NB SVM KNN C4.5

OMD Bagging +0.17 −1.23 +0.35 +1.57

AdaBoostM1 −1.23 −0.7 +0.87 0

Stacking 0 +5.08 +13.31 +12.61

Vote-AP −5.08 0 +8.23 +7.53

Vote-MV −4.73 +0.35 +8.58 +7.88

HCR Bagging 0 −0.52 −0.35 +0.87

AdaBoostM1 −1.56 +3.47 +1.38 +0.87

Stacking 0 +5.90 +11.44 +10.75

Vote-AP −5.71 +0.19 +5.73 +5.04

Vote-MV −5.72 +0.18 +5.72 +5.03

STS-Gold Bagging 0 −1.80 −0.66 −0.33

AdaBoostM1 +0.16 +3.60 +6.23 +1.81

Stacking +0.33 +4.92 +15.25 +15.58

Vote-AP −3.94 +0.65 +10.98 +11.31

Vote-MV −3.94 +0.65 +10.98 +11.31
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Fig. 7.6 Classification results of ensemble learning methods based on accuracy

7.7 The Case of Sentiment Analysis in Social e-Learning

As a testbed for our research, an e-learning module was created using Twitter. More
specifically, Twitter served as the means to build a web-based course delivery plat-
form and use it for supporting the teaching of the object-oriented language C# as
part of undergraduate courses in the Department of Informatics of the University of
Piraeus and assisting the undergraduate students of the aforementioned Department
in the educational process.

Twitter was selected as an educational tool because of the fact that:

• Instructors can be connected to their students in a social context as well as in more
a personal context.

• Interactions with the e-learning material and peers can take place outside the
traditional class, since Twitter is ubiquitous and can be found in smart phones and
laptops.

• Twitter allows a degree of adaptivity to the learners and as such tutoring can gain
personalization.

• Twitter can be used to quickly connect to multimedia resources (e.g. YouTube)
and offers effective ways of education.

• Twitter gives new opportunities to connect with other learning communities and
new forms of educational material.

• The nature of Twitter itself is that it can support the rapid knowledge transmission.

The e-learning course delivery module uses the logical architecture of Twitter, as
shown in Fig. 7.7.

The e-learning module was consisted of several important features of tutoring
systems, such as the multimedia-based course delivery, exercise answering, personal
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Fig. 7.7 Logical arcitecture of Thitter-based learning module

Fig. 7.8 Characteristics of
tutoring systems used in the
Thitter-based learning
module

and group communication, advice provision and feedback, and grade informing, as
shown in Fig. 7.8.

Following, several screenshots of the Twitter-based e-learning module are pro-
vided. Figure 7.9 illustrates the delivery of the learning material which can include
multimedia. Figure 7.10 shows the communication between students and/or instruc-
tors with the use of text messaging. Figure 7.11 illustrates that the advice to students
from instructors or peers or queries answering can take place with the use of hash-
tags, which can also serve as another means of communication. Figure 7.12 shows
the exercise answering process using online voting. Furthermore, Fig. 7.13 shows
the use of external links that can help users on finding additional learning mate-
rial. Figure 7.14 illustrates how comments can serve as a way of assisting students
by answering their queries or providing feedback to them. Figure 7.15 shows the
uploading of exercises and Fig. 7.16 illustrates the delivery of grades to students.

The tweets that were exchanged by the 100 undergraduate students concern basi-
cally the teaching of the programming language C# and their number is 352. That
means that the 100 undergraduate students exchanged 352 tweets related to the needs
of the course.

With the use of two sentiment analysis approaches, i.e. the probabilistic learning
algorithm Naive Bayes (NB) and the supervised learning model Support Vector
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Fig. 7.9 Content delivery using multimedia

Fig. 7.10 Communication using text messaging between users
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Fig. 7.11 Instructor’s advice and communication using hashtags

Fig. 7.12 Exercise answering using online voting

Fig. 7.13 Use of external links

Machines (SVM), students’ tweets were classified in order to detect which of them
are positive, negative or neutral. Both of these approaches showed remarkable results,
as can be also proved by our experimental results, shown in previous sections.

The most important result is that the sentiment analysis in e-learning can serve as
a powerful tool for instructors and can assist them on ameliorating the educational
procedure. Specifically, instructors can acquire notion concerning the affective state
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Fig. 7.14 Feedback to students using commenting

Fig. 7.15 Uploading of exercises

Fig. 7.16 Delivering students’ grades

of students and canhelp thembydelivering advice, changing the learningmaterial and
adapting it to students, motivating them and preventing them from quitting learning.
As such, sentiment analysis can give input concerning the student’s emotional states
to student models so that the personalization in digital learning and the adaptivity to
student’s needs are further improved.
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7.8 Conclusions and Future Work

Social networks have become a pool of data which can be appropriately used by
sentiment analysis scientists. Therefore, they can elicit people’s emotions and point
of view for many different cases, such as commercial industry or e-learning. In this
paper, a deep insight of sentiment analysis using different approaches is presented.
More specifically, the application of pre-processing in analyzing people’s emotions
is described and its techniques are evaluated. Furthermore, an evaluation of stand-
alone classifiers is shown. Also, the algorithms of ensemble averaging for sentiment
analysis are examined; particularly, algorithmic techniques for the creation and com-
bination of multiple models towards a desired output are presented and evaluated.
Moreover, a case study for the sentiment analysis in a Twitter-based learning plat-
form is given; the result showed that sentiment analysis plays a significant role in
e-learning since instructors can acquire a clear representation of students’ emotional
states and as such they can adapt the learning content to students as well as individ-
ualized instruction can be promoted.

Future work includes the creation of a novel hybrid model using pre-processing
techniques and ensemble classifiers for effective sentiment analysis. Also, the adjust-
ment of this model in different cases, such as business marketing or public sector, is
a future plan that may be proved beneficial for ameliorating the provision of services
to individuals.
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Chapter 8
Finding a Healthy Equilibrium
of Geo-demographic Segments
for a Telecom Business: Who Are
Malicious Hot-Spotters?

J. Sidorova, O. Rosander, L. Skold, H. Grahn and L. Lundberg

Abstract In telecommunication business, a major investment goes into the infras-
tructure and its maintenance, while business revenues are proportional to how big,
good, and well-balanced the customer base is. In our previous work we presented a
data-driven analytic strategy based on combinatorial optimization and analysis of the
historical mobility designed to quantify the desirability of different geo-demographic
segments, and several segments were recommended for a partial reduction. Within a
segment, clients are different. In order to enable intelligent reduction, we introduce
the term infrastructure-stressing client and, using the proposedmethod, we reveal the
list of the IDs of such clients. We also have developed a visualization tool to allow
for manual checks: it shows how the client moved through a sequence of hot spots
and was repeatedly served by critically loaded antennas. The code and the footprint
matrix are available on the SourceForge.

Keywords Business intelligence · Combinatorial optimization · Fuzzy logic
MOSAIC · Geo-demographic segments · Mobility data

8.1 Introduction

In the telecommunication industry, the lion’s share of capital is spent on the infras-
tructure and its maintenance. The revenues are dependent on the size and the quality
of the customer base: without a customer there is no business, yet satisfying everyone
is simply not feasible, unless the right ones are chosen and others are let to go [1]
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or, in a less drastic manner, such clients can be put on more expensive personalized
tariffs. The problem we concern ourselves with is how to find a balanced user port-
folio in order to optimally exploit the infrastructure and get maximum benefit from
the investments.

Methodology-wise, the literature in telecommunications research is abundantwith
optimization approaches formulated for the exploitation of telecommunication net-
works under the disguise of problems, which at a first glance one may consider
unrelated to the topic, such as optimal location of cell towers, optimization of base
stations deployment and so on, e.g. [2–5]. For example, the dual formulation of the
optimal positioning of new cell towers turns out to be the problem of finding an opti-
mal portfolio with user segments [6]. The theoretical formulation was extended with
the use of historical data in [7], where a methodological framework was formulated
as a classical resource allocation problem to calculate in a data-driven way the degree
of desirability of a group of clients. The work addresses the problem of intelligent
growth of the customer base, and yet some user groups were recommended for a
partial reduction unless the infrastructure is upgraded, in order to keep the service
reliable.

Another question is how to define and operationally single out different user
groups. For example, such segments can be clustered from mobility data, e.g. [8].
Alternatively, the so called geo-demographic segmentations can be used, which
both yield strong predictors of user behavior and are operational user descriptors.
The client’s home address is a surprisingly powerful predictor of client’s behav-
ior, because people of similar social status and lifestyle tend to live close together.
Compared with conventional occupational measures of social class, postcode classi-
fications typically achieve higher levels of discrimination, whether averaged across
a random basket of behaviors recorded on the Target Group Index or surveys of
citizen satisfaction with the provision of local authority services. One of the rea-
sons that segmentation systems (MOSAIC, ACORN, and others) are so effective
is that they are created by combining statistical averages for both census data and
consumer spending data in pre-defined geographical units [9, 10]. For example, it
was demonstrated that middle-class MOSAIC categories in the UK such as ‘New
Urban Colonists’, ‘Bungalow Retirement’, ‘Gentrified Villages’ and ‘Conservative
Values’, despite being very similar in terms of overall social status, nonetheless reg-
ister widely different public attitudes and voting intentions; they support different
kinds of charities and have preferences for different media as well as different forms
of consumption. Geodemographic categories correlate with diabetes propensity [9],
school students’ performance [10], broadband access and availability [9], and so on.
When acquiring new customers, industries rely increasingly on geodemographic seg-
mentations to classify their markets. The localized versions of MOSAIC have been
developed for a number of countries, including the USA and the EU. As a drawback
it can be said that main geodemographic systems are in competition with each other
and the exact details of the data and methods for generating lifestyles segments are
never released [11] and, as a result, the specific variables or the derivations of these
variables are unknown.
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The contributions of this paper are as follows.Asmentioned above, in our previous
work [7] some segments were recommended for a partial reduction, but only the
strategies for the segments to be boosted were discussed, leaving it undecided what
to do with the other segments. To carry out the reduction in an intelligent way and
generally to better understand the clients that can be described as hot spotters, we
propose a notion of the infrastructure-stressing client and a method to reveal such
clients based on their footprint on the system.We also have developed a visualization
tool to allow for manual checks: it shows how the client moved through a sequence
of hot spots and was repeatedly served by critically loaded antennas. (In our previous
work [12], we also resorted to fuzzy logic and natural language processing, in order
to better understand this stratum of the customer population.)

The rest of the paper is organized as follows. In Sect. 8.2, the data set is described.
Section 8.3 explains the resource allocation formulation and the resulting linear pro-
gramming system, which is at the heart of the proposed method. In Sect. 8.4, the
notion of the Infrastructure-Stressing client is formulated and the proposed method-
ology is applied to find such users relying on the historical data. In Sect. 8.5, exper-
imental results are reported. Finally, the conclusions are drawn in Sect. 8.6.

8.2 Geospatial and Geo-demographic Data

The study has been conducted on anonymized geospatial and geo-demographic data
provided by a Scandinavian telecommunication operator. The data consist of CDRs
(Call Detail Records) containing historical location data and calls made during one
week in amidsized region in Swedenwithmore than one thousand radio cells. Several
cells can be located on the same antenna. The cell density varies in different areas and
is higher in city centers, compared to rural areas. The locations of 27,010 clients are
registered together with which cells served them. The client’s location is registered
every five minutes. In the periods when the client does not generate any traffic, she
does not make any impact on the infrastructure and such periods of inactivity are not
relevant in the light of the resource allocation analysis and thus are not included in
the present study. Every client in the database is labeled with her geo-demographic
segment. The fields of the database used in this study are:

• the cell’s IDwith the information about the users, whom the cell served at different
time points,

• the location coordinates of the cells,
• the time stamps of every event, which generated traffic, and the ID of the user who
originated the event, and

• the MOSAIC geo-demographic segment for each client.

There are 14MOSAIC segments present in the database; for their detailed descrip-
tion the reader is referred to [13].
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8.3 The Combinatorial Optimization Module

The individual mobility patterns of different user segments sum up into the collective
footprint, which the whole customer base produces on the infrastructure in a time-
continuous manner. The desired property of such a collective footprint is that it does
not exhibit skinny peaks and gaps in time. The closer to the optimal “even load”
scenario, the better the infrastructure is exploited. The model’s variables are the
following.

The problem of finding an optimal combination of user segments, given that we
want tomaximize the overall number of users, who consume finite resources, belongs
to a classical family of resource allocation problems. The formulation of our problem
is as follows:

• The vector x with the decision variables

x � {
xCC, xCA, xMJM, xQA, xT, xVA

}
.

The decision variables represent the scaling coefficients for each geo-demographic
segment. In case of segmentation at Telenor (a Scandinavian operator for whom
the study was carried out) they are: cost-aware (CA), modern John/Mary (MJM),
quality aware (QA), traditional (T), value aware (VA), and corporate clients (CC).
A scaling coefficient xi is greater than 1, if the number of clients of a given geo-
demographic segment is desired to be increased. For example, for the category
in the customer base that is to be doubled xi �2. Similarly, if xi < 1 for a geo-
demographic segment, itmeans that the number of clients is to be reduced. The xi �
0 indicates that the segment is absolutely unwanted in the clientele. By formulation
x is non-negative.

• The objective function seeks to maximize the number of subscribers:

Maximize Σi∈{CC,CA,MJM,QA, T,VA}Si xi (8.1)
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Table 8.1 The number of subscribers in each segment for all time slots and cells for the small
example

Cell 1 Cell 2

Time slot Segment 1 Segment 2 Segment 1 Segment 2

t1 40 0 20 20

t2 40 0 0 40

t3 25 25 10 20

• The restrictions

f or all j, t,Σi∈{CC,CA,MJM,QA, T,VA}Si,t, j xi ≤ C j (8.2)

represent the observed number of persons in each user group at a particular time
and served by a particular cell multiplied by the scaling coefficient. This value is
required not to exceed the capacity of the cell Cj in terms of how many persons it
can handle at a time. In other words the restriction says: if the historical number
of users are scaled with a coefficient for their geo-demographic category, the cells
should not be overloaded.

A consensus reached in the literature [14–16] is that the mobility pattern for the
subscribers is predictable due to strong spatio-temporal regularity of humanactivities.
Consequently, the increase in the number of subscribers in a given segment with a
factor x will result in an increase of the load generated by the segment with a factor
x for each time and cell.

The LP model is solved for the input data D and the set of segments I:

(
x I ,max_objI,D

) � combinatorial_optimization (D, I ). (8.3)

The output is the vector with the optimal scaling coefficients xI and the maximum
value of the objective function.

Consider a small example with two cells, two subscriber segments and three time
slots. The footprint values are shown in Table 8.1. The total number of subscribers
in segment 1 is 60, and the total number of subscribers in segment 2 is 40 (s =(60,
40)T). The capacity of both radio cells is 200, i.e., c =(200, 200)T. The optimization
problem becomes:

Maximize 60x1 + 40x2.

The LP problem has 6 restrictions:

for t1, cell 1 : 40x1 ≤ 200,

for t1, cell 2 : 20x1 + 20x2 ≤ 200,

for t2, cell 1 : 40x1 ≤ 200,
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for t2, cell 2 : 40x2 ≤ 200,

for t3, cell 1 : 25x1 + 25x2 ≤ 200,

for t3, cell 2 : 10x1 + 20x2 ≤ 200,

x ≥ 0.

Solving this LP problem yields the optimal x =(5, 3)T, corresponding to sTx �
420.

Before we continue, let us discuss some implicitly made assumptions that may be
not necessarily fair. Firstly, all the clients generate the same revenue. Concrete tariffs
can be integrated in the form of the coefficients of the objective function. Let the
tariff for the user category i be denoted with Ri. Then, the initial objective function
from Eq. 8.1 is extended into

Maximize Σi∈{CC,CA, MJM, QA, T, V A}Ri Si xi .

Secondly, the impact on the network produced by different users is the same.
The calculation of the impact on the network can be refined taking into account the
historical traffic. Let the traffic generated by the user group be Ti. The restrictions
from Eq. 8.2 are modified into the footprint made on the network:

Σi∈{CC,CA, MJM, QA, T, V A}Ti,t, j xi ≤ C j .

We can easily accommodate these clarifications in our system, but currently the
relevant data is out of reach.

8.4 Infrastructure-Friendly and Stressing Clients

Despite geo-demographic segmentations are so powerful, there is an individual aspect
to each client. In the light of the network capacity and the demand by the client
population, there are infrastructure-stressing (IS) and friendly (IF) clients. Informally
speaking, the former use the infrastructure in a taxingmanner, such as always staying
in the zones of high demand and the latter predominantly stay in the zones of low
demand, where the cells tend to be idle. This individual grading of the clients is
naturally combinable with the segment-based approach: first a decision is made
which segment is to be reduced, and then it is revealed which clients in this particular
segment are IS. The method to reveal the infrastructure-stressing clients from the
database with historical mobility (formalized as Algorithm 1) uses the following
heuristic.

Heuristic: From the list of the users ordered according to their relative mobility
(how many other persons were served by the same antenna) at hot spots, the top
1% (most infrastructure-stressing) users are tentatively labelled being IS. (The 1%
is an ad hoc value, where the intention is to cut thin homogeneous layers from the
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customer base.) To prove or disprove this characterisation, the scaling coefficient for
the group is calculated via combinatorial optimization according to Eq. 8.3. As was
discussed above, the scaling coefficient equal to 0 indicates no desirability to keep
this group of users in the customer base, and in this case that group is confirmed to
be infrastructure-stressing.
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Fig. 8.1 The number of IS clients (blue) in different MOSAIC categories (red for the whole pop-
ulation)

Fig. 8.2 Visualization for manual checks of the conclusions

8.5 Experiments

With the method formalized with Algorithm 1, the list with the UserIDs of IS clients
has been obtained (those clients whose scaling coefficient x =0). Seven percent of the
customer base were revealed to be IS and they have turned out to be quite uniformly
distributed across the geo-demographic segments, as depicted for the MOSAIC seg-
ments in Fig. 8.1 [12].

For further decision support, we have developed a visualization tool for manual
checks of the conclusions: it shows how the client moved through a sequence of hot
spots andwas repeatedly served by critically loaded antennas, as it happenedwith the
trajectory for the user in Fig. 8.2. Only the “critically loaded” antennas are depicted.
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8.6 Conclusions

Our previous research suggested the necessity for the reduction in some geo-
demographic segments (or expenses in a corresponding infrastructure upgrade to
be able to provide everybody with telecommunication services in a reliable way).
This paper suggests an intelligent reduction strategy. Based on a data-driven resource
allocation formulation, we have proposed an algorithm to reveal the list of the so
called infrastructure-stressing clients. Once the list is given, we have developed a
visualization tool to allow for manual checks of the conclusions—per individual or
in small packs.

The implications of the new EU legislation GDPR soon coming into force regard-
ing projects like Tetris that involve the use of user’s spatial data are addressed in [17].
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Chapter 9
Advanced Parametric Methods
for Short-Term Traffic Forecasting
in the Era of Big Data

George A. Gravvanis, Athanasios I. Salamanis and
Christos K. Filelis-Papadopoulos

Abstract We live in the era of big data in all fields of activity and intensity. From
econometrics and bioinformatics to robotics and aviation and from computational
linguistics and social networks to traffic and transportation analytics, big data is the
dominating factor of progress. Especially in the field of Intelligent Transportation
Systems (ITS), the plethora of multisource traffic data has given a tremendous boost
to the development of sophisticated systems for the confrontation of the several
traffic related problems. One of the most challenging and at the same time cru-
cial traffic related problems, which has significant impact in many ITS systems (e.g.
Advanced Traveler Information Systems,multimodal routing systems, dynamic pric-
ing systems, etc.), is the accurate and real-time traffic forecasting. The task of traffic
forecasting, i.e. predicting the state of traffic in large scale urban and inter-urban
networks within multiple intervals ahead in time, includes addressing several sub-
problems, like data acquisition from multiple sources (e.g. inductive loop detectors,
moving vehicles, traffic cameras, etc.), preprocessing (outlier detection, missing data
imputation, map-matching, etc.), integration and storage, design and development of
complex algorithmic methods, overall network coverage of the forecasting results,
performance issues, etc. In this chapter, the several state-of-the-art methods used in
all aspects of the traffic forecasting problems are presented, with particular emphasis
given on both the algorithmic and the efficiency aspects of the problem, in the light
of the large amounts of available traffic data. In particular, the design of advanced
traffic forecasting algorithms in large scale urban and inter-urban road networks are
described along with their implementation and utilization on large amounts of real
world traffic data.
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9.1 Introduction

The term Intelligent Transportation Systems (ITS) refers to the application of infor-
mation and communication technologies in the field of transportation aiming to
improve safety, efficiency and sustainability of the mobility of users and goods in the
various transport networks. The ITS include several systems like Advanced Trav-
eler Information Systems (ATIS), multimodal routing systems, fleet management
systems, vehicle-to-vehicle communication systems and much more. In this rapidly
growing field, many interesting research problems have arisen and one of the most
interesting and important of them is the problem of traffic forecasting.

Traffic forecasting is the research problem of estimating the traffic state of a
transport network element (e.g. a road segment) for one or more steps ahead in
time. Traffic is quantified by an appropriate variable known as traffic descriptor.
Such variables are the speed, flow, density, etc., that will be described in detail in
the following sections. The selection of the appropriate traffic variable depends on
the source of the traffic data. For instance, an inductive loop detector is a device
that counts the number of vehicles passing from a certain point of the network and
therefore it provides flow and density measurements. On the other hand, a GPS-
enabled mobile phone carried by a driver provides measurements of the location and
the instantaneous speed of the vehicle. When the data are collected and preprocessed
(i.e. remove the outliers, match them to the network elements, etc.), an appropriate
algorithm is used to forecast the traffic of the element of interest. Finally, when the
forecasting horizon is up to one hour, then the problem is called short-term traffic
forecasting and is one of the most well-studied cases.

Several algorithms for short-term traffic forecasting have been proposed in the
relevant literature, with most of them being classified into one of the following
categories:

• parametric algorithms
• non-parametric algorithms
• hybrid algorithms.

The parametric algorithms include a specific model whose structure is defined
in advance and only the values of a set of parameters need to be estimated. Such
algorithms are based on models like the Autoregressive Moving Average (ARMA)
model, the Kalman filter, the Holt-Winters exponential smoothing model and the
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model [5].
For instance, Yu et al. [31] proposed a double seasonal Holt-Winters traffic fore-
casting model to address the problem of the double seasonality in the traffic time
series, namely the within-day and within-week seasonal cycle. Additionally, Guo et
al. [8] introduced an adaptive Kalman filter that combined a Seasonal Autoregressive
Integrated Moving Average (SARIMA) model with a GARCHmodel for short-term
traffic forecasting. Zhang et al. [34] proposed a method in which the traffic time
series were decomposed into three components and for each component traffic fore-
casting was performed using a different model, namely the spectral analysis method,
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the Autoregressive Integrated Moving Average (ARIMA) model and the Glosten-
Jagannathan-Runkle GARCH (GJR-GARCH) model. Moreover, an autoregressive
model that adapts itself to unpredictable events was used in [1] for predicting traffic
for all the road segments of a network when traffic data for only few of them were
known. Also, in [15] a SARIMA model for predicting traffic in the event of limited
traffic data availability, was presented. Finally, Lv et al. [17] proposed a planemoving
average model for traffic forecasting which could operate without the need for large
traffic datasets.

On the other hand, the non-parametric algorithms do not presuppose a particular
model structure and therefore both the exact model structure and its parameters
need to be estimated using the available traffic data. The methods belonging to this
category are based on models like the k-nearest neighbors (k-NN), the Artificial
Neural Networks (ANN) and the Support Vector Regression (SVR). In this context,
Habtemichael et al. [10] proposed an enhanced k-NN model for short-term traffic
forecasting which utilized the weighted Euclidean distance as similarity measure,
winsorization of neighbors to dampen the effects of dominant neighbors and rank
exponent to aggregate the candidate values. Also, Zheng and Su [35] introduced a
k-NN based approach for short-term traffic forecasting in which a linearly sewing
principal component algorithmwas used to control the undesirable impact of extreme
values.

Moreover, several SVR-based methods have been suggested. Yao et al. [30]
described a single-step SVR model for predicting traffic in the city of Foshan, China
using GPS data from taxis, while Hu et al. [11] designed a method for short-term
traffic forecasting which utilized SVR as prediction model and Particle Swarm Opti-
mization (PSO) algorithm for searching for the optimal values of the SVRparameters.
The authors paid special attention in the case of particles flying out of the search space
by implementing three different strategies. Similarly, a SVR-basedmodel with Gaus-
sian loss function (G-SVR) that utilized a hybrid evolutionary algorithm for searching
for the optimal values of the SVR parameters, has been proposed by Huang [12]. In
particular, the evolutionary algorithm for searching optimal SVR parameters values
(which is the main innovative feature of the work) consists of a chaotic map, a cloud
model and a genetic algorithm and is abbreviated CCGA. In the same way, Li et al.
[16] developed a G-SVR model, combined with a cat chaotic cloud PSO algorithm
for SVR hyperparameters searching, for urban traffic flow forecasting.

Artificial neural networks have been extensively used for traffic forecasting [14,
36], due to their ability to model the non-linearities of the traffic dynamics. The
state-of-the-art ANN-based methods for traffic forecasting have been influenced by
the recent major breakthroughs in the data science and machine learning field and
namely the deep learning approaches. In this context, one of themost studied and cited
works is [18] by Lv et al., in which the authors described a deep architecture model
with autoencoders as building blocks to represent traffic flow features for forecasting.
Similarly, Huang et al. [13] presented a deep learning approach inwhich a deep belief
network (DBN) was utilized for unsupervised learning of effective traffic features
for forecasting. Also, Yang et al. [29] introduced a stacked autoencoder Levenberg-
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Marquardt model aiming to improve traffic forecasting accuracy. Similar are the
works presented in [19, 21, 22, 32, 33].

Finally, significant research effort has been dedicated on the development of
hybrid traffic forecasting techniques which try to exploit the advantages of both
the parametric and non-parametric approaches. For instance, Wang et al. [24] pro-
posed a hybrid model for vehicle-type specific traffic forecasting in work zones. The
model consisted of an empirical mode decomposition (EMD) component and an
ARIMA component and was stated, by the authors, that it outperforms traditional
forecasting models (e.g. ARIMA, Holt-Winters, ANN) in different scenarios. Addi-
tionally, a hybrid model that linearly combines elementary traffic forecasts from an
SVR and a Box-Jenkins [5]model was presented in [2]. Another interesting approach
was presented in [28]. In this approach, initially the traffic data sensors are grouped
into clusters using the k-means clustering algorithm and then for each cluster an
Autoregressive Moving Average with Exogenous inputs (ARMAX) model (with the
clusters centroid as exogenous input) is fitted using the Recursive Least-Squares
(RLS) algorithm and used for traffic forecasting. Additionally, Wang and Shi [25]
proposed an SVR-based traffic forecasting model which utilizes the Chaos Wavelet
Analysis to construct a new kernel function of the SVR that efficiently captures the
non-stationary characteristics of the traffic data. Finally, Moretti et al. [20] presented
an ensemble traffic forecasting model consisting of an ANN and a simple statistical
approach, and stated that this model outperforms, in terms of forecasting accuracy,
the methods it puts together.

9.2 Traffic Data

As in everymachine learning application, the data plays a decisive role in traffic fore-
casting. Any algorithm, however well designed, cannot provide meaningful results
if it is not combined with large amounts of appropriately preprocessed data. In this
section, all the necessary information regarding traffic data is provided and described
from the perspective of the traffic forecasting problem.

9.2.1 Traffic Network

Before start collecting and preprocessing traffic data and implementing traffic fore-
casting algorithms, one should first clearly define a structure for the examined traffic
network. The various transportation networks (e.g. transit networks, railway net-
works, road networks, etc.) are represented by digital maps, designed either by gov-
ernments and organizations or by individuals (e.g. OpenStreetMap). In the traffic
forecasting framework, the network of interest is a road network. In this network,
the elements are points representing road intersections, locations of traffic counters
etc., and lines representing road segments. Each point is uniquely identified by a set
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of coordinates and each line by a pair of points. Such maps are usually encoded by
Geographic Information Systems (GIS) file formats. There are two types of GIS file
formats:

• raster, which is essentially a set of digital images,
• vector, in which the geographical features are represented as geometrical shapes.

In most cases of traffic forecasting applications, the vector format is used because
of the ease of processing. The vector format contains three types of geometrical
shapes: (a) point, (b) line or polyline and (c) polygon. A point expresses a single
location in the network and can be uniquely identified by a set of coordinates. It can
be used to represent the beginning or the end of a road segment, the location of a
traffic counter, the location of a traffic light etc. Then, a polyline in a road network
represents a road segment. Each line is described by a set of points indicating the
beginning and the end of the line. Also, a polyline may contain additional features
like the traffic direction, its length, the number of traffic lights installed on it, etc.
The vector GIS files that contain polylines are the most important ones because, in
most traffic forecasting applications, the elements for which traffic forecasting is
required, is a road segment or a road. Finally, the polygons represent entire areas of
the network. For instance, a traffic network may be segmented into zones in order to
examine the different traffic patterns of each zone separately. In this case, each zone
will be geographically represented by a separate polygon.

All the aforementioned geometrical shapes correspond to a row in a database
which in turn corresponds to the particular vector file. For example, in a vector
file containing all the roads of a specific traffic network there will be a database in
which each row will correspond to a specific road of the network and each element
of the row to a specific characteristic of this road. The are several different vector
file formats designed and distributed by different vendors. Some of the most widely
used vector GIS file formats representing road networks for traffic forecasting are the
shapefile (.shp) developed by the GIS company Esri, the Keyhole Markup Language
(.kml) primarily used by Google Earth and the OpenStreetMap (.osm) used by the
homonymous crowdsourcing GIS project. The aforementioned file formats can be
processed, independently of the traffic forecasting task, by specialized GIS software,
which is either proprietary (e.g. ArcGIS) or open source (e.g. QGIS). Also, if the
structure of the traffic network should be incorporated into the traffic forecasting
algorithm (e.g. when using the spatiotemporal correlations between the networks
elements) the researcher should define an appropriate representation of the network
that would be efficiently stored into memory and processed by the traffic forecasting
algorithm.

9.2.2 Traffic Descriptors

After the traffic network has been set up, the next step of traffic forecasting is to find
a way to accurately describe and quantify traffic. A variable used for this purpose is
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called traffic descriptor. Each traffic descriptor describes traffic in a different way
and it is associated with a distinct traffic meter. For example, a commonly used traffic
descriptor is speed. From physics, speed is defined as the distance covered per time
unit. In large traffic networks, it is difficult to track the speed of each individual
vehicle and therefore metrics of average speed for specific elements of the network
are defined. The two popular definitions of average speed in traffic networks are the
time mean speed and the space mean speed.

The time mean speed is computed using the speed measurements of vehicles
passing a specific reference point of the network, e.g. the location of an inductive
loop detector. If n vehicles passed a reference point at a time period t, then the time
mean speed vt is given by the formula

vt = 1

n

n∑

i=1

vi, (9.1)

where vi the instantaneous speed of vehicle i. The time mean speed is not a very
accurate metric for describing the traffic of a network element, because the same
vehicle can pass different points of the samenetwork element at significantly different
speeds.

On the other hand, the space mean speed is a more accurate average speed metric
because it is computed using speed measurements taken from different points across
the entire network element. These speed measurements come from different sources
such as inductive loop detectors, traffic cameras, GPS probes, etc. The space mean
speed is defined by the following formula

vs =
(
1

n

n∑

i=1

1

vi

)−1

, (9.2)

where n the number of instantaneous speed measurements taken across the entire
network element and vi a specific instantaneous speedmeasurement. The spacemean
speed is the harmonic mean of speed measurements. Except that it covers an entire
network element (instead of just one reference point), the space mean speed is used
more frequently than the time mean speed, because it is a better approximation to
travel time [27], which is a variable used in routing applications. The travel time of an
element of the network is the average time required for traversing the element. When
the outcome of traffic forecasting is intended to be used by a rooting application,
then it is more convenient to use the space mean speed as traffic descriptor, because
it can be more easily interpreted as travel time.

Another widely used traffic descriptor is density (k), which is defined as the
number of vehicles per unit length of an element of the network. For example, if at a
certain time there are 250 vehicles at 10 kilometers (km) of a road, then the density
of this road is 25 vehicles/km. There are two important values of density: (a) the
critical density kc and (b) the jam density kj. The critical density is the maximum
density under free flow conditions and the jam density the maximum density under
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congestion. The inverse of density is spacing (s) which is defined as the distance
between the centers of two vehicles as shown in the following equation:

s = 1

k
. (9.3)

For a network element of length L, if n vehicles are on the element at a certain
time period T and s̄t is the average spacing between the vehicles, then the following
relationship holds:

kL,T = n

L
= 1

s̄t
. (9.4)

Furthermore, flow (q) is another traffic descriptor which is defined as the number
of vehicles traversing a reference point per unit of time. For instance, if 500 vehicles
traversed a reference point of the network in 2 hours then the flow at this point is 250
vehicles/h. The flow is also defined as the product of speed with density as shown in
the following equation:

q = v · k. (9.5)

The inverse of the flow is called headway (h) and it is defined as the time between
themoments atwhich avehicle i and avehicle i + 1, respectively, passed the reference
point. If n vehicles traversed a reference pointX at a time period T , then the following
relationship applies:

qX ,T = n

T
= 1

h̄x
, (9.6)

where h̄x is the average headway of the n vehicles.
The choice of the appropriate traffic descriptor depends onboth the application that

will use the results of the traffic forecasting algorithm (e.g. a routing application)
and the available data sources of the examined traffic network. Some of the most
frequently occurring traffic data sources are presented in the next section.

9.2.3 Traffic Data Sources

In order to quantify traffic, the values of the aforementioned traffic descriptors are
measured using the appropriate equipment. There are conventional sensors which are
part of the typical road infrastructure, such as on-road sensors and traffic cameras,
and others that are installed on the vehicles and operate as moving sensors, such as
the mobile phones of the drivers and the GPS receivers of taxis.

Themost traditional way of measuring traffic is by installing electronic devices on
the road in order to detect the presence of a vehicle. In this category belong devices
such as the pneumatic tubes, the piezo-electric sensors and inductive loop detectors.
These devices are usually embedded in the roadway and detect the presence of a
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vehicle that passes over them. For instance, when a vehicle passes over an inductive
loop detector or stops within the loop, the inductance of the loop is decreased which
activates the output of the electronic component of the detector which in turn sends a
signal to the traffic signal controller indicating the presence of a vehicle. The inductive
loop detectors and the piezo-electric sensors are used to permanently measure traffic
in specific locations, while the pneumatic tubes are used just to sample traffic from
specific locations of the network. Moreover, these devices detect vehicles whose
masses are above a certain value. On one hand, this is a good characteristic because
the devices do not produce many false positives, but on the other hand it means
that small vehicles like bicycles, scooters and low-volume motorcycles will not be
detected. The inductive loop detectors can be manually configured to detect small
motorcycles. Finally, there are also off-road devices that emit energy such as radar
waves or infrared beams to identify the presence of vehicles. These devices aremainly
used in cases where only vehicle detection and not vehicle classification is required.

In addition to the sensors that identify the presence of a vehicle, there are also the
traffic cameras for measuring traffic. A traffic camera is a conventional video camera
which records vehicular traffic on a road of the network. They are typically installed
on major roads like highways, and are connected to each other through optical fibers
alongside or under the road. Their power supply comes mainly from the mains
power in urban areas and, in some cases, they have a backup power supply system
which operates using alternate forms of energy like solar energy. The traffic cameras
produce a feed of low-resolution live video of the traffic conditions of a road which
is transmitted to a traffic monitoring center. Specialized video processing software
is used to extract traffic information from this live video, namely the number of
vehicles that passed the location of the traffic camera at a certain time period (i.e.
flow). It should be pointed out that the traffic cameras are distinct from the road
safety cameras whose purpose is to enforce traffic regulations.

Alternatively, in recent years a new source of traffic data that does not require
installation of hardware on the road network has been developed. This source consists
of all mobile phones of the drivers. Nowadays, almost all drivers have mobile phones
with them when driving and these phones can provide very useful data such as the
location of the vehicle, its speed and the direction of travel at a specific time. This type
of data is called Floating Car Data or Floating Cellular Data (FCD) and constitutes
a valuable source of information for most ITS. Usually the FCD, contain tuples of
the following form:

{VehicleID,Timestamp,Location, Speed}

where the VehicleID is a unique identifier of the vehicle, the Timestamp is the time
of the recording (based on a time reference point), the Location of vehicle is a set
of coordinates (e.g. longitude, latitude, altitude) and the Speed is the instantaneous
speed of the vehicle at the time of the recording. The FCD can be collected from the
mobile network, where no special hardware is necessary, and also through the Global
Positioning System (GPS) when the mobile phone is GPS-enabled. Essentially every
switched-onmobile phone becomes an anonymous source of traffic information. The
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quality of the provided traffic information depends on the number of mobile phones.
In large and congested urban traffic networks there are a lot of cars and therefore a
lot of mobile phones and traffic probes resulting in more accurate traffic information.
The advantages of these type of “sensors” over conventional traffic sensors are the
following:

• No infrastructure/hardware is required on cars or alongside the roads.
• More coverage of the traffic network. Given the fact that the vehicles can move
around the network, using FCD can result in a more complete picture of the traffic
state of the network as opposed to the conventional traffic sensors that are installed
at specific locations.

• Less expensive.
• Faster to set up.
• Less maintenance is required.

It should be pointed out that there is a major concern regarding the anonymity
of the FCD because such data can easily be used for surveillance purposes. The
companies that deploy and manage FCD services, provide assurances regarding the
security of the data by stating that all data are anonymized for as long as they are
kept in their servers.

9.3 Traffic Data Preprocessing

The available traffic data in their raw form are not suitable for processing by the traffic
forecasting algorithms. Therefore, several steps of preprocessing, namely time series
formulation, outlier detection, missing data imputation and map-matching, should
be applied. In this section these preprocessing steps will be described.

9.3.1 Time Series Formulation

The traffic measurements coming from the various traffic data sources correspond to
specific time instances or time periods. For example, a recording from three inductive
loop detectors installed on a road segment with three lanes for a specific time period
may have the form of the traffic count table shown in Table9.1. Additionally, a set
of traffic recordings from GPS-enabled mobile phones during a specific time period
may have the form shown in Table9.2.

As shown, each recording corresponds to a specific timestamp whose value is
determined by a time reference point (e.g. Unix Epoch on January 1st, 1970 UTC).
This data granularity may lead to difficulties in data management and processing.
Therefore, the traffic data should be organized appropriately.
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Table 9.1 Example of traffic count table from inductive loop detectors

Inductive loop
detector id

Lane 1 Lane 2 Lane 3 Total

1 15 25 22 62

2 30 50 35 115

3 17 31 24 72

Table 9.2 Example of traffic recording from GPS-enabled mobile phones

Vehicle ID Timestamp (ms) Location (lat., lon.) Speed (km/h)

35250210 1332115205000 (44.240315,
−91.493619)

85

35250210 1332115207000 (44.240376,
−91.493854)

72

45701997 1332115205000 (44.844847,
−93.549069)

60

45868956 1332115207000 (44.920474,
−93.447851)

65

85392424 1332115207000 (44.240304,
−91.493768)

55

The most suitable way for organizing the traffic data for the task of traffic fore-
casting is the time series. Let r be a road segment whose traffic state in several steps
ahead in time is required. Supposing that an inductive loop detector is installed on r
and a set of traffic count values is available. These values cover a specific time period
and are taken at a specific rate. For a total period of one day and a rate of one value
per second, the set will contain 86,400 traffic values. A traffic time series that will
correspond to r for this day can be constructed. The number of values in this time
series depends on the desired granularity. For example, if it is decided that all the
available traffic values will be represented, then the traffic time series will contain
86,400 values (highest possible granularity in this case). If it is decided that the time
series will contain one value for each minute of the day, then it will contain 1,440
values, while if it is decided to contain one value for every five minutes of the day
then it will contain 288 values. The selection of the appropriate granularity is the
result of a compromise between the accuracy of representation of r’s traffic state and
the computational and memory requirements of the traffic forecasting algorithms.

Provided that the data granularity has been selected, the set of available traffic
values has to be transformed into the values of the corresponding traffic time series. If
t is the selected granularity, then the traffic values are mapped to t-minutes intervals
of the day and one single value is computed that corresponds to this interval. Given
n traffic values inside a t-minutes interval, the average of these values is computed
as follows:
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x̄t = 1

n

n∑

i=1

xi, (9.7)

where xi is the traffic count value for r at the time moment i inside t. If instead of
traffic count values instantaneous speeds vi are available, then the space mean speed
of these values is computed.

The resulting value from Eq. (9.7) (or from the Eq. (9.1) in the case of speed
values) corresponds to a specific interval of the traffic time series. If t is a multiple
of one minute, the traffic time series will contain 1,440/t such values in total. In the
context of traffic forecasting, it is customary to organize the traffic data into 1, 5 or
15 minutes intervals and consequently the corresponding traffic time series to have
1,440, 288 or 96 values respectively. If the total time period covered by the available
traffic data exceeds one day (e.g. one month or one year), then either one large time
series for the total period or a set of time series, where each one corresponds to a day
of the total period, is formulated.

9.3.2 Outlier Detection

Outlier detection is the identification of observations in a dataset that do not conform
to an expected pattern. The traffic time series are likely to contain outliers for reasons
like measurement errors of the traffic counters or occurrence of abnormal events
(car accidents, road works, special events like concerts and sport games, etc.). The
identification of such anomalies is a very important process and may result in a
significant increase in the accuracy of the traffic forecasting algorithms. It should be
pointed out that in this section methods for detecting and not for handling outliers
(e.g. replacing them with characteristic values, discarding them) are presented.

One of the simplest and most widely used methods for outlier detection is the
z-score method. The z-score (or standard score) is a metric that indicates how many
standard deviations a data point is away from the sample’s mean. This metric can be
used only assuming a Gaussian distribution of the data. If there are strong indications
that the data are not normally distributed, then appropriate transformation should be
applied to the data in order to use thismetric. Supposing that the required assumptions
are met, the z-score of a data point Xt is computed by the following formula:

z = Xt − μ

σ
, (9.8)

where μ and σ are the mean and the standard deviation of the data respectively. If
the z-score of the data point is greater than a threshold, then this point is considered
outlier. The threshold is usually selected as two or three times the standard deviation
of the data.

Another class of outlier detection methods are those that measure the deviation of
a data point with respect to its neighbors. In this context, Breunig et al. [6] proposed
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an algorithm called local outlier factor (LOF) which is based on the concept of
k-nearest neighbors of a data point Xt and the local density of this point. In this
approach, a distance metric between two data points Xt1 and Xt2 , called reachability
distance (rd), is defined based on the following formula:

rdk
(
Xt1 ,Xt2

) = max
{
dk

(
Xt2

)
, d

(
Xt1 ,Xt2

)}
, (9.9)

where d
(
Xt1 ,Xt2

)
is the distance between the data points Xt1 and Xt2 , and dk

(
Xt2

)
the

distance between Xt2 and its k-th nearest neighbor. This is the reachability distance
of Xt1 from Xt2 . Then, the local reachability density (lrd) of Xt1 is defined as follows:

lrd
(
Xt1

) = 1
(∑

Xt2 ∈Nk(Xt1)
rdk(Xt1 ,Xt2)

|Nk(Xt1)|

) , (9.10)

where Nk
(
Xt1

)
is the set of the k nearest neighbors of Xt1 . The local reachability

density of Xt1 is the inverse of the average reachability distance of Xt1 from its k
neighbors. Finally, the local outlier factor of Xt1 is defined as follows:

LOFk
(
Xt1

) =
∑

Xt2∈Nk(Xt1)
lrd(Xt2)
lrd(Xt1)

|Nk
(
Xt1

) | . (9.11)

A value of LOF less than or equal to 1 indicates a dense region around Xt1 and
thus it is not considered outlier. Conversely, a LOF value significantly greater than 1
indicates that the density of the data pointXt1 is substantially different from that of its k
neighbors and therefore it is considered outlier. Other algorithms, operating similarly,
are the clustering-based outlier detection methods such as the Density-based spatial
clustering of applications with noise (DBSCAN) algorithm and its generalization the
Ordering points to identify the clustering structure (OPTICS) algorithm.

There are also methods for outlier detection that require learning a specific model
over the entire traffic time series. For instance, there are methods that require fitting
an ARMA or an ARIMA model [5], on the traffic time series, and predicting each
value based on its past values and some error terms. If the deviation between the real
value of the traffic time series and the predicted value is greater than a threshold (or
in other words it does not belong in a specific confidence interval) then the real value
is considered outlier. In many cases this approach is combined with decomposing the
time series into its components (seasonal, trend and residual) and training a different
model for each component. Also, there are supervised machine learning methods for
outlier detection (e.g. replicator neural networks, one-class support vector machines)
which however require annotated outlier data.

The aforementioned methods either require the validity of many conditions, or
they present extensive complexity. For these reasons, they are not the most effective
ways for outlier detection, especially when this process must be performed automati-
cally in real time as in the case of preprocessing traffic time series. Therefore, simpler
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but more efficient methods have been proposed. For instance, a simple method for
checking if a data point Xt in a traffic time series is an outlier, is to compute its
first difference X

′
t = Xt − Xt−1 and check if it exceeds a threshold. If the time series

has a seasonal component, then the same method can be used but with the seasonal
difference X

′
t = Xt − Xt−L where L is the length of the season. Moreover, a very

interesting approach for simple and automatic outlier detection is the one presented
by Basu andMeckesheimer [3], called the two-sided medianmethod. In this method,
for a data point Xt a neighborhood with 2k points is constructed as follows:

η
(k)
t = {Xt−k , . . . ,Xt−1,Xt+1, . . . ,Xt+k} . (9.12)

Then, the median m(2k)
t of this neighborhood is computed and compared with

Xt . If the absolute value of the difference between m(2k)
t and Xt is greater than a

threshold τ , then Xt is considered outlier. Additionally, the authors presented a slight
variation of the two-sided median method called one-sided median. In this method,
the neighborhood of the point Xt is defined only by its previous 2k points. Using the
observed traffic time series and its first difference the following median values are
computed:

mX
t = median {Xt−2k , . . . ,Xt−1} , (9.13)

mX ′
t = median

{
X ′
t−2k , . . . ,X

′
t−1

}
. (9.14)

Based on these medians, the following quantity is defined:

m(2k)
t = mX

t + k · mX ′
t . (9.15)

If the absolute value of the difference between the data point Xt and the quantity
m(2k)

t is greater than a threshold τ , then Xt is considered outlier. In both methods,
the threshold τ is a parameter selected by the user and controls the sensitivity of the
methods against outliers.

9.3.3 Missing Data Imputation

The constructed traffic time series may have missing values. For instance, a traffic
time series with 5 minutes granularity may have no values for the intervals 10:00–
10:05 and 10:05–10:10 due to malfunction of the traffic counter (e.g. inductive loop
detector).Missing data can cause problems in the process of traffic forecasting such as
the introduction of substantial amount of bias at the forecasting results and difficulties
in data management.
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Several techniques for missing data imputation have been proposed, which have
also been used in the context of traffic analytics. Themost straightforward and easy to
implement method is the listwise deletion (or complete case), in which when a traffic
time series includes at least one missing value, it is deleted from the dataset. There
is also a small variation of the method in which if the percentage of missing values
(in relation to the total number of time series values) is greater than a threshold (e.g.
10%), then the time series is deleted from the dataset. If the values are not missing
at random, meaning that there are only missing values at specific parts of the time
series, these methods introduce bias. Although the not random missing values is the
most common case in traffic analytics, the method of listwise deletion is widely used
due to its simplicity and ease of development.

Another widely used data imputation technique is the hot-deck imputation. In this
method, an existing value is selected randomly from the traffic time series and is used
to fill the missing values. One type of hot-deck imputation is the last observation
carried forward (LOCF) technique in which the existing value that is immediately
prior to themissing value is used to impute it.Moreover, a characteristic value derived
from the existing values can be used for imputation. For instance, the mean value
of the traffic time series can be used to fill the missing ones. This technique does
not change the mean of the time series which is an important property. Also, there
is a variation of this technique in which the mean of the previous N existing values
is used to fill a missing value. Similarly, if a set of traffic time series is available
and there are missing values for a specific interval in some of them, then the mean
of the existing values for this interval throughout all the time series can be used for
imputation.

Finally, data imputation can be performed using interpolation methods. In math-
ematics, interpolation is defined as the process of estimating the values of a function
in intermediate, unknown values of the independent variable given a finite set of the
function’s values in knownvalues of the independent variable. The simplest interpola-
tionmethod used for missing data imputation is the piecewise constant interpolation,
which uses the nearest located existing value as imputation value. This technique is
the same as the aforementioned LOCF technique and is a favorable choice due to its
simplicity and reduced required computational work. Additionally, the linear inter-
polation is used for data imputation. In general, supposing two existing traffic data
points

(
t1,Xt1

)
and

(
t2,Xt2

)
at intervals t1 and t2 respectively, the linear interpolant

is defined by the following formula:

Xtm − Xt1

tm − t1
= Xt2 − Xt1

t2 − t1
⇐⇒ Xtm = Xt1 + (tm − t1)

Xt2 − Xt1

t2 − t1
, (9.16)

where Xtm is the missing value and tm its interval in the traffic time series. The main
advantage of the linear interpolation technique is that it is easy to interpret and imple-
ment, while its main disadvantage is the error, which is proportional to the square of
the distance between the existing traffic data points. Finally, there are also other inter-
polation methods, like higher order polynomial and spline interpolation, in which
the interpolants are polynomials with degree higher than one. These interpolation
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methods have several positive characteristics (e.g. smaller interpolation errors and
thus smoother interpolants) but they are not used in practice as widely as the linear
interpolation method mainly due to their computational complexity.

9.3.4 Map-Matching

Asalreadymentioned, one typical source of traffic data is the inductive loopdetectors.
These sensors measure and record traffic values that correspond to specific points
of the network. However, usually the element of interest in the traffic forecasting
problem is a road segment (or a road). Therefore, a process formatching themeasured
traffic data to the road segments of the network is required. Several advanced map-
matching algorithms have been proposed in the relevant literature like [4, 9, 26]. In
this section, two basic techniques, namely a brute-force approach and a Particle-In-
Cell (PIC) approach will be presented. In both cases, the coordinates of the inductive
loop detectors and the endpoints of the road segments are considered known. The
distance between an inductive loop detector and a road segment of the network is the
distance between a point and a line segment in the N -dimensional space, where N is
the number of coordinates of the points of the network (i.e. 2 or 3). This distance can
be computed analytically using typical algorithms from the field of computational
geometry.

The brute-force map-matching technique requires the computation of distances
between all the inductive loop detectors and all the road segments of the network.
In particular, in order to match a specific inductive loop detector to a road segment,
its distances from all the road segments are computed and it is matched to the road
segment with the minimum distance. This process is repeated until all the loop
detectors are matched. This is far from optimal especially for large scale traffic
networks. For instance, in a traffic network with 103 inductive loop detectors and 104

road segments, the distance between a point and a line-segment should be computed
107 times in order to match all the inductive loop detectors to the road segments of
the network using the brute-force approach.

On the other hand, in thePIC approach initially amesh is constructed that contains
the whole network. This mesh is usually square (although there are cases that it may
not be) and the dimension of the sides of its cells is selected in such a way that a
specific criterion is met. Usually, this criterion has to do with the number of network
elements that each cell will contain. For example, the dimension of the cells can
be selected in such a way that the number of road segments in each cell to be, at
most, 5.

Provided that the mesh has been constructed, the inductive loop detectors and the
road segments should be matched to the mesh. The process of matching an inductive
loop detector, i.e. a specific point of the network, in the mesh is straightforward. In
particular, starting from the lower left cell, the mesh is searched (either by rows or by
columns) until the cell containing the point is found. In the special case that the point
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lies on the common edge of two neighboring cells, then it is considered to belong to
both cells.

On the other hand, the process of matching a road segment on the mesh is more
complicated. Based on the selection of the cell dimension, the most likely event is the
entire segment to belong to a cell. Nevertheless, there is also the case that one road
segment traverses more than one cells either horizontally, vertically or diagonally.
In this case, the cells traversed by the road segment are identified by computing the
intersections between their edges and the road segment, and it is considered that this
road segment belongs to all these cells.

After both the inductive loop detectors and the road segments have been matched
to the mesh, the final step is to match the former to the latter. For this purpose, the
distances between an inductive loop detector and the road segments that belong to
the same cell are computed and the road segment with the minimum distance is
selected. This process is repeated until all the inductive loop detectors are matched
to the road segments of the network.

The PIC map-matching technique is far more efficient than the brute-force tech-
nique. In particular, if n is the number of inductive loop detectors, N the number of
road segments andm themean number of road segments in each cell of themesh, then
the time complexity of the brute-force approach is O(nN ) and the time complexity
of the PIC technique is O(nm). If the number of cells in the mesh is large, then the
following relationship holds:

m � N , (9.17)

which indicates that the PIC technique is far more efficient than the brute-force
technique.

9.4 Parametric Short-Term Traffic Forecasting

The parametric short-term traffic forecasting algorithms is an important class of
traffic forecasting algorithms which has been successfully used in many ITS appli-
cations. Most of them are based on the classic Box-Jenkins model [5] and their
training process is usually performed by the least-squares method. In this section,
the details of some advanced parametric short-term traffic forecasting algorithms,
from a supervised learning perspective, are presented.

9.4.1 Autoregressive Moving Average (ARMA)

TheAutoregressive IntegratedMoving Average (ARMA)model describes a stationary
stochastic process in terms of two polynomials, namely the autoregressive part and
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themoving average part. For a traffic time seriesXt , theARMA(p, q)model is defined
as follows [5]:

Xt − φ1Xt−1 − · · · − φpXt−p = εt + θ1εt−1 + · · · + θqεt−q, (9.18)

where p is the order of the autoregressive part, q the order of the moving average part
and εt the (random) error terms of Xt , which are considered identically distributed
with normal distribution of zero mean and constant variance σ 2

ε . The above equation
can be rewritten as [5]:

(
1 −

p∑

i=1

φiL
i

)
Xt =

(
1 +

q∑

i=1

θiL
i

)
εt, (9.19)

where L is the lag operator for which it holds:

LiXt = Xt−i. (9.20)

A more concise representation of Eq. (9.19) is the following:

φ (L)Xt = θ (L) εt, (9.21)

or
φ (L)

θ (L)
Xt = εt, (9.22)

where

φ (L) = 1 −
p∑

i=1

φiL
i, (9.23)

θ (L) = 1 +
q∑

i=1

θiL
i. (9.24)

The error terms εt are considered independent and identically distributed random
variables sampled from a normal distribution with zero mean and constant variance
σ 2

ε . It is very important that these conditions apply, since failure to do so will funda-
mentally change the model.

9.4.2 Autoregressive Integrated Moving Average (ARIMA)

TheAutoregressive IntegratedMoving Average (ARIMA)model is a generalization of
the ARMAmodel and it is the model on which the more advanced parametric short-
term traffic forecasting algorithms are based [5]. The ARIMA model can be used
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when the traffic time series in question is stationary. Therefore, if characteristics of
non-stationarity are shown, a differencing step should be applied one or more times
in order to eliminate them. The differencing step in traffic time series in usually
implemented with backward differences. In particular, if Xt is the traffic time series,
the first order backward difference is defined by the following equation:

∇Xt = Xt − Xt−1, (9.25)

where ∇ the backward difference operator. For higher order differences, the back-
ward difference operator is applied recursively. For instance, for order 2:

∇2
t Xt = Xt − 2Xt−1 + Xt−2. (9.26)

In general, for order d ,

∇d
t Xt =

d∑

k=0

(−1)k
(
d
k

)
Xt−k . (9.27)

In most cases, the non-stationary traffic time series can become stationary with
just 1st order backward differences.

As alreadymentioned, theARMA(p, q) model is defined by Eq. (9.19). Supposing
that the polynomial φ(L) has a unit root of multiplicity d , it can be expressed as
follows [5]:

φ (L) = 1 −
p∑

i=1

φiL
i =

(
1 −

p−d∑

i=1

φiL
i

)
(1 − L)d . (9.28)

Based on this polynomial factorization, an ARIMA(p, d , q) model, in which p
has been replaced by p − d , is expressed by the following equation [5]:

(
1 −

p∑

i=1

φiL
i

)
(1 − L)dXt =

(
1 +

q∑

i=1

θiL
i

)
εt, (9.29)

where p the order of the autoregressive part, d the degree of differencing (i.e. the
order of backward differences required to make the traffic time series stationary) and
q the order of the moving average part.

The appropriate model that should be used for a specific traffic time series (e.g.
plain AR, MA or ARMA model) as well as the optimal values of orders p and
q are usually identified by the visual inspection of the Autocorrelation Function
(ACF) and the Partial Autocorrelation Function (PACF) plots. The ACF describes
the similarity between the values of a time series as a function of the lag between
them. The PACF is similar to the ACF but it does not take into consideration the
linear dependence between the values in the intermediate lags. The ACF and PACF
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plot depict the form of these functions against the number of lags. In general, if ACF
has an exponentially decreasing appearance and PACF is zero at a specific lag p + 1,
then a plain autoregressive model of order p (AR(p)) is suitable for representing the
time series and forecasting its future values. On the other hand, if ACF becomes
zero in lag q + 1 and PACF decreases exponentially, then a plain moving average
model of order q (MA(q)) should be used. If none of the previous cases apply, an
ARMA(p, q) model is the most suitable choice. In this case, the optimal values of
p and q are difficult to estimate through the visual inspection of the ACF and PACF
plots and therefore advanced information criteriamethods (e.g. Bayesian information
criterion, Akaike information criterion) are utilized.

One widely used parametric model for short-term traffic forecasting is the
ARIMA(p, 1, 0) model which is described by the following equation [5]:

X (1)
t = φ1X

(1)
t−1 + · · · + φpX

(1)
t−p, (9.30)

where
X (1)
t = ∇tXt = Xt − Xt−1. (9.31)

For this model, the appropriate values of the φ parameters are estimated through a
learning process which is usually the least squares regression.

9.4.2.1 Supervised Learning of the ARIMAModel—The Least Squares
Problem

The process of estimating the φ and θ parameters is the learning process of the
ARIMA model and it is performed in a supervised way [5]. One of the most widely
used parametric models for short-term traffic forecasting is the ARIMA(p, 1, 0)
model. The learning process of this model will be described here.

The ARIMA(p, 1, 0) model is described by Eq. (9.30). This is as linear equation
withX (1)

t being the dependent variable andX (1)
t−1, . . . ,X

(1)
t−p the independent variables.

Supposing that a traffic time series of size M is available, the following system of
linear equations can be constructed:

X (1)
p+1 = φ1X (1)

p + · · · + φpX
(1)
1

X (1)
p+2 = φ1X

(1)
p+1 + · · · + φpX

(1)
2

...

...

...

X (1)
M = φ1X

(1)
M−1 + · · · + φpX

(1)
M−p,

, (9.32)

or in matrix form:
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⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (1)
p . . . X (1)

1

X (1)
p+1 . . . X (1)

2
...

. . .
...

...
. . .

...
...

. . .
...

X (1)
M−1 . . . X (1)

M−p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎣
φ1
...

φp

⎤

⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (1)
p+1

X (1)
p+2
...
...
...

X (1)
M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.33)

This system can be rewritten in the form:

Aφ = b, (9.34)

where

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (1)
p . . . X (1)

1

X (1)
p+1 . . . X (1)

2
...

. . .
...

...
. . .

...
...

. . .
...

X (1)
M−1 . . . X (1)

M−p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, φ =
⎡

⎢⎣
φ1
...

φp

⎤

⎥⎦ , b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X (1)
p+1

X (1)
p+2
...
...
...

X (1)
M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.35)

This system contains (M − p − 1) equations and p unknowns. Supposing that N
traffic time series of sizeM are available and a single ARIMA(p, 1, 0) model should
be constructed, then the corresponding system will have N · (M − p − 1) equations
and p unknowns. A single ARIMA(p, d , 0) model that will be constructed from the
N traffic time series will have N · (M − p − d) equations and p unknowns [5].

In the context of short-term traffic forecasting problem, the system (9.34) is
overdetermined, meaning that it has more equations than unknowns. Such systems
are solved approximately, where the best approximation is the one that minimizes
the square of the difference between the actual and the approximate solution. This
quantity, which is called the residual, is described as follows:

r = b − Aφ. (9.36)

Thus, the following optimization problem arises:

φ̂ = argmin
φ

‖b − Aφ‖2. (9.37)

This problem is called the least squares problem. The function

S (φ) = ‖b − Aφ‖2, (9.38)
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is the objective function of this optimization problem and can be rewritten as follows:

S (φ) = ‖b − Aφ‖2
= bTb − bTAφ − φTATb + φTATAφ. (9.39)

The quantity φTATb has dimension 1× 1 so it is scalar and it is equal to its
transpose for which is applies:

(
φTATb

)T = bT
(
AT

)T (
φT

)T = bTAφ. (9.40)

Thus, the objective function S becomes:

S (φ) = bTb − (
φTATb

)T − φTATb + φTATAφ

= bTb − 2φTATb + φTATAφ. (9.41)

In order to minimize the objective function S, its first derivative with respect to φ

should be set to zero. Hence:

dS

dφ
= −ATb + ATAφ = 0. (9.42)

Based on the Eq. (9.42), the normal equations of the least squares problem are
derived:

ATAφ = ATb. (9.43)

The least squares problem has a unique solution, if the matrix A has full column
rank, given by

φ̂ = (
ATA

)−1
ATb. (9.44)

where the matrix A+ = (
ATA

)−1
AT is the Moore-Penrose pseudoinverse of A.

The solution of the least squares problem can be computed by inverting the matrix
ATA, but this is not computationally efficient, especially for large matrices. A more
efficient way for solving the least squares problem is by computing the Cholesky
decomposition of the ATA matrix. If this matrix is well-conditioned and positive
definite, then its Cholesky decomposition is given by the following equation:

ATA = RTR. (9.45)

After the decomposition of the ATA matrix, the normal equations (9.43) will
become:

RTRφ = ATb. (9.46)
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The solution of the above system is obtained in two steps. A forward substitution
step, solving for z:

RT z = ATb, (9.47)

and a back-substitution step, solving for φ:

Rφ = z. (9.48)

Another way for solving the least squares problem is by decomposing the matrix
A. For instance, using the Singular Value Decomposition (SVD), A is decomposed as
follows:

A = U�V T , (9.49)

where Unxn orthogonal matrix whose columns are the left singular vectors of A,
Vpxp orthogonal matrix whose columns are the right singular vectors of A and �nxp

diagonalmatrixwhose elements in themain diagonal are the singular values ofmatrix
A. Based on this decomposition, the solution of the least squares problem will be:

φ̂ = V�+UTb, (9.50)

where �+ is the Moore-Penrose pseudoinverse of �, which can be obtained easily
by inverting the non-zero elements of �.

Additionally, instead of using the SVD of A, the QR decomposition of A can be
used in the following form:

A = Q

(
R
0

)
, (9.51)

whereQnxn orthogonal matrix and Rpxp upper triangular matrix with rii > 0. The Eq.
(9.36) left multiplied by QT gives:

QTr = QT (b − Aφ)

= QTb − QTAφ

= QTb − (
QTQ

) (
R
0

)
φ = QTb − I

(
R
0

)
φ =

[(
QTb

)
p − Rφ(

QTb
)
n−p

]
. (9.52)

The quantity ‖r‖2 is minimized when:

(
QTb

)
p
− Rφ = 0 ⇔

Rφ = (
QTb

)
p. (9.53)

This equation can be easily solved for φ̂ because R is an upper triangular matrix.
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9.4.3 Space-Time ARIMA (STARIMA)

An extension of the ARIMA model is the Space-Time ARIMA (STARIMA) model
which takes into account the spatiotemporal correlations between the roads segments
of the network. The general seasonal STARIMAmodel is described by the following
equation:

φp,λ (L) 
P,� (L) (1 − L)d
(
1 − LS

)D
Xt = θq,m (L) �Q,M

(
LS

)
εt, (9.54)

where

φp,λ (L) = I −
p∑

k=1

λk∑

l=0

φklWlL
k , (9.55)


P,�

(
LS

) = I −
P∑

k=1

�k∑

l=0


klWlL
kS , (9.56)

θq,m (L) = I −
q∑

k=1

mk∑

l=0

θklWlL
k , (9.57)

�Q,M
(
LS

) = I −
Q∑

k=1

Mk∑

l=0

�klWlL
kS . (9.58)

The indexes k, l represent the temporal and the spatial lag, respectively. The 
k,l

and φk,l are the seasonal and non-seasonal autoregressive parameters, respectively,
and similarly�k,l and θk,l are the seasonal and non-seasonal moving average param-
eters. The P, p are the autoregressive orders and Q, q the moving average orders of
the seasonal and non-seasonal components of the model respectively. The �k and λk

are the seasonal and non-seasonal spatial orders of the kth autoregressive term, Mk

and mk the seasonal and non-seasonal spatial orders of the kth moving average term
and D, d the number of seasonal and non-seasonal degrees of differencing. Finally,
εt are the (random) error terms of Xt , identically distributed with normal distribution
of zero mean and constant variance σ 2

ε .
Supposing a time series Xt that does not exhibit seasonal characteristics (e.g.

a traffic time series that corresponds to one day), the STARIMA(p, d , q) model is
described by the following simplified equation:

φp,λ (L) (1 − L)dXt = θq,m (L) εt, (9.59)

or equivalently for d = 1

φp,λ (L)X (1)
t = θq,m (L) εt . (9.60)
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Fig. 9.1 Adjacency
definition based on the
concept of importing and
exporting traffic from a road

The spatiotemporal correlations between the roads of the network are expressed
through theWl N × N matrix where N is the number of roads in the traffic network.
This matrix is defined based on the selected definition of adjacency for the exam-
ined traffic network. For instance, the element wij, where i, j refer to two separate
roads, may represent either the number of intermediate roads between i and j or the
amount of available public transportation means connecting them or the number of
toll stations between them, etc. [23]. The index l in Wl denotes the adjacency order.

An interesting definition of adjacency is based on the concept of importing or
exporting traffic from a road. In particular, for a road i, a spatial 1st order neighbor is
a road j that begins from or ends to the start or the end node of i and imports or exports
traffic from i. Subsequently, the 2nd order neighbors of i are the 1st order neighbors
of its 1st order neighbors, its 3rd order neighbors are the 1st order neighbors of its
2nd order neighbors and so on. Two roads i and j are kth order neighbors if and only
if at least one of the k − 1th order neighbors of i, is 1st order neighbor of j. A road i
is 0th order neighbor with itself. This definition of adjacency is depicted in Fig. 9.1.
According to the above description, the adjacency matrix Wl is defined as follows:

Wl,ij =
{
1, if i, j lth order neighbors
0, otherwise

. (9.61)

Each Wl can be constructed from Wl−1 as follows:

Wl,ij =
{
1, if ∃k : Wl−1,ik = W1,jk = 1
0, otherwise

. (9.62)

The general STARIMA model is non-linear and a non-linear optimization tech-
nique (like the Levenberg-Marquardt algorithm) is required in order to estimate the
φ and θ parameters. In the usual case that q = 0, d = 1 and l = 1 and assuming
the 1st order neighbors of a road r are the same for all autoregressive terms, the
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corresponding simplified model is described by the following equation:

X (1)
r,t = φ1X

(1)
r,t−1 + · · · + φpX

(1)
r,t−p

+β11X
(1)
neigh1,t−1 + · · · + β1kX

(1)
neighk ,t−1

...

+βp1X
(1)
neigh1,t−p + · · · + βpkX

(1)
neighk ,t−p

. (9.63)

The contribution of all 1st order neighbors for each autoregressive term m can be
computed as follows:

X (1)
neighav,t−m = 1

k

k∑

i=1

X (1)
neighi,t−m. (9.64)

Based on the Eq. (9.64), the Eq. (9.63) can take its final form:

X (1)
r,t = φ1X

(1)
r,t−1 + · · · + φpX

(1)
r,t−p + γ1X

(1)
neighav,t−1 + · · · + γpX

(1)
neighav,t−p. (9.65)

As shown, the above equation is linear. Therefore, the learning process of this
STARIMA model, i.e. the estimation of the φ and β parameters, can be performed
by solving the least squares problem as in the case of the ARIMA model.

9.4.4 Lag-STARIMA

Another parametric model that has been successfully used for short-term traffic
forecasting is the Lag-STARIMAmodel [7]. The Lag-STARIMAmodel is a variant of
the STARIMAmodel, which again takes into account the spatiotemporal correlations
between the roads of the network, but it uses an adjacency definition that is not based
on the topology of the network but solely on the traffic time series of the roads.

The model is based on the identification of the traffic time series whose values
affect those of the examined traffic time series. For instance, the speed value for a road
at the current time interval may be affected from the speed values of its spatial local
neighbors at the current interval, but also from the speed values of other (probably
distant) roads of the whole network at previous time intervals. This happens because
the effects of traffic at a specific road require some time intervals to be propagated
at the whole network. These relations between the traffic values of the roads of the
whole network can be captured using correlation metrics.

One of the most widely used metrics for discovering correlations between time
series is the Pearson Correlation Coefficient (PCC). Given two time series Xt and
Yt , PCC is defined as follows:

PCCXY = E [(Xt − μX ) (Yt − μY )]

σX σY
, (9.66)
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whereμX ,μY are themeanvalues andσX ,σY the standarddeviations of the time series
Xt and Yt respectively. The PCC fails to capture the effect of lag at the correlation
between the time series. For example, the speed value of a road r1 at the time interval
t may not be well correlated with the speed values of the roads r2 and r3 at the same
interval. But supposing that the vehicles travel in the direction r3 → r2 → r1 and
that it takes one time interval for vehicles to travel from r3 to r2 and one time interval
to travel from r2 to r1, the speed value of r1 at interval t will be well correlated with
the speed value r2 at interval t − 1 and with the speed value of r3 at interval t − 2.
Such correlations can be captured using the Cross Correlation Coefficient (CCC)
defined as follows:

CCCXY (l) = E
[
(Xt − μX ) (Yt+l − μY )

]

σX σY
, (9.67)

where l < 0 is the lag between the correlated time series. The metric used in the
Lag-STARIMA model for estimating the correlations between the traffic time series
of the roads of the network is derived by the CCC and described by the following
equation:

CoDXY (l) = 100 ·
[
E

[
(Xt − μX ) (Yt+l − μY )

]

σX σY

]2

. (9.68)

This metric is called Coefficient of Determination (CoD) and it expresses the
effect that one time series has to the other at a specific lag l. Defining as Ml , the set
of m largest values of CoDXY (l), the weight matrix Wl is defined as follows:

Wl,ij =
{
1, if CoDXY (l) ∈ Ml

0, otherwise
, (9.69)

where i, j two traffic time series corresponding to two roads of the traffic network.
As it is understood, the lag l here has the same meaning with the order of neighbors
described in the previous section.

Using the same assumptions as in the case of the STARIMA model (i.e. q = 0,
d = 1, l = 1 and that for a road r the most well correlated roads for lag 1 are the
same for all autoregressive terms) the Lag-STARIMA(p, 1, 0) with l = 1 model is
defined by the following equation:

X (1)
r,t = φ1X

(1)
r,t−1 + · · · + φpX

(1)
r,t−p+

+δ1X
(1)
tr_neighav,t−1 + · · · + δpX

(1)
tr_neighav,t−p

, (9.70)

where the index tr_neigh is used to distinguish between the neighbors estimated with
spatial definition and the neighbors estimated using the CoD coefficient. Again, the
equation describing the model is linear and therefore the learning process of this
Lag-STARIMA model is done by solving the least squares problem.
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9.4.5 Graph-Based Lag-STARIMA (GBLS)

The Lag-STARIMAmodel is based on the estimation of traffic correlations between
the roads of the network as already mentioned. The straightforward approach (brute-
force) for the identification of the most well correlated roads with a road of interest
r, requires N − 1 CoD computations, where N is the total number of roads in the
network. This process takes place N times for all the roads of the traffic network and
therefore, the total number of CoD computations for all the roads of the network is
N × (N − 1). The computational complexity of the process that implements these
computations isO(N 2). For large traffic networks,whereN is in the order of hundreds
or even thousands, the required time for these computations can be prohibitive,
especially for applications that need (close to) real time short-term traffic forecasting.

In order to deal with this problem, Salamanis et al. [23] proposed a graph-based
method for reducing the computational requirements of the CoD evaluations. In this
approach, initially the traffic network was represented in the form of a directed graph
based on the definition of the in and out roads. The in roads of a road of interest are
those that end to its start or end node, whereas the out roads are those that start from
its start or end node. For instance, in Fig. 9.1 the in roads or r are 1, 2 and 6 while
the out roads are 3, 4 and 5. The in roads import traffic to the road of interest and
the out roads export traffic. When a road has only one direction then it has only in
or only out roads, whereas when it is bidirectional it has both.

Based on this definition, a finite directed graph is constructed in which each node
represents a road of the network and each edge a direct in or out connection. More
formally, two nodes n1, n2 in the graph are connected with an edge if and only if n2 is
an in or out road of n1 or vice versa. The adjacency matrix of the graph is constructed
based on the following formula:

Aij =
{
1, if j out road of i
0, otherwise

. (9.71)

An example of an adjacency matrix of such graph is

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
1 0 0 0 0 1
1 1 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 1
0 1 1 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
. (9.72)

The non-zero elements of the adjacency matrix in row i represent the out connec-
tions of i and those at column j the in connections of j. The matrix is not (in general)
symmetric, meaning that if Aij = 1, that is road j is an out road of road i, then this
does not (necessarily) mean that Aji = 1, that is road i is an out road of j. The matrix
will be symmetric if and only if all the roads of the network are bidirectional. Also,
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Fig. 9.2 Process of
accumulating the vertices of
an adjacency class

the matrix is sparse, which reduces the memory requirements for storing it. Finally,
a road is not considered as in or out road of itself and therefore:

Aii = 0,∀i ∈ [1,N ] . (9.73)

Following the formation of the graph, the neighbors of a vertex at a given distance
d can be found by accumulation of all the neighboring vertices up that distance.
These neighbors define an adjacency class whose level is d − 1 [23]. The adjacency
class of level 0 (i.e. distance 1) of a specific vertex, includes only the vertex itself.
The vertices of an adjacency class of a specific vertex are accumulated using a
variant of the Breadth First Search (BFS) graph traversal algorithm. The process of
accumulating the vertices is shown in Fig. 9.2.

The aforementioned variant of theBFS algorithm isModifiedBreadth First Search
(MBFS) is described in Algorithm 1. The algorithm operates on the rows of the
adjacency matrix A, meaning that it accumulates vertices with respect to the out
roads. The accumulation of vertices with respect to the in roads requires operation
on the columns of the A matrix or alternatively the rows of its transpose AT . Finally,
if both the in and the out roads are required, then the A + AT matrix is utilized. In this
case, the A + AT matrix is not explicitly stored but the rows of A and AT are used to
determine all the neighbors of the vertex. Thus, in this case, step 6 of the algorithm
should be replaced by B = B ∪ {Au} ∪ {

AT
u

}
[23].
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Algorithm 1ModifiedBFS(u,A,ls)
1: N = {u}
2: Mark u as visited
3: for i = 2 to Is do
4: B = {}
5: for v ∈ N do
6: B = B ∪ Av

7: N = N ∪ B

In order to avoid duplicate entries at step 6 of the MBFS algorithm, instead of
accumulation of all neighbors and sorting, a structure containing a dense vector and
a list is used. This dense vector is of size equal to the total number of vertices (roads)
with all its entries initially set to zero. The list is used to retain the positions of
the non-zero elements in the dense vector. A vertex is admitted the set B only if its
respective position in the dense vector is zero and does not belong to the set N (step
7) during a previous iteration [23]. The implementation of the set N is similar to
that of set B. When the algorithm finishes, the ls level neighbors of the vertex u are
copied to a vector with size equal to the number of neighbors. The computational
complexity of the MBFS algorithm [23] is given by:

O

(
N ·

(
nnz (A)

N

)p)
, (9.74)

where nnz(A) is the number of non-zero elements of the adjacency matrix A and p
the level of the adjacency class until which neighboring vertices are selected. For the
adjacency matrix A, it holds:

nnz (A) ≥ N . (9.75)

This inequality holds because each road of the network should have at least 1
in or out road. If there is a road with 0 in or out roads, it means that this road is
cut off from the rest of the network and the corresponding graph has an additional
connected component. As a single coherent graph with just 1 connected component
is considered, this cannot be the case. Hence, the computational complexity ofMBFS
is:

O (aN ) , a ≥ 1. (9.76)

This is a significant improvement compared to the complexity of the naive
approach which is O(N 2). This improvement is depicted in Figs. 9.3, 9.4, 9.5 and
9.6. In particular, supposing four traffic networks with 100, 200, 300 and 400 roads
respectively and one traffic time series of size 288 per road, the CoD computations
are performed using the naive (brute-force) and the MBFS method (with 3 different
levels). As shown, the performance of the MBFS method is, in all cases, substan-
tially improved compared to the brute-force method. The data used for producing
the results shown in the above figures correspond to the traffic network of the state of
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Fig. 9.3 Performance of the CoD computations using the brute-force and the MBFS method in a
traffic network with 100 roads

Fig. 9.4 Performance of the CoD computations using the brute-force and the MBFS method in a
traffic network with 200 roads

California, USA and are available through the online repository: Caltrans Perfor-
mance Measurement System (PeMS).

The memory requirements of the MBFS algorithm, are limited to two dense vec-
tors of size equal to the total number of vertices and two lists. Furthermore, as the
adjacency matrices are sparse, they are stored using the Compressed Sparse Row
storage format. As the correlations between the roads of the network are computed
using this method, the Lag-STARIMAmodel is used for conducting the predictions.
The described methodology for efficiently computing the correlations between roads
of large traffic networks combined with the Lag-STARIMA model results in a new
parametric algorithm for short-term traffic forecasting, namely theGraph-BasedLag-
STARIMA (GBLS) whose learning process is, as in the case of the Lag-STARIMA
model, the solution of the least squares problem.
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Fig. 9.5 Performance of the CoD computations using the brute-force and the MBFS method in a
traffic network with 300 roads

Fig. 9.6 Performance of the CoD computations using the brute-force and the MBFS method in a
traffic network with 400 roads

References

1. Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flowprediction for road transportation networks
with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16(2), 653–662 (2015)

2. Agafonov, A., Myasnikov, V.: Traffic flow forecasting algorithm based on combination of
adaptive elementary predictors. Commun. Comput. Inf. Sci. 542, 163–174 (2015)

3. Basu, S., Meckesheimer, M.: Automatic outlier detection for time series: an application to
sensor data. Knowl. Inf. Syst. 11(2), 137–154 (2007)

4. Bekhor, S., Lotan, T., Gitelman, V., Morik, S.: Free-flow travel speed analysis and monitoring
at the national level using global positioning system measurements. J. Transp. Eng. 139(12),
1235–1243 (2013)

5. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting & Control, 4th
edn. Wiley (2008)



230 G. A. Gravvanis et al.

6. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local out-
liers. In: Proceedings 2000 ACM Sigmod International Conference Management Data, pp.
1–12 (2000)

7. Diamantopoulos, T., Kehagias, D., Konig, F. G., Tzovaras, D.: Investigating the effect of global
metrics in travel time forecasting. In: IEEE Conference on Intelligent Transportation Systems,
Proceedings, ITSC, pp. 412-417 (2013)

8. Guo, J., Huang, W., Williams, B.M.: Adaptive Kalman filter approach for stochastic short-term
traffic flow rate prediction and uncertainty quantification. Transp. Res. Part C Emerg. Technol.
43, 50–64 (2014)

9. Gustafsson, F., et al.: Particle filters for positioning, navigation, and tracking. IEEE Trans.
Signal Process. 50(2), 425–437 (2002)

10. Habtemichael, F.G., Cetin, M.: Short-term traffic flow rate forecasting based on identifying
similar traffic patterns. Transp. Res. Part C Emerg. Technol. 66, 61–78 (2016)

11. Hu, W., Yan, L., Liu, K., Wang, H.: A Short-term traffic flow forecasting method based on the
hybrid PSO-SVR. Neural Process. Lett. 43(1), 155–172 (2016)

12. Huang, M.L.: Intersection traffic flow forecasting based on GSVR with a new hybrid evolu-
tionary algorithm. Neurocomputing 147, 343–349 (2015)

13. Huang, W., Song, G., Hong, H., Xie, K.: Deep architecture for traffic flow prediction: deep
belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15(5), 2191–2201
(2014)

14. Kumar, K., Parida,M., Katiyar, V.K.: Short term traffic flow prediction for a non urban highway
using artificial neural network. Proc. Soc. Behav. Sci. 104, 755–764 (2013)

15. Kumar, S.V., Vanajakshi, L.: Short-term traffic flow prediction using seasonal ARIMA model
with limited input data. Eur. Transp. Res. Rev. 7, 3 (2015)

16. Li, M.W., Hong, W.C., Kang, H.G.: Urban traffic flow forecasting using Gauss-SVR with cat
mapping, cloud model and PSO hybrid algorithm. Neurocomputing 99, 230–240 (2013)

17. Lv, L., Chen, M., Liu, Y., Yu, X.: A plane moving average algorithm for short-term traffic
flow prediction. In: Advances in Knowledge Discovery and Data Mining: 19th Pacific-Asia
Conference, PAKDD 2015. Ho Chi Minh City, Vietnam, 19–22 May 2015, pp. 357–369,
Proceedings, Part II; Cao, T., Lim, E.P., Zhou, Z.H., Ho, T.B., Cheung, D., Motoda, H. (eds.)
Cham, Springer International Publishing (2015)

18. Lv, Y., Duan, Y., Kang, W., Li, Z., Wang, Y.: Traffic flow prediction with big data: a deep
learning approach. IEEE Trans. Intell. Transp. Syst. 16(2), 865–873 (2015)

19. Ma, X., Tao, Z.,Wang, Y., Yu, H.,Wang, Y.: Long short-termmemory neural network for traffic
speed prediction using remote microwave sensor data. Transp. Res. Part C Emerg. Technol.
54, 187–197 (2015)

20. Moretti, F., Pizzuti, S., Panzieri, S., Annunziato, M.: Urban traffic flow forecasting through
statistical and neural network bagging ensemble hybrid modeling. Neurocomputing 167, 3–7
(2015)

21. Niu, X., Zhu, Y., Zhang, X.: DeepSense: a novel learning mechanism for traffic prediction with
taxi GPS traces. In: 2014 IEEE Global Communications Conference, GLOBECOM 2014, pp.
2745–2750 (2014)

22. Polson, N., Sokolov, V.: Deep learning for short-term traffic flow prediction. Transp. Res. Part
C Emerg. Technol. 79, 1–17 (2017)

23. Salamanis, A., Kehagias, D.D., Filelis-Papadopoulos, C.K., Tzovaras, D., Gravvanis, G.A.:
Managing Spatial graph dependencies in large volumes of traffic data for travel-time prediction.
IEEE Trans. Intell. Transp. Syst. 17(6), 1678–1687 (2016)

24. Wang, H., Liu, L., Dong, S., Qian, Z., Wei, H.: A novel work zone short-term vehicle-type
specific traffic speed prediction model through the hybrid EMDARIMA framework. Transp. B
4(3), 159–186 (2016)

25. Wang, J., Shi, Q.: Short-term traffic speed forecasting hybrid model based on chaos-wavelet
analysis-support vector machine theory. Transp. Res. Part C Emerg. Technol. 27, 219–232
(2013)



9 Advanced Parametric Methods for Short-Term Traffic Forecasting… 231

26. Wang, Z., Lu, M., Yuan, X., Zhang, J., Van De Wetering, H.: Visual traffic jam analysis based
on trajectory data. IEEE Trans. Vis. Comput. Graph. 19(12), 2159–2168 (2013)

27. Wojnarski, M., Gora, P., Szczuka, M., Nguyen, H.S., Swietlicka, J., Zeinalipour, D.:
IEEE ICDM 2010 contest: TomTom traffic prediction for intelligent GPS navigation. In:
Proceedings—IEEE International Conference on Data Mining, ICDM, pp. 1372–1376 (2010)

28. Wu, C.J., Schreiter, T., Horowitz, R.: Multiple-clustering ARMAX-based predictor and its
application to freeway traffic flow prediction. In: Proceedings of the American Control Con-
ference, pp. 4397–4403 (2014)

29. Yang, H.F., Dillon, T. S., Chen, Y.P.P.: Optimized structure of the traffic flow forecasting model
with a deep learning approach. IEEE Trans. Neural Netw. Learn. Syst. 1–11 (2016)

30. Yao,B., et al.: Short-term traffic speed prediction for an urban corridor.Comput.Civ. Infrastruct.
Eng. 32(2), 154–169 (2017)

31. Yu, Y.: Short-term traffic forecasting using the double seasonal holt-winters method. In: CICTP
2016, pp. 397–407 (2016)

32. Yu, H., Wu, Z., Wang, S., Wang, Y., Ma, X.: Spatiotemporal recurrent convolutional networks
for traffic prediction in transportation networks. Sensors (Switzerland) 17(7) (2017)

33. Yu, R., Li, Y., Shahabi, C., Demiryurek, U., Liu, Y.: Deep learning: a generic approach for
extreme condition traffic forecasting. In: Proceedings 2017 SIAM International Conference
Data Mining, pp. 777–785 (2017)

34. Zhang, Y., Zhang, Y., Haghani, A.: A hybrid short-term traffic flow forecasting method based
on spectral analysis and statistical volatility model. Transp. Res. Part C Emerg. Technol. 43,
65–78 (2014)

35. Zheng, Z., Su, D.: Short-term traffic volume forecasting: a k-nearest neighbor approach
enhanced by constrained linearly sewing principle component algorithm. Transp. Res. Part
C Emerg. Technol. 43, 143–157 (2014)

36. Zhu, J.Z., Cao, J.X., Zhu, Y.: Traffic volume forecasting based on radial basis function neural
network with the consideration of traffic flows at the adjacent intersections. Transp. Res. Part
C Emerg. Technol. 47(2), 139–154 (2014)



Chapter 10
Network Traffic Analytics for Internet
Service Providers—Application in Early
Prediction of DDoS Attacks
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Abstract In this chapter an approach for modelling intra-values forecasts of a time-
series Network Traffic using a mean reverting stochastic process (MRSP) is pre-
sented. An autoregressive model of order n, AR(n), formalized in state space, with
its unobservable coefficients estimated by a Kalman filter using n past time series
observations produces [AR(n)-KF] estimates, which constitute the mean reverting
part of the process. A Brownian motion multiplied by a diffusion (or volatility) term
constitutes the stochastic part of the process. The determinant and trace of theKalman
filter error covariancematrixmultiplied by the process itself is used to capture the dif-
fusion dynamics in the intra-values time-series. The proposed algorithm is designed
especially for network traffic and it does not assume stationary data. The method
was tested using real traffic data from GRnet concerning our institutional network.
Experimental as well as simulation results based on real daily data from the GRnet
IP traffic demonstrate the applicability of the model. The proposed MRSP algorithm
was able to identify successfully unusual activities contained in the test datasets
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10.1 Introduction

Today almost all homes, organizations and companies in the world are connected
to the Internet, using millions of devices of all kinds. Bandwidth demand is expo-
nentially growing in order to cover emerging needs of multimedia traffic, especially
video; the arrival of the Internet of Things (IoT) will further complicate the situation.
This trend pushes for the upgrade of infrastructure (e.g., Fiber-to-the-Home—FTTH)
but this won’t happen instantaneously. Therefore, Internet Service Providers (ISPs)
with thousands of customers, usually of different priority, are in need of applying
smart prediction algorithms in order to be able to serve their customer needs during
the peak hours.

Amain issue that Internet providers face is the availability of services. Distributed
denial of service (DDoS) attacks against targeted servers may happen anytime,
putting critical infrastructures out of order [8, 17]. In DDoS attacks, many agents
cooperate to cause excessive load to a victim host, service or network. Over the years,
DDoS attacks have increased in importance, number and strength, becoming a major
problem. In a recent survey of network operators [3], DDoS was the most commonly
identified ‘significant threat’ (76% of respondents). Furthermore, significant growth
in size of attacks and in their sophistication is reported [3, 8, 26].

In this work real network traffic of an institutional LAN in “reduced resolution
dataset” (RRD) format is processed. Bandwidth-flooding DoS/DDoS attacks pro-
ducing excessive traffic aiming at exceeding the server’s capability to process the
requests will also be discussed. The traffic values are provided in 5 min intervals.
A brief description of how the Fiber Ethernet Bandwidth is managed by providers
via the institutional router is given in [29]. Hence, traffic from all sources is aggre-
gated and the final volume is provided at the end of the interval (for each input port).
Therefore, the router cannot discriminate whether excessive load within a single
interval is caused by one or by multiple distributed agents. Under this perspective,
bandwidth-flooding DoS and DDoS attacks are treated equally in our approach.

The proposed approach is a Mean Reverting Stochastic Processes (MRSP) con-
sisting of a deterministic part and a stochastic part. The deterministic part is an AR(n)
model with coefficients estimated with a Kalman filter, [AR(n)-KF]. The stochastic
part is a Brownian motion multiplied by a diffusion (or volatility) term. The deter-
minant and the trace of the Kalman filter error covariance matrix multiplied by the
process itself is used to capture the diffusion dynamics in the intra-values time-series.
The MRSP algorithm produces intra-values within the 5 min intervals and identifies
successfully normal, as well as abnormal activities contained in the test datasets.
Abnormal activities include sudden peaks in traffic (due to an attack or misuse), zero
traffic rate (due to failures), and a nearly constant high peak (due to congestions or
DDoS attacks) [22].

This chapter is organized as follows: Section 10.2 describes the procedure fol-
lowed and reviews related work. The proposed algorithm is described andmathemat-
ically formulated in Sect. 10.3. Section 10.4 presents the structure of the MRSP and
the parameter selection for simulating intra-values and DoS attacks using 5 min data
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Fig. 10.1 A typical graph by the RRDTOOL (workdays)

intervals and AR(N)-Kalman filter predictions.Matlab simulations based on real net-
work IP traffic obtained from GRnet are presented for the validation of the proposed
modelling approach. Section 10.5 presents the performance of the MRSP algorithm
on real data in RRD format. Next, some datasets were enhanced with artificial data
realistically representing DDoS attacks and anomalies for testing purposes. Simula-
tion results from these datasets demonstrate that the proposed algorithm detects any
abnormal behaviour. Applications on Router Bandwidth Demand estimation [2, 15],
as well as network traffic anomaly detection [20, 28] will be presented in Sect. 10.6.
Section 10.7 concludes this chapter.

10.2 The Procedure Adopted

In this work we take the network traffic of an institutional LAN in rrd (reduced
resolution dataset) format provided by default in 5 min intervals. Although this
interval can be changed, this is the standard adjustment for Multi Router Traffic
Grapher (MRTG) [23, 24] and it is used in most implementations. Therefore, the
default sampling rate (5-min) was adopted in this work.

For visualizing long periods, MRTG does some averaging over a longer step.
Weekly traffic is expressed in 30-min steps, monthly traffic in 2-h steps, and yearly
traffic in 1-day steps. In order to preserve some information lost by averaging, the tool
logs together the average and themaximumvalue for each step. They can both be used
to produce forecasts, regarding the average or the maximum behaviour respectively
[21].

A typical Network traffic produced by the popular and widely used RRDTOOL
[25] is shown in Fig. 10.1.
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Fig. 10.2 Network traffic graphs for a weekend (left) and half workday (right)

In the graph of Fig. 10.1, the blue line represents the “outbound” traffic from the
ISP to the institutional LAN. In other words, the blue curve represents the download
traffic from the Internet towards the institution. On the other hand, the green shaded
area, which is significantly smaller, represents the “inbound”, traffic from the insti-
tutional LAN to the ISP (i.e., the upload traffic). The 24 hour time-line at the bottom
is full of 5 min durations [29].

As we can observe in Fig. 10.2, network traffic varies significantly during work-
days and weekends for the same institutional network.

The MRSP algorithm produces an artificial time-series of intra-values traffic
(which is not provided by the router) within the 5 min intervals which may be used
to:

1. Predict the network traffic for future intervals;
2. Detect a DDoS attack.

For the second item, simulated traffic data was generated, taking into account the
characteristics ofDDoS traffic from the bibliography, aswell as our own experiments.

10.2.1 Related Work

Geva et al. [8] survey Bandwidth Distributed (BW)DDoS attacks and defenses. They
claim that, while current BW-DDoS attacks employed relatively crude, inefficient,
‘brute force’ mechanisms, future attacks may be significantly more effective, hence,
much more harmful.

Moussas et al. model network traffic using autoregressive moving-average clas-
sical models (ARMA, ARIMA, SARIMA) [19, 22]. Shu et al. [27], model Wireless
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Traffic using SARIMA Models. Kuan Hoong et al. [12] use ARIMA to model bit
torrent network traffic.However, these classicalmodels require stationary time series.

Giannopoulos et al. [9] propose a StochasticModel with anAdaptive Proportional
Controller for the Evolution of User-Router Bandwidth Demand for Quality of Ser-
vice. The stochastic behaviour of their modified MRSP process is implemented by
a Bernoulli and a uniform distribution together (instead of the standard Brownian
motion).

Giannopoulos et al. [10] propose a Model for the Evolution of Router Bandwidth
Demand Using an Adaptive PID Controller for the production of intra-values within
the 5-min intervals. They also use Bernoulli and a uniform distribution together for
their modified MRSP process.

The current work uses an innovative MRSPmodel which is significantly different
compared to Giannopoulos et al. [9, 10]. The proposed algorithm not only produces
intra-values within the 5 min intervals but also, it estimates predictions for the next
intervals, as presented below.

10.3 The Proposed Approach

In our approach the ARMA and ARIMA models were avoided because they assume
stationary data (characterized by constant average and variance), which is not the
case for network traffic. Another reason calling for this choice is that the aforemen-
tioned classical models need a lot of past (historical) data (>50) in order to produce
predictions. A third reason for not selecting the ARMA and ARIMA models is that
users’ behaviour varies with time as some users are leaving while new users join,
thus, long historical data do not matter so much.

The proposed approach uses an AR(n) model with coefficients estimated by a
Kalman filter based on n past 5 min interval traffic values [5, 10]. The Kalman filter
does not need a stationary time-series in order to make predictions—in contrast to
AR, ARMA, ARIMA and SARIMAmodels. “It is clear also from the definition that
neither {Xt} nor {Yt} is necessarily stationary” [5, Chap. 8, p. 276].

The proposed algorithm uses an AR(n) model for predictions with n being 3–5
historical data values—a reasonable number for network traffic. Old data such as 50
historical values do not offer reliable information for the near future (e.g., the next
5–10 min), because users’ behavior varies largely with time. The coefficients of the
AR(n) model are estimated by a Kalman filter which uses an adaptive system noise
covariance matrix based on the variance of the real measurements. These [AR(n)-
KF] predictions then are used as the mean values the mean reverting stochastic
process (MRSP) will revert to. The MRSP uses an adaptive strength coefficient for
its deterministic part. The stochastic part consists of three components: an adaptive
diffusion (or volatility) coefficient, based on the square root of the determinant and
the trace of the Kalman filter error covariance (which, to the best of our knowledge,
has not been used before); the adaptive diffusion is multiplied by the square root of
the stochastic process itself according to the Cox-Ingersoll-Ross (CIR) model [7]
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(which is the second component), and a Brownian motion to capture the dynamics
of the evolution from a starting point to reach the AR(n) predictions (which is the
third component). This way theMRSPmodel produces a number of intra-values (e.g.
300) for every 5 min sample data value. Execution of the proposed algorithm on real
traffic data proves its correctness and efficiency.

10.3.1 Mathematical Formulation

Description of the Mean Reverting Stochastic Process
A stochastic process St with general mean reverting behavior is formally described
by the stochastic differential equation [4, 14]:

dSt � A(t)[μ(t) − St ]dt + G(t, St )dBt ; S0 � initial condition (10.3.1)

The deterministic part of (10.3.1) or so-called drift term is A(t)[μ(t) − St ], with
A(t) > 0 being the rate of reversion and μ(t) being the mean value (also called long
term mean) around which the process tends to oscillate, and it may be a constant,
a deterministic function of time, or even a stochastic process. The stochastic part
is G(t, St )dBt , with G(t, St ) > 0 being the diffusion-coefficient and Bt being the
Brownian motion (or Wiener or Wiener-Levy).

When St > μ(t), the drift term is negative and it results in a pull of the process St
back down toward the equilibrium level. Conversely, when St < μ(t), the drift term
is positive and it results in a pull of the process St back up to a higher equilibrium
value. For the stochastic part, since Bt is a random variable composed of a sum of
independent Gaussian increments, it is also Gaussian.

The solution of (10.3.1) is unique and takes the form [14]:

St � e−A(t)[t−t0]S0 +
∫ t

t0

e−A(s)[t−s][μ(t)ds + G(s, St )dBs]; t0 ≤ t ≤ T (10.3.2)

which has the characteristic that fluctuates randomly, but tends to revert to some fun-
damental level μ(t) with some reversion behavior, which depends upon the choices
of the speed of the reversion parameter A(t) > 0, and the nonrandom or random but
continuous function G(t, St ) > 0.

For simulation purposes, using the method of Euler–Maruyama [11], the dis-
cretization of (10.3.1) in an interval t ∈ [t0, T ] with increments i � 1, 2, . . . , N , for
some integer N , is:

Si+1 � A(ti )[μ(T ) − Si ]dt + G(ti , Si )
[√

dtN (0, 1)
]
; Si0 � initial condition

(10.3.3)
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where N (0, 1) denotes the normal (Gaussian) process with zero mean and unit vari-
ance and the required step interval dt � T/N . The behavior of the discretized mean
reverting stochastic process Si remains the same as that for the continuous case St .

10.3.2 State Space Model—Autoregressive
Model—Discrete-Time Kalman Filter

State space model: A linear, discrete-time, finite-dimensional system with noisy
input and noisy output is described with the following state-space equations [1, 16]:

xk+1 � Fkxk + wk (10.3.4)

zk � yk + vk � HT
k xk + vk (10.3.5)

The unobserved variables of interest is the system state xk at discrete-time k ≥ 0.
The system output is yk , which usually is noisy. As such a noise process {vk} is added
to it resulting in the observed measurement process {zk}. The matrices Fk and Hk

are of proper dimensions and known. The system input noise process {wk} and the
measurement output noise process {vk}, are independent and individually Gaussian
white (uncorrelated from instant to instant and stationary) noise with zero mean and
known covariance, i.e., {wk} ∼ WN (0, Qkδks) and {vk} ∼ WN (0, Rkδks), where δks
denotes the Kronecker delta which is 1 for k � s and zero otherwise. We assume that
the initial state x0 is a Gaussian random variable with known mean E[x0] � x̄0 and
known covariance E

{
[x0 − x̄0][x0 − x̄0]T

} � P0, and also that it is independent of
wk and vk , for any k.

Autoregressive model: Now a model that expresses a univariate time-series sys-
tem output yk as a linear combination of past observations yk−n (which are the
observed measurements zk−n) and a white noise vk is referred to as an autoregressive
of order n [or AR(n)] model and is given by the equation:

yk � −a(1)k yk−1 − a(2)k yk−2 − · · · − a(n)k yk−n + vk (10.3.6)

The unknown set of parameters
{
a(1)k , . . . , a(n)k

}
are referred to as the AR(n) coef-

ficients, which in case they are constant, with sufficient yk−n observedmeasurements,
can be found by solving a set of linear equations. Due to random errors in yk though,
it is more realistic to consider the coefficients a(i)k , i � 1, 2, . . . , n, as being noisy.
Thus, it is assumed that they are of the form a(i)k+1 � a(i)k + w(i)

k , where each w(i)
k is a

zero mean, white, Gaussian random process, independent of w( j)
k for i �� j , and also

independent of each vk .
Defining now all these unknown noisy AR(n) coefficients as an n-dimensional

state vector xk �
[
x (1)k x (2)k . . . x (n)k

]T
�

[
a(1)k a(2)k . . . a(n)k

]T
, and also defining
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Table 10.1 Discrete-time Kalman filter equations

Time propagation (or prediction
equations):

x̂k+1/k � x̂k/k (10.3.10)

Pk+1/k � Pk/k + Qk (10.3.11)

Measurement update (or correction) equations:

Kk+1 � Pk+1/k Hk+1

[
HT
k+1

Pk+1/k Hk+1 + Rk+1

]−1
(10.3.12)

x̂k+1/k+1 � x̂k+1/k + Kk+1

[
zk+1 − HT

k+1
x̂k+1/k

]
(10.3.13)

Pk+1/k+1 �
(
I − Kk+1H

T
k+1

)
Pk+1/k

(
I − Kk+1H

T
k+1

)T
+ Kk+1Rk+1K

T
k+1

(10.3.14)

an n-dimensional, white, zero mean, Gaussian process {wk} as the vector process
formed from all the w(i)

k , we get the following system state equation:

xk+1 � xk + wk (10.3.7)

Also, if we define the row vector of past observations:

HT
k �

[
−yk−1 −yk−2 · · · −yk−n

]
�

[
−zk−1 −zk−2 · · · −zk−n

]
(10.3.8)

then Eq. (10.3.6) with (10.3.8) becomes the observed state measurements equation:

yk � HT
k xk + vk (10.3.9)

Thus, with the above definitions, the autoregressive of order n [or AR(n)] model
has been transformed into a linear, discrete-time, finite-dimensional noisy input state
space Eq. (10.3.7) with Eq. (10.3.9) being the noisy output.

Remark 1 In this state space formulation of the AR(n) model, it is not required for
the time series data to be stationary, in contrast with the classical formulation case,
where it is necessary for the time series data to be transformed by differencing or by
removing trend and seasonal components before processing [5, 6].

Discrete-timeKalman filter: The one-step prediction problem now is to produce
an estimate at time k + 1 of the system states x̂k+1/k+1 (which are the AR(n) coef-
ficients) using n noisy measured time-series data {zk−1, zk−2, . . . , zk−n}, and from
(10.3.9) the predicted yk+1 can be calculated. In this case, with the above definitions,
the solution to the problem is given by the discrete-time Kalman filter recursive
equations [1, 16] as listed in Table 10.1.
Where the matrices Rk � E

[
vkvTk

]
, Qk � E

[
wkwT

k

]
, and I n×n is the n × n identity

matrix (all 1’s in the main diagonal and zeros elsewhere).
Equation (10.3.13) is initialized with x̂1/0 set equal to the vector of a priori

estimates of the AR(n) coefficients. The one step predicted output is the term
yk+1 � HT

k+1
x̂k+1/k and the residual or so called innovation sequence is rk+1 �[

zk+1 − HT
k+1
x̂k+1/k

]
.

Equation (10.3.14) is initialized with P1/0 set equal to the a priori covariance
matrix of the error in these coefficients. The matrix Kk+1 is called the Kalman filter
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gain. Notice that the gain matrix Kk+1 depends inversely on Rk+1—the larger the
variance of the measurement error, the lower the weight is given to the measurement
in making the forecast for the next period, given the current information set. The
matrixQk describes the confidence in the systemstateEq. (10.3.4). It canbe estimated
using the Maximum Likelihood Estimation method [1, 16], but usually is picked by
simulations to be Qk � γ I n×n , with γ being a positive scalar. The error covariance
matrix Pk+1/k+1 depends on the measurements via Kk+1. As the k measurements are
processed, it is desirable for the covariance to be Pk+1/k+1 ≤ ρk I n×n , where the
positive scalar ρk approaches zero or a small number ρ as k → ∞. Then, for almost
all themeasurements, themean square parameter estimation errorwill approach zero,
or some small quantity [1].

10.4 Structure and Parameters of the MRSP Algorithm

The structure of the previously described mean reverting stochastic process model
and the [AR(n)-KF] predictions for simulating intra-values and denial of service
(DoS) attacks within a 5 min time interval ti ∈ [0,T] are graphically depicted in
the Fig. 10.3. In this figure, the bottom part represents the measured time series data
values {zk, k � 1, 2, . . .}. The part above it represents the [AR(n)-KF] predicted
values yk , each based on a set of n previous time series data values {z1, z2, . . . , zn}.
The top part represents the mean reverting stochastic process (MRSP) generated
intra-values Si while the process evolves to reach the predicted values yk . The squares
at the top part at the end of each Si process indicate the error between the MRSP
predicted SkN values at the end and the corresponding predicted values yk .

The values of the parameters of the mean reverting stochastic model (10.3.3)
chosen for simulation are as follows:

• For the time interval ti ∈ [0,T] � 5min, we choose to divide it into N�
300 subintervals. This way we would have a total of i � 1, 2, . . . , N � 300
increments within the 5 min interval and each increment would be of duration
dt � T/N � 1 s.

• The strength of the mean reversion coefficient is calculated adaptively as A(i) �
adapt A_scale · [i · dt · |μ(T ) − Si |] > 0 for i � 1, 2, . . . , N � 300 with A(1)
being some small positive number, e.g., A(1) � 0.001. The reason for picking this
adaptive expression stems from the fact that at the beginning in the 5 min interval,
since the process Si starts from small (or almost zero) values we want large values
for A(i) to boost and directionally evolve the process towards themean valueμ(T ).
Close to the end of the interval though, as the process approaches the desired value
μ(T ), we want relatively small A(i) values so that as not to overshoot the desired
meanvalueμ(T ). This behavior is captured by the expression [i · dt · |μ(T ) − Si |].
That is, the difference |μ(T ) − Si | divided by dt into 300 increments (one second
each) at the beginning is very large and as i � 1, 2, . . . . N � 300 progresses along
with the evolving Si values towards theμ(T ) value, the A(i) values become smaller
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Fig. 10.3 Time series—input data zk , [AR(n)-KF] predictions yk , and mean reverting stochastic
process (MRSP) intra-values Si with predictions SiN at the end

due to smaller deviations of Si from μ(T ). The additional factor adapt A_scale
in the A(i) expression is used to capture the dynamics produced by the order (or
window-size) n of the autoregressive model, AR(n), as well as the number of
historical measurements (or data points) needed for the Kalman filter covariance
matrix P to reach a steady-state condition. That is, for the [AR(n)-KF] model this
factor can take the form (a) adapt A_scale � 1.0/(n ·dataPoints), or equivalently
(b) adapt A_scale � [TraceP(k) + DeterminantP(k)]/(n · dataPoints); n + 1 ≤
k ≤ dataPoints.

• The order of the autoregressive model was chosen to be AR(3), indicating regres-
sion over the past three (n�3) 5 min values {zk−3, zk−2, zk−1}. The choice n�3
was determined by calculating the autocorrelation function with lags 20–50 points
for a data set of 770 data points which gave a plot of a fast decaying exponen-
tial suggesting that for this data set an autoregressive model is appropriate, and
also by calculating the partial autocorrelation function of the same data set which
indicated 3–5 significant points [5].

• For the calculation of the long termmeanμ(T ) we useμ(T ) � yk � HT
k
x̂k/k with

HT
k �

[
−zk−1 −zk−2 · · · −zk−n

]
being known from the measurements and x̂k/k

as being estimated by the discrete Kalman filter (Eqs. 10.3.10–10.3.14).
• The initial conditions S1 of the MRSP model is chosen to be 1 bps which is the
handshake (or “Keepalive”) rate the router resets to after it provides the aggregate
5 min traffic value.

• In theMRSP algorithm, taking into consideration the physical aspects of the router,
we set the predictions to the handshake value in case these are less than zero, i.e.,
if yk < 0 then yk � handshake. The same holds for the variable Si+1, that is,
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if Si+1 < 0 then Si+1 � handshake. In addition, if Si+1 > C then Si+1 � C ,
where C is the capacity rate of the router, which in our case has the value C = 1
Gbps.

• The initial covariance matrix of the Kalman filter was chosen as P1/0 � n ·
dataPoints · n(−n/4) · I n×n , which by simulations reached a small steady-state
value (good performance) with n values of 3–5 and a number of 20–40 data points.

• The covariancematrix Qk describes the confidence in the system state Eq. (10.3.4);
an increase in this matrix means that we trust less the process model and more
the measurements. The traditional adaptation method proposed in Mohamed
et al. [18] was used to adaptively calculate Qk by using the residuals rk+1 �[
zk+1 − HT

k+1
x̂k+1/k

]
and the Kalman filter gain as Qk � Kk+1

(
1
n rk+1r

T
k+1

)
KT

k+1
.

• The measurement covariance Rk is set equal to the variance of the n observations

vector HT
k �

[
−zk−1 −zk−2 · · · −zk−n

]
, i.e., Rk � 1

n−1

∑n
i�1 (zk−i − μk)

2,

μk � 1
n

∑n
i�1 zk−i .

• The initial state estimate was chosen as x̂1/0 � −0.35 ∗
([

1 1 · · · 1 ]n×1
)T

. This

choice gave good plots for the initial errors at the beginning of the diagrams.
• The diffusion-coefficient (or diffusion function) as previously stated can be both
deterministic and stochastic as well as a function of the process itself. Here it

was chosen to be G
(
ki+1/k, Si

) �
√(

tr
[
Pk+1/k

]
+ det

[
Pk+1/k

])
Si at each instant

i � 1, 2, . . . . N � 300. This choice stems from the CIR model [7] which
captures the mean reverting phenomenon and avoids the possibility of nega-
tive values for all values of A(i) > 0 and μ(T ) > 0 once the condition
2A(i)μ(T) >

(
TracePk+1/k + DeterminantPk+1/k

)
is satisfied. The stochastic part

of thisMRSP has the standard deviation
√(

TracePk+1/k + DeterminantPk+1/k
)
and

is proportional to
√
Si . According to [7] this is significant because it states that as

the short-rate increases, the standard deviation will decrease.

Remark 2 The choice in this work to use the Kalman filter error covariance matrix in
the diffusion-coefficient provides information for the spread of error in the estimation
of the AR(n) coefficients for the one 5 min ahead predicted value. That is, for the
Kalman filter estimate x̂k+1/k of the unobservable system state xk+1/k , the covariance

matrix of the error is Pk+1/k � E
{(
xk+1/k − x̂k+1/k

)(
xk+1/k − x̂k+1/k

)T}
. Therefore,

since the rows of this error covariance matrix span the error space of the AR(n)
coefficients, different measures of this matrix can be used. Such measures giving

constant diffusion for the whole 5 min interval include
√
Determinant

[
Pk+1/k

]
> 0,√

Trace
[
Pk+1/k

]
> 0,

√
Eigenvalues

[
Pk+1/k

]
> 0,

√
Norm

[
Pk+1/k

]
> 0, or com-

binations of these. As the order though of the autoregressive model increases,
so are these measures of the Kalman filter covariance matrix as well. Support-
ive to the thought of using the determinant of the Kalman filter covariance matrix√
Determinant

[
Pk+1/k

]
> 0 as an estimate of diffusion coefficient spanning the error

space, is the known fact from linear algebra [13] that for a set of linearly independent
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vectors u1, u2, . . . , un in Rn , the absolute value of the determinant of the matrix M
with rows u1, u2, . . . , un indicates the volume V (�) � |det(M)| of the solid paral-
lelepiped � � {a1u1 + a2u2 + · · · + anun : 0 ≤ ai ≤ 1 f or i � 1, 2, . . . , n} formed
by these vectors. When n � 2,� is a parallelogram and V (�) denotes the area of�.
In general, V (�) � 0 if and only if the vectors u1, u2, . . . , un are linearly dependent
(i.e., if and only if the vectors do not form a coordinate system in Rn). Also the
function Trace

[
Pk+1/k

]
> 0, gives another estimate of diffusion coefficient, since the

trace is the sum of the diagonal elements of a matrix, and for the error covariance
the trace is the sum of the mean square errors, which is a performance index for the
Kalman filter. Similar diffusion coefficient measures provide the eigenvalues and the
norm of the Kalman filter covariance matrix since the eigenvalues and the norm are
interrelated for a positive definite matrix.

10.5 Results and Performance of the MRSP Algorithm

In the next series of figures the results obtained by Matlab simulation using real data
are presented; the results demonstrate in details the operation of theMRSP algorithm
and also prove that it works quite well.

In Fig. 10.4 the first two graphs show the stem plot and the continuous plot,
respectively, of the total inbound time-series real data set consisting of 800 aggregate
within a 5 min interval traffic values. For the largest part this inbound time-series real
data set represents normal trafficwhich is less than 50Mbps. The peak appearing from
x�161 to x�169 reaching the value of 651 Mbps at x�165 is inserted manually
and simulates a traffic anomaly [22] which will be addressed in the next section. The
peak appearing at x�650 till x�659 is inserted manually and simulates a DDoS
attack which will be addressed in the next section as well.

The third and fourth graphs in the same figure show the stem plot and the con-
tinuous plot, respectively, of a sample of the total inbound time-series real data set
consisting of 21 aggregate within a 5min traffic values taken arbitrarily at times from
460 to 480 for testing the performance of the MRSP algorithm with normal traffic.

In Fig. 10.5 the top graph shows the stem plot of the 21 sample inbound traffic
values. The middle part shows the corresponding [AR(3)-KF] prediction values. The
bottom part shows the stem plot of the corresponding MRSP end-values. A direct
comparison of the first two plots indicate that the [AR(3)-KF] prediction values are
close to the real inbound data. The same holds for the MRSP end-values compared
to the [AR(3)-KF] prediction values and the 21 sample inbound 5 min traffic values,
indicating that the MRSP algorithm provides quite good results.

In Fig. 10.6 the top graph shows the stem plots for both the 21 sample inbound
5 min traffic values in blue squares and the corresponding [AR(3)-KF] prediction
values in red circles. The middle part shows the stem plots for both the [AR(3)-KF]
prediction values in red circles and for the corresponding MRSP end-values in blue
squares. The bottom part shows the stem plots for both the MRSP end-values in
blue squares and for the corresponding 21 sample inbound 5 min traffic values in
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Fig. 10.4 The top first and second graphs show the stem plot and the continuous plot, respectively,
of the total inbound time-series real data set consisting of 800 aggregate within a 5 min interval
normal traffic values along with DDoS attack values from 650 to 659 and peak attack values from
160 to 169 intervals. The third and fourth graphs show the stem plot and the continuous plot,
respectively, of a sample from the total inbound time-series real data set consisting of 21 aggregate
within a 5 min normal traffic values at times from 460 to 480

Fig. 10.5 The top part shows the stem plot of the 21 sample inbound 5 min traffic values. The
middle part shows the stem plot of the corresponding [AR(3)-KF] prediction values. The bottom
part shows the stem plot of the corresponding MRSP end-values

red circles. Again from these comparisons it is deduced that the MRSP algorithm
provides quite good results, as it reaches steady-state after a few samples of 5 min
traffic values at the beginning.



246 A. P. Leros and A. S. Andreatos

Fig. 10.6 The top part shows the stem plots for both the 21 sample inbound 5 min traffic values
in blue squares and the corresponding [AR(3)-KF] prediction values in red circles. The middle
part shows the stem plots for both the [AR(3)-KF] prediction values in red circles and for the
corresponding MRSP end-values in blue squares. The bottom part shows the stem plots for both
the MRSP end-values in blue squares and for the corresponding 21 sample inbound 5 min traffic
values in red circles

In Fig. 10.7 the top graph shows the plot of the RMS error between the [AR(3)-
KF] predictions and the 21 sample inbound 5 min traffic values. The middle part
shows the plot of the RMS error between the [AR(3)-KF] predictions and the MRSP
end-values. The bottom part shows the plot of the RMS error between the MRSP
end-values and the 21 sample inbound 5 min traffic values. Again from this figure
it is deduced that the MRSP algorithm provides quite good results, as it reaches
steady-state after a few samples of 5 min traffic values at the beginning.

Remark 3 The RMS (Root Mean Square) error measures absolutely based on scale
dependent measures of model performance, that is, RMS can only provide a relative
comparison between different models. These deviance (or goodness-of-fit statistic
for a statistical model) measures are zero if and only if the values are identical. For
two data series {m1(t), t � 1, 2, . . . , N } and {m2(t), t � 1, 2, . . . , N }, the RMS
error measure is calculated as:

RMS � 1

N

√√√√ N∑
t�1

(m1t − m2t )
2.

The top part of Fig. 10.8 shows the plot of the MAPE error between the [AR(3)-
KF] predictions and the 21 sample inbound 5 min traffic values. The middle part
shows the plot of the MAPE error between the predictions of the [AR(n)-KF] model
and theMRSPend-values. The bottompart shows the plot of theMAPEerror between
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the MRSP end-values and the 21 sample inbound 5 min traffic values. Again from
this figure it is deduced that the MRSP algorithm provides quite good results, as it
reaches steady-state after a few samples of 5 min traffic values at the beginning.

Remark 4 TheMAPE (Mean Absolute Percentage Error) measure between two data
series is the average value of the absolute values of differences expressed in percent-
age terms. The data is considered to be in a relative scale if they are strictly positive
and the importance of the difference is given by the ratio and not by the arith-
metic. For two data series {m1(t), t � 1, 2, . . . , N } and {m2(t), t � 1, 2, . . . , N },
the MAPE measure is calculated as: MAPE � 100

N

∑N
t�1

(
|m1t−m2t |

|m1t |
)
. The MAPE

measure cannot be determined if measured values are equal to zero and it tends to
infinity if measurements are small or near zero. This is a typical behavior, when
relative differences are considered.

In Fig. 10.9 the top part shows the stem plot of the directional evolution of the total
deterministic MRSP values (consisting of 21 samples times 300 increments each).
The middle part shows the stem plot of the volatility times the Brownian motion
(or random up-down values) of the total stochastic values of the MRSP. The bottom
part shows the stem plot of the sum all deterministic and all stochastic values of
the MRSP. In this figure the end result is that the no matter what the deterministic
or the stochastic values are the MRSP values always are bounded by the router
specifications from above by the capacity value of 1 Gbps and from below by the
handshake (Keepalive) value of 1 bps.

In Fig. 10.10 the top part shows the plot of the variance of all 21 sample inbound
5 min traffic values taken as a group of 3 at a time. The middle part shows the plot of
the volatility [square root of (trace(P last)+det(P last) times the MRSP. The bottom
part shows the plot of all the Brownian motion values for theMRSP. In this figure the
large variance values in the top plot is noticed which in effect will adjust the Kalman
filter gain to be small, thus giving much weight in the measurements rather in the
state space model as desired.

In Fig. 10.11 the top part shows the plot of the determinants of all Kalman filter
P(n× n) covariance matrices with n�3. The second part shows the plot of the traces
of all Kalman filter P(n × n) covariance matrices. The third part shows the plot of
the sum of both the determinants and traces of all Kalman filter P(n × n) covariance
matrices. The last bottom part shows the plot of the norms of all Kalman filter system
noise Q(n× n) covariance matrices. From this figure, we can deduce that the Kalman
filter performance is quite good (small P(n× n) andQ(n× n) covariances), as desired
in steady-state after a few samples of 5 min traffic values at the beginning.

Figure 10.12 shows the evolution of the intra-values produced by the MRSP
algorithm within a 5 min interval from Keepalive value to the [AR(3)-KF] predic-
tion last-5 end-value indicated with the green square and the corresponding sample
inbound last-5 value (or 16th 5min traffic value out of 21) indicated with themagenta
colour square. From this figure, we can deduce that the MRSP algorithm provides
quite good results, since the end values at the increment 300 are relatively not that
apart from each other.



248 A. P. Leros and A. S. Andreatos

Fig. 10.7 The top part shows the plot of the RMS error between the [AR(3)-KF] predictions and the
21 sample inbound 5 min traffic values. The middle part shows the plot of the RMS error between
the [AR(3)-KF] predictions and the MRSP end-values. The bottom part shows the plot of the RMS
error between the MRSP end-values and the 21 sample inbound 5 min traffic values

Fig. 10.8 The top part shows the plot of the MAPE error between the [AR(3)-KF] predictions
and the 21 sample inbound 5 min traffic values. The middle part shows the plot of the MAPE error
between the predictions of the [AR(n)-KF]model and theMRSP end-values. The bottom part shows
the plot of the MAPE error between the MRSP end-values and the 21 sample inbound 5 min traffic
values
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Fig. 10.9 The top part shows the stem plot of the directional evolution of the total deterministic
MRSP values (consisting of 21 samples×300 increments each). The middle part shows the stem
plot of the volatility times the Brownian motion (or random up-down) of the total stochastic values
of theMRSP. The bottom part shows the stem plot of all the sum deterministic and stochastic values
of the MRSP

Fig. 10.10 The top part shows the plot of the variance of all sample inbound 5 min traffic values
taken as a group of 3 at a time. The middle part shows the plot of the volatility [square root of
(trace(P last)+det(P last) times the MRSP. The bottom part shows the plot of all the Brownian
motion values for the MRSP

Note here that the plotted intra-values produced by the MRSP in Fig. 10.12 and
subsequent corresponding figures is varying due to the stochastic part, although it
looks like a smooth curve due to the scale of the y-axis.
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Fig. 10.11 The top part shows the plot of the determinants of all Kalman filter P(n × n) covariance
matrices. The second part shows the plot of the traces of all Kalman filter P(n × n) covariance
matrices. The third part shows the plot of the sum of both the determinants and traces of all Kalman
filter P(n × n) covariance matrices. The last bottom part shows the plot of the norms of all Kalman
filter system noise Q(n × n) covariance matrices

Fig. 10.12 Intra-values produced by the MRSP algorithm within a 5 min interval from Keepalive
value to theMRSPprediction last-5 end-value indicatedwith the green square and the corresponding
sample inbound last-5 value indicated with the magenta colour square

Figure 10.13 shows the evolution of the intra-values produced by the MRSP
algorithm within a 5 min interval from Keepalive value to the [AR(3)-KF] predic-
tion last-4 end-value indicated with the green square and the corresponding sample
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Fig. 10.13 Intra-values produced by the MRSP algorithm within a 5 min interval from Keepalive
value to theMRSPprediction last-4 end-value indicatedwith the green square and the corresponding
sample inbound last-4 value indicated with the magenta colour square

inbound last-5 value (or 17th 5min traffic value out of 21) indicated with themagenta
colour square. From this figure, we can deduce that the MRSP algorithm provides
quite good results, since the end values at the increment 300 are relatively not that
apart from each other.

Figure 10.14 shows the evolution of the intra-values produced by the MRSP
algorithm within a 5 min interval from Keepalive value to the [AR(3)-KF] predic-
tion last-3 end-value indicated with the green square and the corresponding sample
inbound last-5 value (or 18th 5min traffic value out of 21) indicated with themagenta
colour square. From this figure, we can deduce that the MRSP algorithm provides
quite good results, since the end values at the increment 300 are relatively not that
apart from each other.

Figure 10.15 shows the evolution of the intra-values produced by the MRSP
algorithm within a 5 min interval from Keepalive value to the [AR(3)-KF] predic-
tion last-2 end-value indicated with the green square and the corresponding sample
inbound last-5 value (or 19th 5min traffic value out of 21) indicated with themagenta
colour square. From this figure, we can deduce that the MRSP algorithm provides
quite good results, since the end values at the increment 300 are relatively not that
apart from each other.

Figure 10.16 shows the evolution of the intra-values produced by the MRSP
algorithm within a 5 min interval from Keepalive value to the [AR(3)-KF] predic-
tion last-1 end-value indicated with the green square and the corresponding sample
inbound last-5 value (or 20th 5min traffic value out of 21) indicated with themagenta
colour square. From this figure, we can deduce that the MRSP algorithm provides
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Fig. 10.14 Intra-values produced by the MRSP algorithm within a 5 min interval from Keepalive
value to theMRSPprediction last-3 end-value indicatedwith the green square and the corresponding
sample inbound last-3 value indicated with the magenta colour square

Fig. 10.15 Intra-values produced by the MRSP algorithm within a 5 min interval from Keepalive
value to theMRSPprediction last-2 end-value indicatedwith the green square and the corresponding
sample inbound last-2 value indicated with the magenta colour square

quite good results, since the end values at the increment 300 are relatively not that
apart from each other.

Figure 10.17 shows the evolution of the intra-values produced by the MRSP
algorithmwithin a 5 min interval fromKeepalive value to the [AR(3)-KF] prediction
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Fig. 10.16 Intra-values produced by the MRSP algorithm within a 5 min interval from Keepalive
value to theMRSPprediction last-1 end-value indicatedwith the green square and the corresponding
sample inbound last-1 value indicated with the magenta colour square

Fig. 10.17 Intra-values produced by the MRSP algorithm within a 5 min interval from Keepalive
value to the MRSP prediction last end-value indicated with the green square and the corresponding
sample inbound last value indicated with the magenta colour square

last end-value indicated with the green square and the corresponding sample inbound
last value (or 21st 5 min traffic value out of 21) indicated with the magenta square.
From this figure, we can deduce that theMRSP algorithm provides quite good results,
since the end values at the increment 300 are relatively not that apart from each other.
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Fig. 10.18 Intra-values produced by the MRSP algorithm within a 5 min interval from Keepalive
value to the MRSP prediction last+1 end-value indicated with the green square

Figure 10.18 shows the evolution of the intra-values produced by the MRSP
algorithmwithin a 5 min interval fromKeepalive value to the [AR(3)-KF] prediction
last+1 (or 22nd 5 min traffic value out of 21) end-value indicated with the green
square.

Figure 10.19 shows the adaptive MRSP coefficient values (or strength) A(i) for
i�1, 2,…, 300 increments within the last, last-1, last-2, and last-3 5 min interval out
of 21. From this figure, we can deduce the adaptive behaviour of the values of A(i)
as at the beginning of the interval starting from a small value rapidly increases to a
high value and then slowly decays reaching a constant value at the end, as designed
for the MRSP algorithm.

Figure 10.20 shows the adaptive MRSP coefficient values (or strength) A(i) for
i�1, 2, …, 300 increments within the last+1 (or 22nd 5 min interval). From this
figure, again we can deduce the adaptive behaviour of the values of A(i) as at the
beginning of the interval starting from a small value rapidly increases to a high value
and then slowly decays reaching a constant value at the end, as designed for the
MRSP algorithm for normal 5 min traffic.

Figure 10.21 shows the adaptive MRSP volatility values for i�1, 2, …, 300
increments within the last, last-1, last-2, and last-3 5 min interval out of 21. From
this figure, we can deduce the adaptive behaviour of the volatility values as at the
beginning of the interval starting from a small value increase to a high level reaching
a constant value at the end, as designed for the MRSP algorithm for normal 5 min
traffic.

Figure 10.22 shows the adaptive MRSP volatility values for i�1, 2, …, 300
increments within the last+1 (or 22nd) 5 min interval out of 21. From this figure,
againwe can deduce the adaptive behaviour of the volatility values as at the beginning
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Fig. 10.19 Adaptive MRSP coefficient values (or strength) A(i) for i =1, 2, …, 300 increments
within the last, last-1, last-2, and last-3 5 min interval out of 21

Fig. 10.20 Adaptive MRSP coefficient values (or strength) A(i) for i=1, 2, …, 300 increments
within the last+1 (or 22nd) 5 min interval

of the interval starting from a small value increase to a high level reaching a constant
value at the end, as designed for the MRSP algorithm for normal 5 min traffic.
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Fig. 10.21 Adaptive MRSP volatility values for i=1, 2, …, 300 increments within the last, last-1,
last-2, and last-3 5 min interval out of 21

Fig. 10.22 Adaptive MRSP volatility values for i=1, 2, …, 300 increments within the last+1 (or
22nd) 5 min interval

10.6 Detecting Anomalies

10.6.1 DETECTING a DDoS ATTACK

After the presentation of the algorithm let us now examine how bandwidth-flooding
DDoS attacks may be detected. First, let us examine the traffic generated by a typical
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(a)

(b)

Fig. 10.23 Typical bandwidth-flooding DDoS attack (a, b)

DDoS attack (Fig. 10.23a, b): the typical characteristic is a peak traffic with limited
duration.

For the purposes of this work we have also conducted several DoS attacks to a
server of ours (Fig. 10.24) which verified the above results.

The proposed approach produces intra-values within the 5 min intervals and iden-
tifies successfully normal, as well as abnormal activities in the incoming traffic.
In case of normal traffic, the algorithm behaves appropriately; in case of abnormal
sudden peaks in traffic (due to an attack or a misuse), specific parameters of the algo-
rithm take excessive values thus detecting anomaly in the incoming traffic stream.
Excessive values appearing in the incoming traffic (exceeding by far the prediction),
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Fig. 10.24 Bandwidth-flooding DoS attacks on our server

Fig. 10.25 Normal traffic (left) and the same traffic with simulated DoS attack

will indicate a bandwidth-flooding DoS attack, calling the network administrator
to take the proper measurements (such as blocking the suspicious IP addresses). In
Fig. 10.25b (right), a peak simulating a bandwidth-flooding DoS attack has been
added to normal traffic (left).

It is obvious that DoS traffic is much higher in volume in order to set the server out
or order. Researchers use this characteristic to detect DoS attacks. In the proposed
method:

1. We take the profile of the traffic for workdays as well as weekends;
2. We use an adaptive algorithm predicting the traffic for the next 5 min intervals

for each of the above two profiles.
3. We also compare the current incoming traffic with the typical workday or week-

end profile (Fig. 10.25).

So when an excessive value appears in the incoming traffic, (exceeding by far
prediction), this will indicate a DOS attack, calling the network administrator to take
the proper measurements (such as blocking the suspicious IP addresses).

The proposed MRSP algorithm presents abnormal behavior in case of a D/DoS
attack. To show this we run the algorithm for the 5 min traffic data from the interval
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Fig. 10.26 The top first and second graphs show the stem plot and the continuous plot, respectively,
of the total inbound time-series real data set consisting of 800 aggregate every 5 min traffic values.
The third and fourth graphs show the stem plot and the continuous plot, respectively, of a sample
from the total inbound time-series real data set consisting of 21 aggregate every 5 min normal traffic
values at times from 646 to 666 which contains the flooding DoS attack values from 650 to 659

646 to 666. In this interval the values from650 to 659 are simulated values to represent
DoS attack values as they are at the router capacity of 1 Gbps (exceeding by far the
50 Mbps threshold value of normal traffic). This time-series real data sample with
some normal traffic values before it and some normal traffic values after the DoS
attack is presented in Fig. 10.26.

Running the MRSP algorithm on the above sample data set we see the following
parameters which are directly affected:

1. [AR(3)-KF] predictions are excessively large at the 5 min interval following the
bandwidthflooding DoS attack (see Figs. 10.27 and 10.28).

2. RMS as wells as MAPE errors between predictions and sample inbound data are
excessively large, e.g. RMS 1015–1016 at the 5 min interval following the DoS
attack (see Fig. 10.29) and MAPE 1014 at the 5 min interval following the DoS
attack (see Fig. 10.30).

3. The variance var(H) has excessively large values, fact which affects the Kalman
filter performance (residuals, AdaptiveQ and P and state predictions), as depicted
in Fig. 10.31.

4. The adaptive MRSP coefficient A(i) takes normal values for normal traffic (top
3 plots in Fig. 10.32) whereas it takes excessively large values at the flooding
DoS attack data (last plot in Fig. 10.32).

When the MRSP algorithm processes normal data again after the DoS attack
traffic data then the adaptive coefficient A(i) returns back to normal values again as
seen in Fig. 10.33.
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Fig. 10.27 [AR(3)-KF] predictions are excessively large at the 5 min interval following the DoS
attack

Fig. 10.28 [AR(3)-KF] predictions are excessively large at the 5 min interval following the DoS
attack

This is also true for Volatility since it takes normal values for normal traffic (top 3
plots in Fig. 10.35) while it takes excessively large and oscillating values at the DoS
attack data (see last plot in Fig. 10.34).

When theMRSP algorithm processes normal data after the DoS attack traffic data
then the Volatility returns back to normal values again as seen in Fig. 10.35.
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Fig. 10.29 RMS errors for normal traffic data, DoS attack traffic data, and normal again traffic data

Fig. 10.30 MAPE errors for normal traffic data, DoS attack traffic data, and normal again traffic
data

Hence, a sudden change in the incoming data caused by a DoS attack gets imme-
diately detected by the MRSP algorithm because leads the algorithm to abnormal
behaviour (instability).

Simulation results for different DoS attacks with different statistical character-
istics prove that the MRSP algorithm immediately detects the caused change in
behaviour and issues proper warning messages.
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Fig. 10.31 Variance of sample measurements for normal traffic data, flooding DoS attack traffic
data, and normal again traffic data

Fig. 10.32 MRSP adaptive coefficient A(i) values for normal traffic data, DoS attack traffic data,
and normal again traffic data

10.6.2 Detecting an Anomaly

In Fig. 10.36, the top first and second graphs show the stem plot and the continuous
plot, respectively, of the total inbound time-series real data set consisting of 800
aggregate within a 5 min interval traffic values. In the same figure, the values starting
slowly at 161 and increasing to the value of 651 Mbps at 165 and then decaying
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Fig. 10.33 MRSP adaptive coefficient A(i) values for normal traffic data after the previous DoS
attack traffic data

Fig. 10.34 MRSP volatility values for normal traffic data, DoS attack traffic data, and normal again
traffic data

slowly back to normal values at 169 are inserted simulated aggregate within a 5 min
interval traffic values representing peak attack anomaly values as they exceed the 50
Mbps threshold value. The third and fourth graphs in the same figure show the stem
plot and the continuous plot, respectively, of a sample of the total inbound time-series
data set consisting of 21 aggregate within a 5min interval traffic values taken at times
from 155 to 175. This range contains the peak attack anomaly values for testing the
performance of the MRSP algorithm for some normal traffic values before the peak
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Fig. 10.35 MRSP volatility values for normal traffic data after the previous DoS attack traffic data

Fig. 10.36 The top first and second graphs show the stem plot and the continuous plot, respectively,
of the total inbound time-series real data set consisting of 800 aggregate every 5 min traffic values.
The third and fourth graphs show the stem plot and the continuous plot, respectively, of a sample
from the total inbound time-series real data set consisting of 21 aggregate every 5 min normal traffic
values at times from 155 to 175 which contains the peak attack values from 161 to 169

attack values, during the peak values, and for some normal traffic values after the
peak attack values.

The next Fig. 10.37 shows the stem plots for both the 21 sample inbound 5 min
traffic values in blue squares and the corresponding [AR(3)-KF] prediction values in
red circles. The middle part shows the stem plots for both the [AR(3)-KF] prediction
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Fig. 10.37 [AR(3)-KF] predictions are excessively large at the 5 min interval following the peak
attack values

values in red circles and for the corresponding MRSP end-values in blue squares.
The bottom part shows the stem plots for both the MRSP end-values in blue squares
and for the corresponding 21 sample inbound 5 min traffic values in red circles. The
[AR(3)-KF] predictions are excessively large at the 5 min interval following the peak
attack values indicating that the MRSP algorithm immediately can detect the caused
change in behaviour and may issue proper warning messages.

10.6.3 Final Remarks

The proposed algorithm produces a warning message when excessive traffic demand
is detected. For this purpose a threshold is used, which can be adjusted by the admin-
istrator.

The proposed algorithm works the same with outbound data, i.e., it can detect
excessive outbound traffic. This is extremely important in cases where firewalls filter
only the inbound traffic.However, the proposedmethodwill not detectD/DoS attacks
which do not produce excessive traffic exceeding by far the normal traffic.

Finally we note that the proposed algorithm (after slight extension) can be used
for predicting the need for extra bandwidth allocation, a function especially useful
for ISP providers [10].
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10.7 Conclusions

This chapter dealt with network traffic analysis on a time-series input data in rrd
format. An algorithm which successfully identifies normal, as well as abnormal
activities contained in the datasets has been developed and verified on real traffic.

The algorithm produces intra-values of a time-series network traffic using a mean
reverting stochastic process (MRSP) and consists of a deterministic and a stochastic
part. The deterministic part consists of an adaptive gain and the [AR(n)-KF] mean
reverting term. The stochastic part consists of three components: an adaptive dif-
fusion (or volatility) coefficient, based on the square root of the determinant and the
trace of the Kalman filter error covariance (which, to the best of our knowledge, has
not been used before); the adaptive diffusion is multiplied by the square root of the
stochastic process itself according to the Cox-Ingersoll-Ross (CIR) model (which
is the second component), and a Brownian motion to capture the dynamics of the
evolution from a starting point to reach the AR(n) predictions (which is the third
component).

To the best of our knowledge, the specific model has not appeared in the literature
so far, is original and is a main contribution of our research work. Experimental
results from real traffic data prove that the proposed algorithm works correctly in the
sense that:

(a) it can produce estimated intra-values within the 5 min intervals;
(b) it can also predict the value at the end of the next 5 min interval successfully,

i.e. close to the real data.

These features are very useful to Network Administrators because they help them
detect various anomalies such as excessive capacity demand and bandwidth-flooding
D/DoS attacks. It is also helpful to ISPs because it allows them to know if and
when the allocated traffic volume will be depleted. Using the prediction we could
estimate—within the 5 min interval and under current traffic conditions—when the
available capacity of the router will be depleted, after which point the router won’t
be able to respond. The estimation can be used—as already mentioned—either for
asking for extra bandwidth (within the router capabilities) in order to serve the users,
or, to early detect a bandwidth-flooding D/DoS attack, which will be detected by the
increased rate for bandwidth demand.
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Chapter 11
Intelligent Data Analysis in Electric
Power Engineering Applications

V. P. Androvitsaneas, K. Boulas and G. D. Dounias

Abstract This chapter presents various intelligent approaches for modelling, gener-
alization and knowledge extraction from data, which are applied in different electric
power engineering domains of the real world. Specifically, the chapter presents: (1)
the application of ANNs, inductive ML, genetic programming and wavelet NNs, in
the problem of ground resistance estimation, an important problem for the design
of grounding systems in constructions, (2) the application of ANNs, genetic pro-
gramming and nature inspired techniques such as gravitational search algorithm in
the problem of estimating the value of critical flashover voltage of insulators, a
well-known difficult topic of electric power systems, (3) the application of specific
intelligent techniques (ANNs, fuzzy logic, etc.) in load forecasting problems and in
optimization tasks in transmission lines. The presentation refers to previously con-
ducted research related to the application domains and briefly analyzes each domain
of application, the data corresponding to the problem under consideration, while are
also included a brief presentation of each intelligent technique and presentation and
discussion of the results obtained. Intelligent approaches are proved to be handy
tools for the specific applications as they succeed to generalize the operation and
behavior of specific parts of electric power systems, they manage to induce new,
useful knowledge (mathematical relations, rules and rule based systems, etc.) and
thus they effectively assist the proper design and operation of complex real world
electric power systems.
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11.1 Introduction

Nowadays, Artificial Intelligence (AI) and Machine Learning (ML) are the state-
of-the-art methodologies for approaching and solving problems, that conventional
mathematics cannot do so. Though these techniques seem to be suitable and prefer-
able for complex and insoluble modeling issues in sectors of robotics, medicine and
finance, the AI and ML models find a perfect application in practical engineering
and, more specifically, in electric power engineering. AI and ML models are widely
applied in grounding systems engineering for estimating and forecasting the behavior
of these systems in variable weather and soil conditions, as well as in insulators of
transmission lines, estimating the value of critical flashover voltage. Similar models
have also been developed for load forecasting problems and other optimization tasks
in problems related to transmission lines. All these fields are extremely important
for the safe, firm and reliable operation and service of electric power systems.

Grounding systems constitute a crucial component for the protection system of
electrical installations and facilities, more specifically buildings, high voltage (HV)
substations and transmission lines of electric power systems, electric railway, wind
farms, etc., against lightning and fault currents. Such currents are usually of great
magnitude, resulting in high values of step and touch voltages which, in turn, are
usually extremely dangerous for people and equipment. Grounding systems’ role is
to lead fault and lightning currents into the earth, both in the safest way and in the
shortest possible time, limiting the developing over-voltages within the safe limits
[1]. One of the featured parameters of grounding systems, concerning their capability
and effectiveness to dissipate high fault currents into the earth in a safe way, is ground
resistance. The value of this magnitude represents the outcome of the combination of
several factors, such as the underground soil structure, the soil electric resistivity ρ

(in�m), the soil humidity H (%), and the grounding electrode geometry. In general,
a well-designed grounding system is characterized by low resistance values of few
Ohms. Ground resistance must be estimated as accurately as possible during the
design phase, using suitable software for this job, and must be measured after the
construction of the grounding system at regular time [2].

However, inmost cases, ground resistancemeasurements become difficult or even
impossible, because of dense building infrastructure and/or ground morphology,
resulting in the lack of the required space for this measurement. Moreover, in many
cases of special electrical installations like HV substations, wind farms, and electric
railway, estimation for the behavior of the designed grounding systems over time is
very useful and important for electrical engineers. In this way, they are able to take
extra technical measures in order to maintain the ground resistance value in low lev-
els, in case of a major seasonal variance. Artificial Neural Networks (ANN),Wavelet
neural networks (WN), Inductive Machine Learning (IML), and Genetic Program-
ming (GP) have proved to be precious tools of computational intelligence, giving
reliable and accurate estimations for ground resistance value as a function of several
unpredictable parameters, e.g. rainfall and soil resistivity; a relation among these
variables that conventional mathematical techniques cannot describe and model.
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Artificial intelligence also finds considerable applications in the field of insulators
of overhead transmission and distribution lines for the estimation of the critical
flashover voltage on them. Surface pollution and nonuniform distribution of electric
field along the insulator surface cause the appearance of quasi-stable arcs, which can
evolve to long discharges along the surface and lead to the final breakdown of air
insulation (bridging) when the applied voltage exceeds a critical value. It is obvious
that this situationmay lead to unexpectedmalfunction or service interruption of a line,
with subsequent disruptions to the electric power system.ANNs are used successfully
for the estimation of the critical flashover voltage on polluted insulators considering
the pollution level, the salt deposit density, and the dimensions of the insulators.
Therefore, via the critical flashover voltage estimation, the insulators’ condition can
be monitored and evaluated so that engineers plan the proper maintenance in due
time.

Another significant application of artificial intelligence in power engineering is,
certainly, the short- and mid-term load forecasting in electric power systems. The
highest possible accuracy in forecasting the hourly, daily, or monthly, load profiles
is of great importance for the power system scheduling in terms of power genera-
tion, unit commitment availability of transfer capacity, stability margins, and power
control. Conventional methods for estimating the demand in electric power systems
are based on many assumptions and approximations, while they have to include
parameter relations that they cannot clearly describe. Artificial neural networks have
achieved to provide concrete solutions to the above problems, rendering them as the
predominant load forecasting technique [3].

This chapter includes an extensive review and practical examples for applied AI
andMLmodels in the fields of grounding and insulators, initiating the reader into the
basic principles of computational intelligence and machine learning by presenting
practical applications in modern engineering problems.

The rest of the chapter is organized as follows:
In Sect. 11.2 applications of intelligent techniques in grounding systems are

described. Section 11.3 contains details regarding the application of AI and ML
models and techniques for solving problems related to insulators. In Sect. 11.4 are
given applications of AI approaches in load forecasting, and then, Sect. 11.5 refers to
Transmission Lines problems handled with the aid of intelligent techniques. Finally,
Sect. 11.5 contains conclusions and further research, either on intelligent approaches
or on similar electrical engineering applications.

11.2 Intelligent Techniques in Ground Resistance
Estimation

Though that artificial intelligence has been applied in many fields of science and
technology with great success, the application in grounding systems for estimating
and forecasting several parameters and, specifically ground resistance, is in early
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stage. This fact is mainly attributed to the great difficulty of collection a significant
and exploitable number of in situ measurement data from real grounding systems,
since the continuous monitoring of ground resistance value is usually laborious and
costly.

11.2.1 Grounding Systems

The safe operation of electricity transmission and distribution networks relies on
properly designed and effective grounding systems. The role of grounding is par-
ticularly essential and extends to any electrical installation, e.g. buildings, HV sub-
stations, electric railway etc. It is a crucial structural component of the facilities
and serves to quickly and safely dissipate high fault currents into the earth in the
shortest possible time. The effectiveness of grounding systems major determines the
response time of electric protection devices such as switchgears, fuses, or simple
circuit breakers, in order to clear fault currents efficiently and safely for people and
devices. Both fault currents (over-currents or short circuit currents) and lightning
currents dissipated into the earth generate high ground potential rise, resulting in
high values of step and touch voltages in the neighboring area. Hence, an effective
grounding system of low resistance value, dissipating these fault currents into the
earth in a controlled and safe way, limits these hazardous voltages significantly under
maximum permissible limits, recommended by international standardization [1, 2].

Regardless of the fault current type, grounding systems should be appropriately
designed to transport the currents into the earth safely [4]. The efficiency of the
grounding system is a function of low ground resistance value. The latter should
remain at low levels over time and seasonal variation. In most cases, either the cost
of constructing a grounding system is too high, or there is a lack of necessary space
required for installation. In each case, the type of soil and especially its behavior
must be considered. High soil electric resistivity due to underground structure (sand,
rock) and strong corrosive environment are crucial factors, being considered for the
construction of a grounding system at a certain location.

The soil composition in contact with the surface of grounding electrodes is subject
to seasonal variations due to soil moisture, especially for the upper soil layers of
1–2 m. Weather conditions such as rainfall, air temperature and wind speed effect
on soil moisture, therefore, altering the percentage of dissolved salts. Thus, soil
composition plays the most critical role in ground resistance value [5–8].

Specifically, ground resistance value depends on soil density and composition.
There is a variety of soil types and, therefore, a large range of ground resistance values
depending on structures like clay soil, sand, rock, wet or dry soil, non-homogeneous
soil, etc. The drier and harsher the soil is, the greater its soil resistivity (ρ) is, mea-
sured in � m. The soil resistivity is affected by the amount of water retained in
the soil, the salt deposit and the soil grain size. In other words, as the soil conduc-
tivity is mainly electrolytic, it gets higher values through the water retained in the
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ground. In anisotropic grounds, the resistivity is different to the grounding electrode
circumferential and non-linear [9].

In particular, soil moisture has a significant effect on its resistivity. Indicatively,
in clay soil with 10% moisture content (% by weight), the resistivity was 30 times
greater than the same soil with a moisture content of 20%. Nevertheless, moisture
itself does not play a major role in the resistivity value, as it has to be combined
with salts and natural ingredients in order to form a conductive electrolyte. Addition
of artificial solvents in water, such as sodium chloride (NaCl), calcium chloride
(CaCl2), cupric sulphate (CuSO4), or magnesium sulphate (MgSO4), is a practical
way of reducing soil resistivity. Seasonal temperature variance also leads to some
resistivity variations, especially at areas of ice conditions [9].

In the effort to construct better and safer electrical facilities, researchers and
engineers aim to improve grounding techniques. Much work has been done on the
ways of studying and designing grounding systems for reducing ground resistance
value and some techniques have been developed over the last decades. One method
that has been widely applied around the world and is predominant in the field of
grounding, nowadays, is the use of ground enhancing compounds [10–14].

Periodic measurement of ground resistance is often a difficult task because of
the residence and dense building infrastructure. Moreover, it is usually necessary for
engineers to have an estimation of the behavior of grounding systems built or planned
regards to time. For this purpose, experiments are being carried out to investigate the
phenomenon and obtain useful data to develop tools for estimating and forecasting
the earth resistance value of several grounding systems. These experiments last for
many years and correlate the values of soil resistivity at the site of interest with the
local weather data. Due to the complexity of relationships and the inability to identify
and describe the parameters involved in the formation of the ground resistance value,
methods of machine learning are judged to be appropriate to address this problem.

11.2.1.1 Field Measurements of Soil Resistivity and Ground Resistance

The data needed for the training of used techniques have been obtained by field
measurements performed in the context of an experiment which is still carried out
till nowadays, for the evaluation of ground enhancing compounds performance at the
National Technical University of Athens Campus, Hellas [14], under the supervision
and technical support of HighVoltage Laboratory, School of Electrical andComputer
Engineering. During the experimental procedure, six ground rods have been tested,
five of them encased in various ground enhancing compounds (e.g. G2 in conductive
concrete, G3 in bentonite, etc. see Fig. 11.9) and one of them in natural soil as a
reference electrode (G1). All the measurements have been performed according to
[2], since February 2011 till now. Soil resistivity was measured by using the 4-point
method (Wenner method), in different depths of 1, 2, 4, 6 and 8 m. According to the
Wenner method, four electrodes 0.5 m in length are driven in line, at equal distances
each other, and in a depth b. A test current (It) is injected at the two terminal probes,
and the voltage (Ut) is measured between the two middle probes. The ratio Ut/It
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Fig. 11.1 Resistances Rg1, …, Rg5 versus days of experiment

results the apparent resistance R (in �). Consequently, the apparent soil resistivity
ρ is given by the Eq. (11.1) [2].

ρ � 4παR

1 + 2a√
a2+4b2

− 2a√
(4a2+4b2)

� 4παR

n
(11.1)

where variable n depends on the ratio value b/a and fluctuates between the values of
1 and 2. In the particular case of this experimental array where b � a, the Eq. (11.1)
is simplified to ρ � 2παR. The 3-pole method, also known as the fall of potential
method was used to accurately measure the ground resistance of each main rod
[14]. In Fig. 11.1 are presented the resistance data for 5 grounding electrodes where
season variation is obvious. The 0th day is the 5-2-2010, and the vertical dashed lines
represent the first day of the year.

11.2.1.2 Weather Data

The weather data were provided by the Hydrological Observatory of Athens, from
the 13th station operated by the National Technical University of Athens. The station
is located at the same area where the experiment takes place. The variables are the
following (at the end of the name of the variable and inside parenthesis are given
the abbreviation and the units of the measurements): wind speed (ws, m/s), wind
direction (wd, °),net radiation (nr, W/m2), diffuse radiation (dr, W/m2), sunshine
duration (sd, min/10 min), barometric pressure (bp, hPa), soil moisture (sm, %), air
temperature (at, °C), rainfall (rf, mm), air humidity (ah, %), and evaporation pan (ep,
mm).
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Weather data consist of a chaotic set of measurements and collected in a two-
dimension matrix form, where columns are weather variables or ground parameter
measurements, and rows represent time periods specifically days, see [15]. Due to
the fact that soil humidity measurements require special and expensive sensors and
equipment, rainfall height of the experimental field is used for a collateral estimation
of soil humidity.

11.2.2 Application of ANN Methodologies for the Estimation
of Ground Resistance

11.2.2.1 Research Review

Though that artificial intelligence has been applied in many fields of science and
technology with great success, the application in grounding systems for estimating
and forecasting several parameters and, specifically ground resistance, is in early
stage. This fact is mainly attributed to the great difficulty of collection a significant
and exploitable number of in situ measurement data from real grounding systems,
since the continuous monitoring of ground resistance value is usually laborious and
costly.

Artificial Neural Networks (ANNs), at this time, are not true copies of the anatomy
of cerebral cortex neurons, but simplified models of their function. Since the neural
networks first appeared to our ancestors, they have evolved. Their initial operations
that ensured the advantage of survival and development have been transformed into
complex processes such as pattern recognition, memory and understanding.

ANNs were designed to automate complex pattern recognition tasks. The math-
ematical structure of these tools allows quantification of patterns and parameter
estimation. Comparisons made on a wide variety of problems have shown that a
properly designed ANN gives better results or in the worse case, their results are as
well as conventional methods.

The first attempt of estimating electric soil resistivity (ρ) and, indirectly ground
resistance (Rg) of vertical grounding rods with no use of ANNs, was done by Blattner
in 1980 [16]. He formulated an empirical logarithmic formula which substantially
approached the soil resistivity curves, drawn using experimental data, with good
accuracy. This relationship has linked the known values of soil resistivity to the
respective ones of ground resistance for the first few meters of depth. Solving the
constants of the empirical formula, Blattner managed to extract a general formula
which could forecast the values of soil resistivity in deeper layers of the ground
beyond those with available measurements (extrapolation). In this way he was able
to estimate the respective values of ground resistance for each tested grounding
electrode.

Several years later, Salam et al. published the results of their model, based on
artificial neural networks, for modeling and forecasting the relationship between
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ground resistance and electrode length. They performed measurements of ground
resistance on vertical grounding rod, which was driven into the ground gradually
with a step of 6 m [17]. They also trained a feed-forward neural network of three
layers, where the input layer included the electrode length and the month of the
measurement and the output layer provided the ground resistance estimator. The R2

coefficient for the training set reached the value of 0.995 and for the test set 0.925.
In another research work [18] artificial neural networks have been developed for
grounding system designing consisted of vertical rods.

In the next few years, research focused on estimating the seasonal variation of
ground resistance of vertical grounding rods buried in natural ground [19, 20]. The
soil resistivity in the field of interest and the rainfall height were used as input
variables for the neural network [19, 20], while the ground resistance of the tested
electrode was the output variable. The researchers have developed a feed-forward
multilayer perceptron for this application. The networkwas composed of three layers,
its training was performed according to the back-propagation algorithm (BP) and the
dataset was divided into three subsets, the training set (53 cases), the evaluation set
(14 cases) and the test set (10 cases). The training of the network was performed by
the error back-propagation algorithm and nearly all its variations. In this application,
the conjugate gradient algorithm combined with Fletcher-Reeves equation and the
use of three stopping criteria provided the best results and, finally, was selected for
the training of the developed ANN. The convergence results for the training set, the
test set, and the confidence intervals were quite satisfactory and encouraging.

The use of new techniques and materials for constructing grounding systems
motivated researchers and engineers to continue the development of AI models,
adapted to the new techniques, for estimating and forecasting the power frequency
resistance of grounding systems. More particularly, the use of ground enhancing
compounds—materials that are poured around the grounding electrodes for decreas-
ing the ground resistance value—has brought new processing data for training and
evaluating ANNs. Therefore, a typical application of ANNs is the study of ground
enhancing compounds behavior over time and the estimation of the ground resistance
on grounding electrodes encased in such materials.

11.2.2.2 ANN Architecture Paradigm in Grounding Systems

In a research work of 2012 [21], researchers have studied six vertical grounding
rods of 1.5 m in length, encased in various enhancing materials and in natural soil
under field conditions. The regular measurements performed at the experimental
field for one year (February 2011 to February 2012) during this study, were: (a)
soil resistivity (ρ) in the depth of 1, 2, 4, 6, and 8 m, (b) the ground resistance (Rg)
of the five tested rods, and (c) rainfall height. The developed network was a feed-
forward neural network of three layers the input, the hidden, and the output layer. The
input vector for the first layer comprised: (a) the average value of the soil resistivity
measurements for each individual depth for the last seven days before the day of
ground resistance measurement (ρ1w, ρ2w, ρ4w, ρ6w, ρ8w), (b) the average value of the



11 Intelligent Data Analysis in Electric Power … 277

Fig. 11.2 Architecture of
the ANN

soil resistivitymeasurements for the depths of 1 and 2m for the last thirty days before
the day of ground resistance measurement (ρ1m, ρ2m), (c) the cumulative total rainfall
height in the day of ground resistance measurement, (d) the cumulative total rainfall
height of the last seven days before the day of ground resistance measurement, and
(e) the cumulative total rainfall height of the last thirty days before the day of ground
resistance measurement. The output of the network was the ground resistance value
for each of the six tested grounding rods (Rgi). The structure of the developed ANN
is illustrated in Fig. 11.2.

The number of neurons in both the input and the output layers are equal to the size
of the input and output data vector respectively, while the number of neurons in the
hidden layer (or layers) has to be determined. According to Kolmogorov’s theorem
if the number of neurons in the hidden layer is properly selected, then a single hidden
layer is enough [21].

The ground resistance of each vertical rod is estimated by applying the methodol-
ogy presented in Fig. 11.3. Prior to the training stage, the input and output valueswere
normalized in order for the training process to avoid saturation problems, caused in
the case of using nonlinear activation functions. The normalized value x̂ (for the
variable x) is given by Eq. (11.2):

x̂ � α +
b − α

xmax − xmin
(x − xmin) (11.2)



278 V. P. Androvitsaneas et al.

Fig. 11.3 Flowchart of the
ANN methodology for the
estimation of ground
resistance [21]

where x̂ is the normalized value for variable x , xmin and xmax are the lower and
the upper values of variable x , a and b are the respective values of the normalized
variable.

From the field measurements performed in one year, as aforementioned, 126
measurements have been chosen to constitute the dataset for the training of the
ANN, i.e. 126 input–output patterns, which was divided randomly into three sets:

• The training set (102 cases) is used until the network has learned the relationship
between the inputs and the output.

• The evaluation set (26 cases) is used for the optimal selection of the ANN parame-
ters (i.e. the number of the neurons in the hidden layer, the type and the parameters
of the activation functions, the learning rate, and the momentum term).

• The test set (24 cases) verifies the generalization ability of the ANN by using an
independent dataset.

The ANN has been trained with the use of Stochastic training with learning rate
and momentum term (decreasing exponential functions). The purpose of the training
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process was to minimize the average error function between the estimated and the
actual value, by adjusting the free parameters (weights) of the network. The adjust-
ment of the weights was performed as follows: each input pattern was randomly
presented; the adjustment of the weights was performed after the completion of the
random presentation of all the input patterns, in order for the average error func-
tion between the estimated and the actual value to be minimized. The average error
function for all the N patterns is given by Eq. (11.3):

Gav � 1

2N

N∑

n�1

∑

j∈C
(d j (n) − y j (n))

2 (11.3)

where C is the set of neurons, dj(n) the target value and yj(n) the estimated value of
the j-neuron.

The weights of the ANN have been adjusted until one of the stopping criteria
was fulfilled. The three stopping criteria were: the weights’ stabilization criterion,
the error function’s minimization criterion and the maximum number of epochs’
criterion, which are respectively described by the following expressions:

∣∣∣w(l)
kv (ep) − w(l)

kv (ep − 1)
∣∣∣ < limit1,∀k, v, l (11.4)

|RMSE (ep) − RMSE (ep − 1)| < limit2 (11.5)

ep ≤ max_epochs (11.6)

where w(l)
kv is the weight between l-layer’s k-neuron and (l-1)-layer’s v-neuron,

RMSE �
√

1
m2 · qout

m2∑
m�1

qout∑
k�1

e2k (m) is the root mean square error of the evaluation

set with m2 members and qout neurons of the output layer (in this case qout=1),
max_epochs is the maximum number of the epochs.

The parameters have been selected in a way that the minimum Gav for the eval-
uation set was achieved. At first, the optimal number of neurons Nn is determined.
All the other parameters of the network are given fixed values while the number of
neurons varies. The maximum number of epochs was set to 7000. The optimal Nn is
selected as the one with the smallest average error function (Gav) for the evaluation
set. The Gav for the evaluation set is presented in Fig. 11.4, with the neurons varying
from 2 to 25. Finally, the number of neuronswas chosen to beNn = 21. The number of
neurons is subsequently kept constant (equal to 21) while the algorithm parameters
were varied in a proper interval. The time parameter Tα and the initial value of the
momentum term α0, were varied as illustrated in Fig. 11.5, where the values Tα =
1500 and α0 =0.4 have been selected as the optimal for these parameters. Figure 11.6
shows the variance of Gav for the evaluation set as a function of the time parameter
Tn and the initial value of the learning rate η0, where the values Tn = 2400 and η0 =
0.8 have been selected as the optimal ones. Then the type of the activation functions
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Fig. 11.4 Gav for the evaluation set as a function of neurons number [21]

Fig. 11.5 Gav for the
evaluation set as a function
of the momentum term [21]

for the neurons of the hidden and the output layers was determined. The following
activation functions have been examined:

Logistic:

f (x) � 1/
(
1 + e−ax

)
(11.7)

Hyperbolic tangent:

f (x) � tanh(ax + b) (11.8)

Linear:

f (x) � ax + b (11.9)
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Fig. 11.6 Gav for the
evaluation set as a function
of the learning rate [21]

Fig. 11.7 Gav for the
evaluation set with
hyperbolic tangent activation
function for the hidden layer
and logistic activation
function for the output layer
[21]

Testing all the possible combinations for the activation functions of the hidden
and the output layers and changing the values of the parameters a and b, the most
suitable functions for each method were selected. Specifically, f 1(x)� tanh(2x) was
selected for the hidden layer and f 2(x)�1/(1+e−0.5x) was selected for the output
layer. Hence, for this particular combination, the graph of the Gav as a function of
the parameter a is illustrated in Fig. 11.7.

The developed ANN has shown remarkable ability in learning the relationship
among the input variables (soil resistivity and rainfall in particular time windows)
and the output variable (ground resistance of each grounding rod) estimating the out-
put variable with very good accuracy. Moreover, the model has demonstrated quite
good flexibility and adaptability to the special conditions each ground enhancing
compound induced in the forming of ground resistance value. The network man-
aged to learn and generalize the relationship among the input and output variables
in every case of enhancing material. That means that the network is adaptable to
several different soil conditions around the electrodes. The R2 coefficient is given by
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Table 11.1 R2 coefficient for the test set

G1 G2 G3 G4 G5 G6

R2 0.932 0.990 0.924 0.958 0.851 0.979

Eq. (11.10) while the values the ANN model has achieved for the data of the test set
are presented in Table 11.1.

R2 � r2y−ŷ �
(∑n

i�1

(
(yi − ȳreal) · (

ŷi − ȳest
)))2

∑n
i�1 (yi − ȳreal)

2 · ∑n
i�1

(
ŷi − ȳest

)2 (11.10)

The field experiment was carried out for the following months, thus, the dataset
has been enriched with new field measurements and the researchers had the chance
to train the aforementioned ANNwith new andmore data, using several variations of
the BP algorithm at the same time. Aim of the new training was the study of the ANN
behavior, trained by different algorithms, and the highlighting of that providing the
best convergence outcome for the particular dataset [22].

The ANN architecture remained similar to that of Fig. 11.2 and the training of the
network was based on two scenarios for collecting the dataset. In the first scenario,
the dataset consisted of purely experimental data (field measurements from February
2011 to October 2012), thus, the data comprised 185 input–output patterns which
were divided into three subsets i.e. training set, evaluation set, and test set. The input
variables were exactly the same as the previous ANNmodel. In the second scenario,
the underground structure at the experimental field has been modeled by a two-layer
soil model, using the field measurements of soil resistivity at the aforementioned
various depths. Therefore, the dataset consisted of simulation results for ground
resistance, using a proper simulation package for this job, providing 190 input–output
patterns. The dataset was similarly divided into three subsets, while the input vector
comprised seven input variables: (a) the average soil resistivity of the upper layer of
the two-layer soil model for the last seven days before the day of ground resistance
measurement (ρupper, w), (b) the average soil resistivity of the lower layer of the
two-layer soil model for the last seven days before the day of ground resistance
measurement (ρlower, w), (c) the average soil resistivity of the upper layer of the
two-layer soil model for the last thirty days before the day of ground resistance
measurement (ρupper, m), (d) the average soil resistivity of the lower layer of the
two-layer soil model for the last thirty days before the day of ground resistance
measurement (ρlower, m), and (e) the three time windows for rainfall height as before.

The algorithms used for the ANN training are demonstrated in Table 11.2. The
network parameters are optimized through an optimization process, similar to the pre-
vious ANNmodel of [21], which was applied repetitively for each training algorithm
of Table 11.2 and for each scenario. The steps followed for the training and validation
process are concisely illustrated in the flowchart of Fig. 11.8. Graphs of the optimiza-
tion process for the ANN parameters are indicatively illustrated in Figs. 11.9, 11.10
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Table 11.2 ANN training
algorithms

No BP training algorithms

1 Stochastic training, constant
learning rate

2 Batch mode, constant learning
rate

3 Batch mode with momentum
term and use of adaptive rules
for the learning rate

4 Batch mode, quasi-Newton
algorithm

5 Batch mode,
Levenberg-Marquardt
algorithm

and 11.11 for the first scenario. The stopping criteria and the activation functions used
for this application are given by Eqs. (11.4)–(11.6) and (11.7)–(11.9) respectively.

The estimation results for ground resistance of electrode 6, given by the two train-
ing scenarios and by two training algorithms, are illustrated in Fig. 11.12, so that
the reader may have a clear view for the performance of the applied ANN model.
Grounding rod 6 was selected for the illustration of the ANN estimation results, as it
presented the largest and steepest variance in ground resistance values, so it was the
most difficult case of input–output function that ANN had to approach from the six
tested grounding electrodes. Moreover, for evaluating the performance of each train-
ing algorithm, Figs. 11.13 and 11.14 show the convergence results of each algorithm
with a polygon shape for both scenarios, based on the results of R2 coefficient. Study-
ing the graphs of Figs. 11.13 and 11.14, the Levenberg-Marquardt algorithm seems
to be the more effective for ANN training concerning this particular application in
grounding systems. Its predominance against the others is quite clear for the case of
the first training scenario and this is obvious from the almost total convergence of
the ANN estimation results to the actual values according to Levenberg-Marquardt
algorithm, as it is shown in Fig. 11.12. However, in the case of the second scenario
the Levenberg-Marquardt algorithm seems to provide slightly better results but a
clear advantage is not obvious.

Regarding the above results, ANN technique seems to be a powerful and flexible
tool for estimating and forecasting the ground resistance value in variable soil and
weather conditions that definitely influence the behavior of grounding systems. In
such technical matters the condition monitoring of grounding systems is possible
only by field in situ measurements, which, in most cases, are difficult, costly and
sometimes impossible. Thus, a well-designed and well-trained ANN is a credible
solution for an accurate estimation of grounding systems condition.

As a next step to the effort formodeling and forecasting ground resistance variation
and based on the previous work with ANNmodels, the researchers aimed to develop
and train a neural network by using only local rainfall data at the experimental field
uncoupling completely the input vector from soil resistivity variables [23]. This effort
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Fig. 11.8 Flowchart of the ANN methodology [22]
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Fig. 11.10 Gav for the evaluation set for α0 ∈ [0.1, 0.9] and η0 ∈ [0.1, 0.9] [22]

Fig. 11.11 Gav for the training, the evaluation and the test sets during the execution of algorithm 3
in the first scenario [22]

makes sense because the use of soil resistivity values in such amodel demands a large
series of measurements at the field of interest, which is a costly and time-consuming
procedure. On the other hand, detailed local rainfall data are simply acquired at every
place of interest, just addressing the national meteorological services.
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Fig. 11.13 Graph of R2 coefficient for the 6 grounding systems including all the training algorithms
(1st scenario) [22]

Thus, in the initial process only one ground rod has been investigated for the ANN
modeling and the ANN architecture was similar to that of Fig. 11.2. The input layer
can include: (a) the cumulative total rainfall height in the day of ground resistance
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Fig. 11.14 Graph of R2 coefficient for the 6 grounding systems including all the training algorithms
(2nd scenario) [22]

measurement (rd(t)), (b) the cumulative total rainfall height of the last seven days
before the day of ground resistance measurement (rw(t)), (c) the cumulative total
rainfall height of the last thirty days before the day of ground resistancemeasurement
(rm(t)) and, finally, (d) the sinusoidal functions with period of one year, that describe
the periodicity of the phenomenon and are given by cos(2πt/T ) and sin(2πt/T ), with
T the days population per year (365 for the regular year, 366 for the bisect year). The
output variable (output layer) of the ANN is the ground resistance of the grounding
rod [23]. Several scenarios for the training of the network have been examined,
aiming to assess the significance and relevance of each input independent variable to
the output of the network. In real problems it is important to determine correctly the
independent variables. Including unnecessary input variables in themodel may cause
the increase of model complexity and training time, while the predictive capability
of the model is reduced.

The important role of the time periodicity on the final estimation of ground resis-
tance, as a supplementary factor for the improvement of the generalization ability
of the network, is one of the noteworthy conclusions from this work. Besides, the
use of the sinusoidal functions as the only input variables to the network results in
a correlation of almost 0.9 for the test sample. As for the individual use of rainfall
variables rd(t) and rm(t), their relevance to the network output is too small with the
R2 coefficient lying in very low levels, even if the respective results of rm(t) for
validation sample are quite satisfactory.

Concluding, themodel is effective in estimating and forecasting ground resistance
values quite accurately. Further work, on developing an algorithm that correctly
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identifies the insignificant variables, is of major importance. Aiming to this direction,
more classifications of the rainfall data could be assessed for their significance in
the accurate estimation of ground resistance. Therefore, the suitable selection of the
input variables, with the aid of such algorithms, is expected to lead to more rapid and
effective training of the network and increase its performance to the highest levels.

11.2.3 Wavelet Networks Modeling for the Estimation
of Ground Resistance

11.2.3.1 Introduction to Wavelet Analysis

Wavelet analysis has been highlighted as a valuable mathematical tool used for
the analysis of a large number of time series and has been applied, so far, in the
fields of image processing, signal denoising, density estimation, signal and image
compression, and signal decomposition in time domain with great success. It is often
considered as a microscope in mathematics [24] and a powerful tool for representing
nonlinearities [25]. For finding an alternative tool, instead of classic neural networks,
which would be more flexible and less time-consuming in its training, research
has turned to the development of more flexible networks, named Wavelet Neural
Networks (WNNs) or simply Wavelet Networks (WN) as referred to in literature.
These networks have kept enough characteristics from the classic neural networks,
using the wavelet functions as activation functions instead.

WNs have been used in a large number of technical applications such as short-term
load forecasting, time series forecasting, signal classification and compression, signal
denoising, and nonlinear modeling.WNs are a generalization of radial basis function
networks (RBFN). They are networks of a single hidden layer, using a wavelet as
activation function instead of the classic sigmoid function [26]. The nodes of the
wavelet networks are the wavelet coefficients of the expanded function which have a
significant value. These networks usually consist of three layers. The first layer is the
input layer, the middle is the hidden layer and the last layer is the output layer. The
explanatory variables of the problem are introduced to WN through the input layer.
The hidden layer consists of the hidden neurons, or else, hidden units (HUs). The
hidden units are usually referred to as wavelons and they are similar to the neurons
of hidden layer in classic sigmoid ANNs. In the hidden layer, the input variables are
transformed to a dilated and translated version of the mother wavelet. Finally, the
output layer gives the estimated value of the target variable [26].

The output of a feed-forward single-hidden-layer WN is given by the following
expression:

gλ(x;w) � ŷ(x) � w[2]
λ+1 +

λ∑

j�1

w[2]
j · � j (x) +

m∑

i�1

w[0]
i · xi (11.11)
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In the above expression,� j(x) is a multidimensional wavelet which is constructed
by the product ofm scalar wavelets, x is the input vector,m is the number of network
inputs, λ is the number of hidden units (HUs) and w stands for a network weight.
The multidimensional wavelets are computed as follows:

� j (x) �
m∏

i�1

ψ
(
zi j

)
(11.12)

where ψ is the mother wavelet and

zi j � xi − w[1]
(ξ)i j

w[1]
(ζ )i j

(11.13)

In the above expression, i=1,…m, j=1,… λ+1 and the weights w correspond to
the translation (w[1]

(ξ )i j ) and the dilation (w
[1]
(ζ )i j ) factors. The complete vector of the net-

work parameters comprises w �
(
w[0]
i ,w[2]

j ,w[2]
λ+1,w

[1]
(ξ )i j ,w

[1]
(ζ )i j

)
. These parameters

are adjusted during the training phase.

11.2.3.2 WN Paradigm in Grounding Systems

Though WNs have found significant applications in many technical and economic
problems, their application in grounding field is trivial. Androvitsaneas et al. [27]
developed a feed-forward single-hidden-layer for forecasting the ground resistance
of five vertical grounding rods encased in ground enhancing compounds. The dataset
used for the training and the validation of the constructed network was an enriched
version of the dataset used in ANN modeling. More particularly, the experimental
dataset of 337 input–output patterns was randomly divided into two sets:

• The training set (or in-sample set) consisted of 237 patterns and was used until the
network has learned the relationship between the inputs and the output.

• The validation set (or out-of-sample set) consisted of 100 patterns and was used
for the initialization of the WN parameters, for the model and variable selection,
as well as for the evaluation of the learning and generalization ability.

The input variables were exactly the same as the ANNmodel of Fig. 11.2 and the
output variable was the ground resistance of the five grounding rods, since one of
tested rods has beenwithdrawn from the experiment. TheBackwardElimination (BE)
method [26, 28] was used for the initialization of the network parameters, starting
the regression by selecting all the available wavelets from the wavelet library. This
method provided effective initialization of the network parameters, resulting in less
iterations during the training stage and, certainly, avoidance of local minima for the
loss function. Then, the wavelet that contributed the least in the fitting of the training
data was repeatedly eliminated. The WN has been trained using the Batch mode of
BP algorithm with constant learning rate η �0.1 and zero momentum term. The BP
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algorithm may be less faster compared to other training algorithms of higher order,
but is less prone to sensitivity, regarding the initial conditions, at the same time. Thus,
the network weights were constantly adjusted, so that the network obtain the final
vector of the parameters w � ŵn minimizing the loss function, given by Eq. (11.14):

Ln � 1

n

n∑

p�1

Ep � 1

2n

n∑

p�1

e2p � 1

2n

n∑

p�1

(
yp − ŷp

)2
(11.14)

where yp is the target value, ŷp the network output and n the number of the patterns
in the training set.

The activation function used for the wavelons of WN was the second derivative
of the Gaussian, the so-called “Mexican Hat” wavelet, due to the shape of its curve,
which is given by the following expression:

ψ
(
zi j

) � (
1 − z2i j

)
e− 1

2 z
2
i j (11.15)

More precisely, the activation function of the constructed wavelet network in [27]
was slightly different from the expression (11.14) and was:

ψa,b(t) � 2√
3π1/ 4

e− z2

2
(
1 − z2

)
, z � t − b

a
(11.16)

The stopping criteria used for the termination of the training phase were the
following [27]:

|Ln(ep) − Ln(ep − 1)| ≤ limit1 (11.17)
∣∣∣∣
∂Ln(ep)

∂wt
− ∂Ln(ep − 1)

∂wt

∣∣∣∣ ≤ limit2 (11.18)

The optimalWN architecture should comprise the least necessary number of HUs
in order to be able to describe the variability of the training data efficiently. Therefore,
researchers have chosen the Minimum Prediction Risk (MPR) criterion as the most
appropriate measure for the WN generalization ability [26, 27]. According to this
principle, the prediction risk is the prospective performance of the network on new
and unseen data, i.e. unknown data to the network during the training phase. Its
mathematical expression is:

Pλ � E

⎡

⎣1

n

n∑

p�1

(
y∗
p − ŷ∗

p

)2
⎤

⎦ (11.19)

For estimating the prediction risk and resulting in a network with the optimal
forecasting ability, the Bayesian Information Criterion (BIC) was chosen for theWN
construction, as BIC is considered to be the most suitable among other information
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criteria [27]. Its main advantage is the small computational burden and the precision
on estimation results. The BIC is calculated based on the expression (11.20) [26]:

JBIC � 1

n

n∑

p�1

(yp − ŷp)
2 +

kσ̂ 2 ln(n)

n
(11.20)

In the above expression (11.20), k is the number of the parameters of the network,
n the number of the training patterns and σ2 the noise variance estimator.

Eventually, for determining the most significant explanatory variables for the
input vector—the limitation of the input vector would reduce the computational bur-
den, and the estimation results for the output variable would be more accurate and
targeted, as unnecessary explanatory variables reduce the model’s forecasting pow-
er—Sensitivity Based Pruning (SBP) method [26] was chosen for variable selection,
among several sensitivity and model fitness criteria. This method investigates the
relevance of each explanatory variable to the model and quantifies this relationship
by measuring the variation in the empirical loss function (Ln) that brings the replace-
ment of the investigated variable x by its mean value. The SPB method is described
by the following expressions [26, 27]:

SBP
(
x j

) � Ln
(
x; ŵn

) − Ln
(
x̄( j); ŵn

)
(11.21)

x̄( j) � (
x1,t , x2,t , . . . , x̄ j , . . . , xm,t

)
(11.22)

x̄ j � 1

n

n∑

t�1

x j,t (11.23)

An indicative sample about the results of the developedWNmodel for forecasting
and modeling the seasonal variation of ground resistance, affected by weather and
soil conditions, is given in Fig. 11.15. The graph illustrates the convergence between
forecasting and target values, resulted by the model for the ground rod 3. The con-
structed WNmodel for this technical application presented remarkable convergence
results, regarding the R2 and adjusted R2 coefficients, reaching the values of 0.9898
and 0.9795 respectively for out-of-sample set. Furthermore, the model noted low
values for SMAPE in out-of-sample set, where the lowest value reached the 2.79%.
Therefore, the developedWN architecture noted quite high performance in assessing
and modeling the relationship among heavily variable and unpredictable parameters
as soil resistivity, rainfall height and ground resistance.

11.2.4 Inductive Machine Learning

Entropy information based inductive learning techniques were applied for the esti-
mation of the ground resistance of grounding systems, used for the safe operation of
electrical installations, substations and power transmission lines. Experimentation
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Fig. 11.15 Convergence results between forecasting and target values for out-of-sample set [27]

took place with measurements of soil resistivity in various ground depths and of
rainfall height, which have been carried out over a period of four years or so, at a
particular field. At the same time, the ground resistance values of few grounding rods,
encased in ground enhancing compounds, have been recorded as a function of time.
The applied computational method generalized over numerical data corresponding
to these ground resistance measurements. For the modeling of the data, classes were
represented by discrete intervals of measurements. Decision trees were constructed
in [29] for approximating the discrete valued target function of ground resistance
and, then, they were represented by production rules in order to improve the model
comprehensibility. The error rates and the performance of the model on unseen cases
were determined by a v-fold cross validation approach. Results proved promising
for further development of the method. Inductive machine learning was used not
primarily as a classifier, aiming at obtaining high accuracy, but more as a knowledge
discovery tool, finding interesting rules and decision patterns of high quality, to be
checked further with statistical techniques.

Decision tree learning has been one of the most widely used and practical meth-
ods for inductive inference. It is a method for approximating discrete-valued target
functions that is robust to noisy data, in which the learned function is represented by
a decision tree and capable of learning disjunctive expressions [30].

For the particular problem of ground resistance estimation a decision tree has
been constructed, classifying the available ground resistance values of the training
set, resulted from the field measurements, in predefined classes [31]. The algorithm
C5.0, a newer version of C4.5, has been used for the decision trees construction and
their produced rules [32].

The thirteen attributes (parameters) that determine the classified values of ground
resistance, used in the particular developed tree, are the daily value of soil resistivity
at the depth of 1, 2, 4, 6 and 8 m on the day of measurement (ρid), the mean weekly
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Table 11.3 Results of the IML methodology for the grounding rods G2 and G3, see [29]

RG2a RG2b RG2c RG3a RG3b RG3c

Nodes 51 67 69 45 39 80

Trees error (%) 1.4 0.8 0.5 0.3 0.3 0.8

Rules 42 55 59 43 29 68

Rules error (%) 2.2 1.4 0.8 0.3 0.5 1.1

CV error (%) 19.5 26.0 24.6 15.1 14.0 27.4

Extended CV error (%) 3.6 5.2 5.8 5.5 3.8 9.0

value of soil resistivity at the same depths (ρiw), the mean monthly value of soil
resistivity at depths of 1 and 2 m (ρim) and the total rainfall height during the last
seven days before the measurement day (rw). It is noted that i=1, 2, 4, 6, 8 m in
depth.

The variable to be classified was the ground resistance of each tested grounding
rod. The training set consisted of 365 cases (covering a 4-years period) for the
training and the validation of the decision tree. The categories (classes) to which
caseswere to be assigned, had been established beforehand. Three different scenarios
were established for the class discrimination assigned to each rod, corresponding to
different value intervals, considering both the uniformity of intervals and the uniform
distribution of the cases among the classes.

A decision treewas finally constructed for each individual hypothesis, considering
all the 13 attributes, each time. Afterwards, a 10-fold cross validation (cv) run was
performed for each individual tree, as it is a more robust estimation of accuracy on
unseen cases. The results of the developed IML model for each grounding rod are
tabulated in Table 11.3. The “extended cv error” was the cv error considering each
time an extended class, the default with the neighboring classes.

The rules extracted using the IML methodology and proposed in [29] are simple,
understandable and cover a large number of data. The inductive decision tree is
comprehensible, straightforward and is a near-perfect classifier in the training set,
presenting a 0.3% error. A number of 29 rules described the available sample of
data giving a small error rate in the cross-validation data [33]. This error varies
depending on how the classes are classified and depending on the amount and variety
of available data also. In Table 11.4 five indicative rules are presented, obtained
using the methodology presented above. In the first rule of the table, for example,
the number of cover cases shows that it is sturdy and has a possibility of 99.5% of
correctly classifying new data.

The results for the rod G1 show that, despite the remarkably low misclassification
errors of decision trees and production rules, the cross validation error on unseen
cases is quite high in all the scenarios. Moreover, the cross validation error increases
as the range (in Ohms) of the class becomes smaller, e.g. in scenarios (b) and (c) with
38.3% and 37.8% respectively, against the scenario (a) with 35.4%. These errors are
higher in the case of the rod G1 than the respective errors for the rods G2 and G3, due
to the large variance of values, the ground resistance of G1 presents, as the Fig. 11.4
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Table 11.4 Five indicative rules derived from the proposed IML methodology

Rule id Cover cases Extracted rule Probability of correct new data
classification expressed in [0, 1]

1 195 ρ1m ≤203.89→class “25–60” 0.995

2 120 ρ2m ≤148.74→class “25–60” 0.992

3 123 ρ4d >117.12 AND ρ2w
≤229.96→class “25–60”

0.992

4 119 ρ1d ≤325.47 AND ρ8d
≤189.601 AND ρ6w
>143.533→class “25–60”

0.967

5 78 ρ6d >154.566 AND ρ8d
≤210.11 AND ρ2w
≤199.72→class “25–60”

0.950

Fig. 11.16 Ground resistance as a function of time and rainfall [29]

does point out. On the contrary, considering the default class and the class next to it,
as an extended class, the cv error significantly decreases to approximately 1/3 of the
original. The rods G2 and G3, on the other hand, present some proposed scenarios,
as RG2a, RG3a and RG3b, with satisfactory results. The error in the scenario (a) of
G2 reaches the value of 19.5% while the corresponding values for scenarios (a) and
(b) of G3 are just 15.1% and 14%, respectively. It seems that the soil alleviation,
the ground enhancing compounds achieve and the consequent consistence in the
ground resistance values (Fig. 11.16), result in a classification taskwith compensative
results on unseen data. This means that the ground resistance forecasting, given soil
resistivity and rainfall data, is a most promising task. The main cause of the great
difference in cross validation errors, among the various scenarios of each individual
rod, is probably the nonuniform range of the classes in each scenario. This could be
a field for further investigation on the best class establishment.
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Overall, the results are encouraging enough to keep on the work on constructing
similar models for the estimation of grounding systems performance. The great
difference, in cross validation errors, points out the need for better and more focused
establishment of the necessary classes. Furthermore, a probable application of a
suitable attribute selection algorithm could result in much lower errors on classified
unseen cases. In conclusion, the results confirm the successful application of learning
decision trees in the field of grounding and, after the necessary modifications of the
algorithm, it is expected to be a powerful and reliable tool.

11.2.5 Genetic and Gene Expression Programming Versus
Linear Regression Models

Linear Regression and Gene Expression Programming (GEP) [34] were used in [15]
to develop models for describing how ground resistance acts as a function of weather
conditions. A series of 378 measurements of resistance (Rg1, …, Rg5) and 1753
cases of weather data were used. In order to obtain the desired models—one for each
ground enhancing compound—the appropriate time interval should be estimated,
starting one day before resistance measurement i.e. day zero and is extended to the
past for some days. The letter i denotes the number of these days. The number of
days for the desired interval is calculated using the multiple correlation coefficients
of all the independent variables to the measured, dependent resistance value. The
vector of the independent variable in the range i has a dimension of N � 13 and is
presented in Eq. (11.24), where exponents are indices, α denotes variable average in
the base of the interval i and s indicates summation accordingly.

pi � (
wsa,wda, nra, dra, sds, bpa, sma, ata, r f s, aha, eps, tra, f r s

)
(11.24)

Using the vector c � (rx1 y, rx2 y, . . . , rxN y)

 of correlations and the correlation

matrix Rxx, which is represented in Eq. (11.25), of inter-correlations among the pre-
dictor variables, the squared coefficient of multiple correlations can be computed as
R2 � c
R−1

xx c. R in this case (without index) is the Pearson Correlation Coefficient.
For each resistance R j , the smaller value of i is looked for, where dR2

/
di � 0.

Thus, the value of i is derived from the plot R2 � f (i).

Rxx �

⎛

⎜⎜⎜⎜⎜⎜⎝

rx1x1 rx1x2 . . . rx1xN

rx2x1
. . .

...

...
. . .

rxN x1 . . . rxN xN

⎞

⎟⎟⎟⎟⎟⎟⎠
. (11.25)
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Fig. 11.17 Plot of the actual versus predicted values for Rg1 produced by Linear Regression &
GEP

At this point, for each dependent variable Rj of grounding electrodes the value
of a time window, that the vector of the weather data has the highest correlation
coefficient, is obtained. Using this value of the time window a modular process was
initiated for the development of models starting from the linear models, continuing
with models using GEP. In order to derive some improved models, the value of
interval i was estimated using the GEP instead R2 directly.

For each i , i ∈ {2, 5, 7, 10, 15, 20, 30, 50, 80, 100, 150, 180}, a quick GEP
executionwas performedwith population of 50 individuals. The number ofmaximum
generations was set to 2000 using the entire data set and derived the corresponding
models computing the R2 between actual and predicted values, for each of them.
For the highest value of R2, the corresponding i is chosen and the same procedure
is followed for the values of i in the interval [i − a, i + a] and a ∈ {5, 10}, aiming
to achieve a model with the highest value of R2.

GEP implementation was also performed for the corresponding value of i. A
training set of 70% randomly chosen measurements from the data set and the other
30% as a testing set were used. GEP experiments were configured using a population
of 2,000 individuals, 10 genes per chromosome, 15 gene head length, the maximum
number of generation 10,000 and the Function set was {+ , −, *, /, a1/2}. There were
not used homeotic genes and the linking function was the addition. An example of
a derived model with this methodology is represented in Eq. (11.26). The model is
referred to the electrode G1 and the time interval for whomweather data elaborated is
5 days. Estimated variable is Rgij where i, j are timewindow and grounding electrode
respectively (here 1 and 5 days). Figure 11.17 presents the model of Eq. (11.26)
against experimental values and linear and the other GEP model.
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Rg51GEP � √
at + at

√
at · yr + 2bp

sm
+ 2sd + sm − tr +

tr

nr − r f − 13.002
− 9.275 +

2592.705

sm − 1
(11.26)

The results showed good performance of actual versus predicted values of ground
resistance for five different ground enhancing compounds. GEP model fits the actual
data better than linear models and they can give an intuition of the phenomenon. GEP
models have given better values of R2 index and MAE and proved that they could
be used as a feature selection method, for future research in order to achieve better
approximations of theground resistance.The timeofCPUrequired to train themodels
of GEP is about 103–105 longer with respect to the time taken to calculate the Linear
Regression models. The results also showed that genetic programming variants like
GEP could provide formulas capable of describing the phenomenon and, indeed,
with similar accuracy to ANNs but without forming a black box. The research team
proceeded to implement genetic programming approaches with improved accuracy,
although the resulting models are more complex. Running experiments will produce
a sufficient number of training data for machine learning methods to adequately
address the problem. GP based approaches seem to be promising for generating
generalized formulas as models for expressing ground resistance estimation.

11.3 Estimation of Critical Flashover Voltage of Insulators

One of the most critical problems with high-voltage insulators when operating under
pollution conditions is the occurrence of the flashover phenomenon. The knowledge
of the parameters the flashover depends on, as well as their critical values, is par-
ticularly useful. The way each of these parameters contributes to the phenomenon
is unknown; therefore, researchers investigate models to approximate the flashover
on polluted insulators. Intelligent techniques are proved to be handy tools for esti-
mating and predicting the critical strain in overcoming an insulator under polluted
conditions.

11.3.1 Problem Description

The phenomenon of flashover on insulators due to pollution refers to the fact that an
electric arc bridging, which runs through the air of the gap, is created between the
point of attachment of the line conductor to the insulator and the grounded mounting
or suspension of the insulator. The apparent paradox of overtaking insulators due
to pollution is that destructive electrical discharges, expanding in air meters, are
generated by electrical forces which, under normal conditions, could be intercepted
by air gaps of a few centimeters in length.

In some ways, the presence of inconspicuous conductive particles deposited on a
surface that would otherwise be strongly insulating reduces its actual electric resis-
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tance by a factor of not less than 100. The reasons for this are two: (a) the localized
dehydration of an electrode layer increases the discontinuities in the conductive lay-
er—also known as dry bands—along which stresses are produced sufficient to ionise
the air and (b) the arcs in a gas, which create they can easily be expanded with-
out impairment. For much of its life, an insulator will operate with dry bands on
its surface which occasionally penetrate electrical discharges. These discharges are
harmless, except for the problems of causing interference and surface damage for
which they are responsible. Very rarely the combination of conduction and electric
voltage will be so strong that it will allow the development of an arc of such intension
that it is self-preserving and propagated; then it is caused a split.

The technical problem is that the surface conduction that causes the breakdown
remains, even when the arc has been eliminated by the function of the protection,
which allows for other decays to follow [35]. Pollution can be caused by various
sources, such as fly ash, sea salt, dust from industries etc. The deposition of soil
contaminants creates, when wet, a conductive layer on its surface. The inert com-
ponents, on the other hand, are the percentage of the solid material that does not
dissolve but forms a mechanical sheath in which the conductive layer is incorporated
[36]. Humidity can be produced under mist or frost during the morning hours. Also,
drizzle and rain can have the same effect.

The combination of all these dirt and moisture deposits creates an electrolyte
conductive layer across the insulator. From this, a surface current pass that heats
the electrolyte layer, causing the water to evaporate locally. The solution becomes
supersaturated with salt and creates dry zones with higher ohmic resistance. Between
the boundaries of the dry zones, the most significant potential difference is observed
due to the voltage applied to the ends of the insulator, and then the occurrence of
some discharges is found. In case that these discharges are extended to the rest of
the wet surface of the insulator, then the flashover phenomenon occurs. If the arc
created arises can expand and cover a critical length; the split can no longer be
avoided. Because of the above phenomenon, the electricity transmission networks
are stressed daily, and they often go out of order, with a more typical case of glacier
fog has caused some of the most severe incidents, as in 1962 the multiple problems
and a temporary interruption in England’s transition network [35].

Addressing the problem has led to the design and execution of laboratory experi-
ments to analyze the phenomenon. These experiments are carried out on artificially
contaminated insulators of various types but require a lot of time for their execu-
tion. From these experiments, numerous experimental data have been obtained, like
minimum flashover voltage against pollution, leakage current etc. Using the results
and mathematical procedures, the arc constants of the insulator can be estimated
according to its type. In Fig. 11.18 the basic parameters of Cap and Pin insulator
type are depicted.
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Fig. 11.18 Basic design parameters of Cap and Pin Insulator

Fig. 11.19 Equivalent circuit for the evaluation of the flashover voltage

11.3.1.1 Mathematical Model and Experimental Data

A number of researchers have investigated the flashover mechanism on polluted
insulators. Obenaus has developed the simplest model [37] and for more details
see [38]. The equivalent circuit for the evaluation of the critical flashover voltage
consists of a partial arc spanning over a dry zone in series with the resistance of
the polluted wet zone as shown in Fig. 11.19, where Varc is the arcing voltage, Rp

the resistance of the pollution layer and U the voltage between the two ends of the
insulator. The critical flashover voltage Uc according to that model is given by the
Eqs. (11.26–11.30) in Table 11.5.

In Eq. (11.27), A and n are the arc constants, L is the leakage length, Dm is
the maximum diameter of the insulator disc, F is the form factor a constructional
characteristic and is determined from its dimensions using the integral of Eq. (11.28)
where D(l) is the diameter of the insulator, varying across its leakage length L .
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Table 11.5 Equations of the
model in order to figure out
the critical flash over voltage
Uc

The coefficient of the resistance of the pollution layer K depends on the type of the
insulator. In case of cap and pin insulators is figured out using Eq. (11.29), where R is
the radius of the arc foot (in cm) and is given by Eq. (11.30). The surface conductivity
σs (in �−1) is figured out using Eq. (11.31), where C is the equivalent salt deposit
density expressed in mg/cm2.

In order to be able to apply the above mathematical model to calculate the critical
flashover voltage, the arc constants need to be determined. The last requires a series
of arduous experiments examining a set of different types of insulators used in the
power distribution lines. The specimens are examined in an insulator test station on
two chambers according to the solid layer-cool fog method to simulate the industrial
pollution [38]. The overall process was in line with IEC norm [39].

The result of the process is the maximum withstand voltage depending on the
geometric characteristics of the insulator and the degree of contamination. Details
about the performed experiments one can find in [38, 40]. The set of the experimental
data that will be used as training set to computational intelligent models completes
a series of similar experiments [41, 42].

11.3.2 Genetic Algorithms

Genetic Algorithms (GA) belong to the heuristic methods of optimisation and the
capability of searching for the solution is based on themechanism of natural selection
and survival of the fittest [43, 44]. The function of the genetic algorithm is based on
the appropriate encoding of the solution and is a genotype-phenotype system [45].
GA can find near-optimal solutions, where other conventional methods do not do
just as well. In [46] GA have been used successfully to find the constants of the arc
A, n of Eq. (11.27).
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The estimation of the arc constants is a difficult task and is one of the significant
difficulties and challenges faced by researchers in trying to develop reliable mathe-
matical models that describe the dielectric behaviour of contaminated insulators.

The use of different experimentalmethodology and the complexity of the followed
mathematical approaches resulted that the values of A and n have been presented in
the literature with several deviations (A � 131.5, n � 0.374 [38]; A � 63.0, n �
0.76 [47], A � 270 − 461, n � 0.42 − 0.66 [48]). Since σs is a function of C and
F and K are a function of known L, Dm which are depended by insulator type the
critical voltage is a function of a form of Eq. (11.32).

Uc � f (A, n, L , Dm,C) (11.32)

Three types of insulators were selected from the bibliography for which experi-
ments were conducted to determine the Uc against σ s. Since the geometrical char-
acteristics of the insulators are known, the calculation of the arc constants becomes
a minimization problem of Fg of Eq. (11.33)

Fg �
284∑

i�1

|Uci − fi (A, n)| (11.33)

The number of experimental data that forming the training set is 284 vectors. The
measured value of Uci is the experimental result, and the f i is the evaluation of the
model using data for the ith experiment. Taking into account the values of A and n
from the literature, the following intervals, A ∈ (0, 500) and n ∈ (0, 1) were selected
for investigation from theGA andweremapped to a 16-bit length binary strings each.
Thus, each chromosome consists of 32 bits and represents both variables.

The population of each generation is limited to 20 individuals and the algorithm
stops after 500 generations. From the population, a pair of two parental chromosomes
are selected and each of them is divided into six parts, that interchange their genetic
material between two parents. Four children are created from each pair of parents.
The children then undergo a mutation with probability 1%. The mutation operator
selects bits randomly from the progeny chromosome and inverts its value, i.e. zero
becomes one, and one becomes zero. The process results in the population increases
because the population of the parents is added to a double number of children. In
order to conserve the population number steady only the better 20 individuals remain
to the population for the next generation.

The results of the genetic algorithmquickly converge to anA�124.8 and n=0.409
after about 20 generations. The model that emerged using the genetic algorithm gave
an accurate approximation of the experimental data [38, 41] for both fog-type and
cap and pin type measurements. The model was tested in a critical voltage range of
27–7 kV against surface conductivity range of (0.1–2) × 10−4 �−1 respectively and
passed through the experimental data.
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11.3.3 Application of ANNs

Increasing air pollution with pollutants affects electricity distribution networks. An
electrolyte layer spreads to the surface of the insulators and when the voltage exceeds
a critical value, discharges strain the power lines. Thus, the network operator should
monitor the status of the insulators andmaintain maintenance at the appropriate time.

That is the reason why many researchers have addressed the problem and, among
other things, they have developed new technologies to control the condition of insu-
lators like ANNs. Neural Network algorithms have been successfully applied to
estimate the equivalent salt deposit density, by using information about weather data
to schedule maintenance tasks.

Another ANN [49] has been applied in order to estimate the critical flashover
voltage on polluted insulators using as input variables the geometric characteristic
of an insulator and the equivalent salt deposit density using experimental data and
the mathematical model to form the training set. In [50], an ANN has been used in
order to estimate the time-to-flashover when the applied voltage, the creepage length
and the resistance per unit length are given. The experimental data were obtained
by studies performed on a flat plate model for a polluted insulator under a power
frequency voltage. In [51] anANNwas trained to deducewhether or not a breakdown
is imminent using data collected from two pollution-related monitoring devices and
the predictions were validated with a test of flashover experiments. Several other
ANNs have been developed in order to analyze the insulator surface tracking on solid
insulators. The system can protect the insulator from immoderate damage warning
the user [52]. Another study [53] presents a multilayer ANN model that classifies
the development of the arc gradient into three stages. ANNs used to estimate the
partial discharge inception voltage [54] and the leakage current on silicone rubber
insulators [55, 56]. In (Asimakopoulou et al. 2009), a methodology was developed to
form anANN to be used in the calculation of the critical flashover voltage on polluted
insulators. The process that is being developed aims to select the appropriate ANN
training algorithm and optimize the values of the parameters that regulate its behavior
in order to achieve the best possible accuracy.

The training, validation and test of the designed ANNs were performed using
two datasets. (a) Experimental data from previous works [40–42] and (b) the mathe-
matical model of [38] to enrich the available data. The quantities used had common
units of measurement and the independent variables for the training are those of
the Eq. (11.32) except layer conductivity σ s (in mS) against equivalent salt deposit
density C.

A check was made to eliminate gross errors in order to deduct noise. The values
were normalized to avoid saturation problems due to the use of sigmoid functions
outside the interval [−1, 1].

The neural network developed has three layers. In the input layer, the independent
variables are assigned. Their values are obtained from the training, validation and
test set.
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The ANN training is performed with a series of variants of the Back Propagation
(BP) algorithm. The appropriate algorithm selection is made with the R2 index cor-
relating the actual values of the critical flashover voltage with those calculated by the
ANN for the validation set. Index R2 is used for what is an undiminished number,
describing the approximation estimated with actual values regardless of the units of
measurement and the absolute values of the quantities. The algorithm that presented
the highest value of R2 is more appropriate for the task of critical flashover voltage
estimation.

Confidence intervals are calculated for the validation set using the resampling
method [57]. At the overall end of the process, the estimation of value of the critical
flashover voltage is done using the data of the test set. The trained ANN using
the BP algorithm showing the larger R2 index and the others corresponding design
parameters as derived from the process followed is used for the estimation of critical
flashover voltage.

Depending on theway of adaptation of the weights, there are twoways of training:
(a) the case of stochastic training where weights are adjusted after the presentation
of each training model on the network, (b) the case of batch mode where weights are
updated after the presentation in the network of all the set of patterns of the epoch.
The mean value of square errors is determined by Eq. (11.3). The adjustment of all
weights takes place once at the end of each epoch.

The stopping criteria are the same as Eqs. (11.4–11.6). In each ANN, two
approaches were followed. In the first (from now on referred to as a), all three
criteria mentioned above were used, while in the second (hereafter referred to as b)
only the first and third were used.

There are several parameters to be selected, depending on the variation of the BP
algorithm that is being used each time in order to train the ANN. The parameters
that are common in all methods are: the number of neurons Nn, the type and the
parameters (a, b) of the activation functions, Eqs. (11.7–11.9) and the maximum
number of epochs (max_epochs). The uncommon parameters were selected based
on each algorithm, see [58].

The development of the most appropriate ANN requires the investigation of every
possible combination of parameters for each input variable. In order to reduce this
combination of parameters, a sequential stages process was followed in order to
initially determine the optimal parameters of the stage being examined and then
keeping them fixed to examine the remaining parameters of BP algorithm. Thus,
the appropriate number of hidden layer neurons (i.e., the one providing the smallest
error) was first determined. This was achieved for each BP algorithm by examining
the number of neurons in the interval 2 … 25 with step 1. The optimal choice is
that minimizing the value of Gav (Eq. 11.3). Holding the corresponding optimal
number of neurons for each BP algorithm, the sequential determination of the other
parameters (e.g. activation function parameters, momentum term etc.) follows, in
asimilar way. More details and an exemplify paradigm can be found in [58]. The
overall optimization methodology is the same as Fig. 11.8, except for one more stage
before the final estimation for test set, where the confidence intervals calculation
takes place.
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The most accurate ANN is that constructed using 3 neurons in the hidden layer,
the scaled conjugate gradient algorithm with three stopping criteria in estimating
the critical flashover voltage. The respective correlation between the actual and the
estimated values R2 for the test set is 0.9853 and for the evaluation set is 0.9972
and the respective Mean Absolute Percentage Error (MAPE) is 3.84%. The ANN
is superior than the mathematical model [38] which respective correlation R2 is
0.9801 and MAPE is 4.59%. The comparison of mathematical model and proposed
ANN methodology for 24 experimental vectors of the test set confirmed that ANN
methodology gave better results.

11.3.4 Multilayer Perceptron ANNs

A multilayer perceptron approach was followed in [59], where an attempt has been
made to model the flashover phenomenon estimating the critical flashover voltage.
For this purpose a set of 140 cases from the model of have been used and a set of 28
experimental observations [38]. The variables are the same as Eq. (11.6).

The main database was divided into two parts for all methods of work. The first
part was used for the development of the predictive models of critical flashover
voltage and the second part was used to test the final predictive model. The Training-
Validation Set is derived from 150 data cases (130 cases of mathematical data and
20 cases of actual data) and the Test Set is derived from 18 data cases (10 cases of
actual data and 8 cases of mathematical data). Data were normalized in the interval
of [−1, 1] to avoid saturation problems.

The ANN model belongs to the category of the feed-forward artificial neural
networks (Multilayer Perceptron—MLPs. On finding the optimal MLP for the esti-
mation of critical flashover voltage, 351 MLPs were developed and compared with
each other. All MLPs had one hidden layer and the activation function of hidden
nodes was the logistic function [60].

The training of each MLP was supervised into batch mode and was performed
using the Backpropagation Algorithm (BP) [61]. Moreover, the validation of each
MLP was held together with the process of education, using the 10-fold cross vali-
dation method [62] based on the same dataset (Training-Validation Set).

The experimental procedure followed at this point of the work consists of 4 parts
comparisons of different MLP architectures. The goal in each test part was to min-
imize the MAE, RMSE, RAE and RRSE and to maximize the R2 between the Uc
(actual) and Uc (predicted). The aim of the first test part of the experimental procedure
was to find the best combinations between the learning-rate (Tη) and the momentum
term (T a) for specific numbers of epochs (E). The searching, which took place at
the second test part of the experimental procedure, is concerned the finding of the
best combinations between the number of epochs and the number of nodes to hidden
layer of MLPs, for the combinations Tη − T a, which were resulted from the first test
part. In the third test part and having into account the best combinations E− Tη − T a

− Nn of the second test part of experimental procedure, was observed the behavior
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Table 11.6 Performances of ANN [59]

Model: ANN2 R2 MAE (kV) RMSE (kV) RAE (%) RRSE (%)

Training 0.9991 0.146 0.2522 2.8568 4.3264

Test 0.9904 0.731 0.8256 – –

Table 11.7 Performance of ANN model [63]

Training-validation set Test set

R2 0.9994 0.9842

MAE (kV) 0.1370 1.3249

RMSE (kV) 0.1886 1.6957

RAE (%) 2.9136 –

RRSE (%) 3.3936 –

of MLPs by altering the number of nodes to hidden layer (Nn) and keeping fixed the
combinations E− Tη − T a. Finally, in the fourth test part, using the combinations of
third test part was observed the behavior of MLPs by altering the number of epochs.
The performance of the model is presented in Table 11.6. The number of nodes in
hidden layer is 20.

Previous work [59] was expanded in [63] where, using the same data, 1895 archi-
tectures ofMLPshave beendeveloped and compared to eachother in order to estimate
Uc. The training process follows 4 stages accordingly. The ANN architecture has 3
layers where hidden layer has 21 neurons. For its training the BP algorithm adjust
to learning and momentum term 0.1 and 0.9 respectively. The correlation between
actual and predicted values of the model for the train-validation and test set shows
the good performance of proposed ANN, Table 11.7. The comparison with similar
ANN models from related literature shows that the model generalizes well on the
estimation of critical flashover voltage on polluted cap and pin porcelain insulators.

11.3.5 Genetic Programming

Genetic programming (GP) is a nature-inspired optimization algorithm which fol-
lows the model of biological evolution. It was invented by Koza [64] and has since
gained popularity due to its robustness and performance so many applications of GP
have been reported. GP approaches the solution of a given problem, performing an
evolutionary search within the solution space i.e. the space of the possible program
syntaxes, for the expression that best solves the problem. GP is used to evolve solu-
tions to different types of problems with a large variety of the applications. Symbolic
Regression is an application of GP and aims to find the appropriate expression that
best fits a given set of training data. These expressions are usually being reenacted as
syntax trees where the variables and constants are the leaves of the tree and functions
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are internal nodes. Without constraints in size these trees along to evolution process
grow in size and produce solutions difficult to read and results are often no general.

A simple method to control the expression growth is the use of limits on the
depth or the size of the tree that represents the candidate solution. This point needs
carefully estimation because tightly constrained leads to weakness to express good
solutions [65]. To accomplish that task some trial and error maybe required in order
to establish a good setup of the algorithm to obtain accurate results, sufficiently
generalized, readable and more comprehensible.

In [59] a GP was developed (GP-1). The first set of 150 cases was partitioned
into a k�10 subset of equal size. Of the k subsets, a single subset was retained as
the testing data and the remaining k − 1 subsets were used as training data. The
cross-validation process was repeated k times (k-fold Cross-Validation), with each
of the k subsets used exactly once as testing data. For each fold 30 intendedly runs
executed with the same modulation. All runs trained their solution with k-1 subsets
and all compared in the rest testing data. So, we had 10 candidate models which
compared in the second set of 18 cases, and the better model in terms of correlation
coefficient had been chosen.

Each run was modulated with a number of 50 generations and the population
number was 1000 individuals. The maximum tree depth was 12 and the maximum
tree lengthwas 150 nodes. Person correlation coefficient used to evaluate the obtained
solutionswhich produced by primitives from the Function set: {+ ,−, *, /, EXP, LOG,
POW, SQRT} and the Terminal set was constants and problem variables. The internal
crossover probability was 0.9 and the mutation probability was 0.15. Details of the
model,which is rather complex, someone canfind in [59]. In Table 11.8 performances
of the model are presented under the name GP-1.

11.3.6 Gravitational Search Algorithm Technique

Aiming to a more comprehensible method, a Gravitational Search Algorithm (GSA)
[66] was used in [59] for building a model that fits on data. GSA is an Evolutionary
Algorithm and it is known for using vectors for every agent in every dimension of
the problem and, thus, the vectors of the solutions are relocated in a better solution in
solution space, based on the best solution that attracts all agents in every dimension.
However, the main disadvantage of Nature Inspired Algorithms, such as GSA, in this
kind of problems is that they do not check different mathematical function models,
while GP and ANN do. A Nature Inspired Technique is based on the model that the
user sets and tries different values of the weights of independent variables.

This has led to the thought that Evolutionary Algorithms could optimize the
proposed model from other algorithms like the proposed model of the Genetic Pro-
gramming, named GP-2. As a result, GSA provided a more accurate model.

For the initialization of population, Harmony Search (HS) algorithm [67] was
used. Harmony Search alternates the vector of weights slightly and produces a popu-
lation of solutions very close to the proposed one byGP. ThenGSAwas implemented
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Table 11.8 Performances of GP-1, GP-2 and GSA-1 models [59]

r MAE (kV) RMSE (kV) RAE (%)

Model: GP-1

Training 0.9979685 0.169555 0.2499 1.2901

Validation 0.999247 0.171671 0.2177 1.2332

Test 0.993614 0.276758 0.4538 3.5585

Model: GP-2

Training 0.99506 0.32137 0.41889 2.5808

Test 0.99564 0.26586 0.29275 2.2182

Validation 0.98985 0.50008 0.62641 3.4887

Model: GSA-1

Training 0.99728 0.33031 0.19303 –

Test 0.99958 0.03388 0.01541 –

Validation 0.99027 0.46951 0.38056 –

for 1000 iterations, given a population of 100 agents. The initial value of Gravity
G0 was 1000, the bandwidth of HS was 0.01, the Harmony Memory Consideration
Rate was 0.8 and the Pitch Adjustment Rate was 0.3. The fold of data that produced
the best model was used also as input here. In Eq. (11.34), the simpler model by
GP can be seen, while in Eq. (11.35) is the optimized model by GSA-HS scheme.
In Table 11.8 the performances of the models are presented under GP-2 and GSA-1
respectively.

Uc � (log(0.054012C))2(1.298L + 1.4616Dm) · 0.0053419 + 1.9647 (11.34)

Uc � (log(0.0544783402089791C))2 · (1.29462312655721L
+ 1.46957461951861Dm) · 0.0053419 + 1.9579433609812 (11.35)

Threemodels based onGPwere developed. Thesemodels show a high correlation
between estimated and actual values for all sets, training, validation and test. The
most accurate of all is theGP-1modelwhere r for the test set was 0.999247.However,
the model is highly complex. Simpler Models have been developed with satisfactory
precision such as that of GSA-1 with a corresponding r in the test set is equal to
0.99958 with the model being more straightforward than the mathematical model of
Eq. (11.27).

11.4 Other Applications of Electric Power Systems

In this section a brief description is provided, of advances of AI techniques applied in
two other important electric power engineering applications, namely load forecasting
and optimization in transmission lines.
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11.4.1 Load Forecasting

The short- and mid-term load forecasting in electric power systems is another impor-
tant application of artificial intelligence in electric power engineering. As already
mentioned before, the highest possible accuracy in forecasting the hourly, daily, or
monthly, load profiles is of great importance for the power system scheduling in
terms of power generation, unit commitment, availability of transfer capability, sta-
bility margins, and power control. Conventional methods for estimating the demand
in electric power systems are based on many assumptions and approximations, while
they have to include parameter relations that they cannot clearly describe. Artificial
neural networks have achieved to provide concrete solutions to the above problems,
rendering them as the predominant load forecasting technique [3].

In international literature of electric power systems a serious number of methods
have been proposed for short-term load forecasting with various rates of approach
to real data, such as ARMAX models [68], regression models [69] artificial neural
networks (ANNs) [70], fuzzy modeling [71] etc. Some of the first studies for load
forecasting in power system of Greece were that of Bakirtzis et al. [72, 73] and of
Tsekouras et al. [74–76]. Researchers have proved that the use of classical multilayer
ANNs trained with error back propagation algorithm (BP) results in small mean
absolute percentage errors of the order of 1.5–2.5% [3], rendering ANNs the most
effective load-forecasting method.

11.4.2 Lightning Performance Evaluation in Transmission
Lines

Furthermore, ANNs have been used with great success for evaluating the light-
ning performance of overhead high-voltage transmission lines, which constitute a
very important part of electric power systems. Noteworthy ANN models have been
developed and trained with real experimental data collected from high-voltage trans-
mission lines of 150 and 400 kV under service in the Hellenic electric power sys-
tem [77–79]. More particularly, researchers developed feed-forward (FF) and radial
basis function (RBF) neural networks for the estimation of total lightning failure
NT , shielding failure NSF , and back flashover failure NBF (variables for the output
vector) on overhead transmission lines, using data for total footing resistance R, peak
lightning current Ipeak , lightning current derivative di/dt, and keraunic level T from
Hellenic transmission lines as variables for the input vector. The proposed ANN
models proved to be very efficient and accurate in estimation results of the target
variables, providing compact distributed representations for complex datasets.
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11.5 Conclusions and Further Research

In this chapter different intelligent approaches for modelling, generalization and
knowledge extraction from data were presented, as they were applied in (a) ground
resistance estimation, (b) estimation of critical flashover voltage on insulators, (c)
load forecasting and (d) optimization tasks in transmission lines.

The intelligent techniques perform very well and with the aid of proper data
carefully collected, can be used for the efficient modelling and construction of real
world systems, related to grounding, insulators, load forecasting and power trans-
mission lines. Neural networks (ANNs) prove a powerful tool for generating models
from numerical data, inductive machine learning can generate highly comprehensi-
ble knowledge in the form of simple IF/THEN rules, and finally, genetic algorithms
and genetic programming can utilize the evolution principles properly for obtaining
high quality solutions to hard optimization problems in the abovementioned domains
of application for electric power engineering.

The authors direct their research towards the implementation and application
of other promising intelligent techniques such as support vector machines, fuzzy
rule based systems (FRBS), as well as hybrid and adaptive intelligent algorithmic
approaches for knowledge extraction, generalization and solution of hard optimiza-
tion and forecasting problems. They also examine and study other versions of the
problems under analysis, through the collection of additional and more specialized
data, like (a) data for different types of ground in grounding systems modelling, (b)
aggregation off of weather data and other similar parameters for analysis in ground-
ing systems, (c) data collection for different types of insulators in collaboration to
authorities that cope with the problem of flashover voltage in real world conditions,
(d) specialized load forecasting optimization problems, etc.

In addition, other important electric power engineering applications of AI tech-
niques are considered (sometimes on the interface and with mechanical engineering
areas in power systems), such as:

• Fault diagnosis and reliability (network faults, imbalances, frequency deviation,
network restoration, stability analysis and enhancement, etc.)

• Control of power systems (stability control, power flow control, etc.)
• Energy management systems
• Alarm analysis and protection systems
• Distribution systems applications
• Demand side management and demand response
• Reactive power planning
• Behavior prediction of power systems
• Power system operation and monitoring (unit commitment, economic dispatch,
hydro thermal coordination, maintenance scheduling, congestion management,
etc.)

• Electric markets (bidding, market analysis, etc.)
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Finally, another interesting point for researchers would be to observe the degree to
which proposed methods and research findings are adopted in practice and become
routine in the abovementioned domains of application.
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Chapter 12
Combining Genetic Algorithms
and Neural Networks for File Forgery
Detection

Konstantinos Karampidis, Ioannis Deligiannis and Giorgos Papadourakis

Abstract Today’s electronic devices are so ubiquitous that the collection and use of
digital evidence has become a standard part ofmany criminal and civil investigations.
The uncovering and examination of those shreds of evidence is a relatively new and
important process to provide crucial information in a court of law. Suspects routinely
have their laptops and cell phones examined for corroborating evidence. However,
digital forensic investigators are facing several challenges such as file obfuscation,
encryption, alteration and amassive amount of evidence. These challenges often lead
to incomplete analysis and inadequate conclusions. Consequently, a digital forensic
examiner uses specialized forensic software to accurately identify the file types to
determine which of them may contain potential evidence.

12.1 Introduction

The 21st century has seen a dramatic increase in new and ever-evolving technolo-
gies available to consumers and industry alike. Generally, the consumer—level user
base is now more adept and knowledgeable about what technologies they employ
in their day-to-day lives. The field of digital forensics has grown increasingly over
the last few years as both the computer and the cellular market has grown. This
inevitable technological progress is followed up by numerous cyber-attacks carried
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out by criminals who have the appropriate technical background. For that reason,
computer forensics has become an essential part of the litigation process, and elec-
tronic evidence plays an increasingly vital role in the Court’s to prove or disprove an
individual’s actions to secure a conviction. Nevertheless, most people immediately
think that the only sources for digital evidence are computers, cell phones, and the
Internet. The truth behind that is that almost any piece of technology that processes
information can be used criminally. For example, hand-held games can carry mes-
sages between criminals and even newer household appliances, such as a refrigerator
with a built-in TV, could be used to store, view and share illegal images. The impor-
tant thing to know is that responders need to be able to recognize and properly seize
potential digital evidence.

However, the identification and preservation of evidence in digital forensic inves-
tigations in emerging environments have always presented a challenge. To develop
an understanding of these problems and their place in the digital forensic process we
could consider two predominant models for digital forensic investigations proposed
by McKemmish [1] and NIST [2].

12.1.1 McKemmish Predominant Model

• Identification: in this stage the location and format of evidence is identified to
enable an appropriate mechanism to be determined for the purpose of recovering
evidence. Digital evidence can be found in a myriad of places; computers, mobile
phones, smart cards, set top boxes etc.

• Preservation: it is imperative that evidence is preserved as in many cases it will
be the subject of judicial scrutiny. In some circumstances changes to data are
unavoidable. In these cases, change should be minimized and the process causing
the change documented along with an explanation/justification of why the change
was required.

• Analysis: consists of the extraction, processing and interpretation of digital evi-
dence. It forms the main element of forensic computing. Following extraction,
processing is often required to make data human readable. Processing of extracted
data may be part of the extraction stage or a separate stage in its own right.

• Presentation: the final stage of the process involves a presentation of both the
evidence and the process by which the evidence was gathered along with the
presenter’s qualifications.

12.1.2 Kent Predominant Model

• Collection: encompasses identification, preservation and acquisition of relevant
evidence.

• Examination: uses automated and manual tools to extract data of interest.
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• Analysis: the derivation of useful information from the results of the examination
stage.

• Reporting: is concerned with the preparation and presentation of the evidence and
forensic analysis process.

12.1.3 Digital Evidences

Both the previously mentioned models result to digital evidences which could be
defined as valuable information in binary form that could be received or transmitted
by an electronic device andmaybe relied on in court. These evidences can be acquired
when electronic devices are seized and secured for examination and may have one
or more of the following properties:

• Can only be seen, understood, analyzed, and presented with and through tools.
• Sometimes exists for very short time periods.
• Easily destroyed or modified.
• Easily mishandled.
• Patterns of information combine to provide substance.
• Easily misinterpreted.
• Often misleading or patently false.

Information that is stored electronically is said to be ‘digital’ because it is liter-
ally stored in a form of digits; binary units of ones (1) and zeros (0), that are saved
and retrieved using a set of instructions called software or code. Any information,
photographs, words, spreadsheets can be created and saved using these types of
instructions. Finding and exploiting evidence saved in this way is a growing area of
forensics and constantly changes as the technology evolves. Digital evidence may
come into play in any serious criminal investigation such as murder, rape, stalking,
carjacking, burglary, child abuse or exploitation, counterfeiting, extortion, gambling,
piracy, property crimes and terrorism. Pre and post-crime information are most rel-
evant, for example, if a criminal was using an online program like Google Maps™
or street view to case a property before a crime; or posting stolen items for sale on
Craigslist or eBay; or communicating via text message with accomplices to plan a
crime or threaten a person. Some crimes can be committed entirely through digital
means, such as computer hacking, economic fraud or identity theft. In any of these sit-
uations, an electronic trail of information is left behind for a savvy investigation team
to recognize, seize and exploit. As with any evidence gathering, following proper
procedures is crucial and will yield the most valuable data. Not following proper
procedures can result in lost or damaged evidence or rendering it inadmissible in
court.

Computer documents, emails, text and instant messages, transactions, images and
Internet history are examples of information that can be gathered from electronic
devices and used efficiently as evidence. For example, mobile devices use online
based backup systems, also known as the ‘cloud’, that provide forensic investigators
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with access to text messages and pictures taken from a particular phone. These
systems keep an average 2000 or more of the last text messages received from that
phone. Moreover, many mobile devices store information about the location history
of the device. To gain this knowledge, investigators can access almost the last 200 cell
locations accessed by the mobile device. Satellite navigation systems and satellite
radios in cars can provide similar information. Even photos posted to social media
such as Facebook may contain location information. Photos taken with a Global
Positioning System (GPS) enabled on the device, contain file metadata that shows
when and exactly where a photo was taken. By gaining a subpoena for a mobile
device account, investigators can retrieve a great deal of history related to a device
and the person using it.

There are a few common misperceptions about the retrieval and usefulness of
digital evidence, including:

• Anything on a hard drive or other electronic media can always be retrieved. This
is incorrect as overwritten or damaged files, or physical damage to the media can
render it unreadable. Highly specialized laboratories with clean rooms may be
able to examine hard drive components and reconstruct data, but this process is
very laborious and extremely expensive.

• Decrypting a password is quick and easy, with the right software.With the increas-
ing complexity of passwords including capitals, numbers, symbols and password
length, there are billions of potential passwords. Decryption can take a great deal
of time, up to a year in some cases, using system resources and holding up investi-
gations. Gathering passwords from those involved in a case is much more efficient
and should be done whenever possible.

• Any digital image can be refined to high definition quality. Images can be very
useful for investigations, but a low-resolution image is made by capturing fewer
bits of data (pixels) than higher resolution photos. Pixels that are not there in the
first place cannot be refined. Investigators can look at digital evidence at the crime
scene or any time.

• Just looking at a file list does not damage the evidence. It is crucial to note that
opening, viewing or clicking on files can severely damage forensic information
because it can change the last access date of a file or a piece of hardware. This
changes the profile and can be considered tampering with evidence or even render
it completely inadmissible. Only investigators with the proper tools and training
should be viewing and retrieving evidence.

• First responder training lags advancements in electronics. Without regular updates
to their training, responders may not be aware of what new digital devices might
be in use and subject to collection. For example, there should be an awareness
that thumb drives and SD cards can be easily removed and discarded by a suspect
during an encounter with law enforcement.
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12.1.4 File Type Identification

If evidence collection and analysis is conducted properly, investigators can secure
information that can assist criminal activity claims through dialog or message
exchange, images and documents. The examinerwill provide all the supporting docu-
mentation, by highlighting significant information and delivering a report describing
what was done to extract the data. As with evidence of other types, a chain of custody
and proper collection and extraction techniques are critical to the credibility of evi-
dence and must be thoroughly documented. However, there are several limitations
which could lead to an unsuccessful investigation. For example, encryption and pro-
prietary systems that require decoding before data can even be accessed as well as the
usually enormous amount of data that must be examined. To solve those issues, there
are several techniques that could automate the process such as password cracking
tools and some more sophisticated software which are able to identify suspicious
files.

There is always the likelihood that files may be altered in order to hide evidence.
Files must also have checked whether are ‘genuine’ or not. A file format is the
blueprint of a file. It tells the processing device (e.g. a computer) how data within
a file are organized and specifies the way the information is encoded in a digital
storage medium. File formats may be either proprietary e.g. .dwg for an Autocad
file, free which is not burdened by any copyrights, patents or other restrictions, or
open which anyone can read and study but it may be burdened by restrictions on use.
One popularmethod used bymany operating systems, includingWindows—themost
popular operating system among computer end users—is to determine the format of
a file based on the end of its name, the letters following the final period. This is known
as the filename extension. For example, text documents are identified by names that
end with .doc (or .docx), and PNG images by .png. In the original FAT filesystem, file
names were limited to an eight-character identifier and a three-character extension,
known as an 8.3 filename (also called a short filename or SFN).Many formats still use
three-character extensions even though modern operating systems and applications
no longer have this constraint. Some file formats are designed for very particular
types of data e.g. doc or docx stands for document files, jpg declares a compressed
picture etc., while png extension relates to images using lossless data compression.
Nevertheless, other file formats are intended for storage of several different types of
data: the flash video (flv, f4v) format can act as a container for video and audio from
Adobe Systems. There are thousands of file formats and the list is getting bigger
day by day. Since there is no standard list of extensions and given the fact that more
than one format can use the same extension, this could lead to confuse both the
operating system and end users. From a user’s perspective this confusion might be
just ignorance or could hide deceit.

Criminals usually attempt to hide their activity/traces by altering file’s extension,
file’s signature (magic bytes) or a combination of both. The first method i.e. altering
file extension can be easily detected by specialized forensic software. The second
method of file type identification is based on the magic bytes. Magic bytes are
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Table 12.1 A list of some widely used file types and their file signatures

File type Signature

DOC D0 CF 11 E0 A1 B1 1A E1

FLV 46 4C 56 01

PDF 25 50 44 46

JFIF, JPE, JPEG, JPG FF D8 FF E0 xx xx 4A 46 49 46 00

MP3 audio file 49 44 33

PNG 89 50 4E 47 0D 0A 1A 0A

RAR (v5) compressed archive file 52 61 72 21 1A 07 01 00

MS Windows/DOS executable file (EXE) 4D 5A

GIF87a 47 49 46 38 37 61

GIF89a 47 49 46 38 39 61

predefined signatures found on file’s header. A list of some widely used file types
and their file signatures can be found in Table 12.1. A file header is the first portion
of a computer file that contains metadata. Metadata may enclose information about
the content, quality and condition of the file. The file header also contains necessary
information for the corresponding application to recognize and understand the file.
Magic bytes may also include some extra information regarding the tool and the
tool’s version that is used to produce the file. Kessler [3] started in 2002 to record
file signatures and right now over 5000 known file types are identified. Checking the
magic bytes of a file is indeed much slower method than just checking its extension
since the file should be opened—usually in a standalone or in build hex editor—and
its magic bytes should be read and compared with the predefined ones. Magic bytes
method is adopted by many UNIX based operating systems and file type can be
easily found by typing in a terminal the ‘file’ command. However, this method of
identifying a file type has also weaknesses as the extension-based method:

• The magic bytes are not used in all file types.
• They only work on the binary files and are not an enforced or regulated aspect of
the file types.

• They vary in length for different file types and do not always give a very specific
answer.

There are several thousands of file types for which magic bytes are defined and
there are multiple lists of magic bytes that are not completely consistent. Since
there is not any standard for what a file may contain, the creators of a new file type
usually include something to uniquely identify their file type. It is common that some
programs or their developers may never put any magic bytes at the beginning of the
file header. To identify if a file has altered signature, forensic software compares
file’s extension and its signature. If file’s signature is altered the software highlights
the file as a mismatch between extension and signature.
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The most difficult case a forensic investigator may meet is the likelihood that a
file has altered signature and extension at the same time. The only way probably to
tell if the file is forged is to examine file’s content. It can reveal the malicious file
types that their contents do not match with their claimed types. The contents of a
file are a sequence of bytes and a byte has 256 unique permutations (0–255). Thus,
counting the occurrence of byte patterns that is often referred as byte frequency
distribution, gives distinguishable patterns to identify file types. There are many
content-based file type identification schemes that use byte frequency distribution to
build the representative models for file type and use any statistical and data mining
techniques to identify file types.

McDaniel and Heydari [4, 5], were the first who actually suggested a way for
content-based file type detection. They proposed three different algorithms for the
content-based file type detection. The accuracy varied from 23 to 96% depending
upon the algorithm used. Li et al. [6] made a few changes on McDaniel’s and Hey-
dari’s method, in order to improve its accuracy. They proposed to compute a set of
centroid models and use clustering to find a minimal set of centroids with good per-
formance while the use of more pattern data is necessary. This approach resulted to
82% accuracy (one centroid), 89.5% accuracy (multi-centroid) and 93.8% accuracy
(more exemplar files). Dunham et al. [7] used neural networks for classification and
achieved 91.3% accuracy. Amirani et al. [8] used the Principal Component Analysis
and unsupervised neural networks for the automatic feature extraction. The classifier
they used was a neural network, achieving an accuracy of 98.33%which was the best
so far. Cao et al. [9] used Gram Frequency Distribution and vector space model with
results of 90.34% accuracy. Ahmed et al. [10] proposed two very interesting meth-
ods. Primary they used the cosine distance as a similarity metric when comparing
the file content. Subsequent they decomposed the identification procedure into two
steps. They used 2000 files of 10 file types as a dataset and achieved an accuracy of
90.19%. Ahmed et al. [11] also proposed two new techniques to reduce the classi-
fication time. The first method was a feature selection technique and the K-nearest
neighbor (KNN) classifier was used. The second method was the content sampling
technique, which used a small portion of a file to obtain its byte-frequency distribu-
tion. Amirani et al. [12] then proposed an improved version of their first approach
by using a Support Vector Machine classifier and finally succeeded in raising the
accuracy of the method to 99.16%. Finally, Evensen et al. [13] used an n-gram anal-
ysis with naïve Bayes classifier to a large dataset of 60,000 files (6 file types) with
very good results achieving 99.61% topmost. The earlier methods showed by poor to
excellent results in file type identification, but the actual problem during a forensic
analysis relies on the alteration of file’s signature and its extension at the same time.
When this occurs the majority—if not all—of the forensic software cannot recognize
correctly the file type.
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12.2 Methodology of the Proposed Method

The evaluation of the earlier mentioned methodologies showed poor to excellent
results in file type identification, but the actual problem during a forensic analysis
relies on the alteration of file’s signature and its extension at the same time.When this
occurs the majority—if not all—of the forensic software cannot recognize correctly
thefile type. Initially all files from the dataset are loaded and the features are extracted.
Afterwards, feature selection is accomplished using a genetic algorithm and finally
a neural network performs the classification. Byte Frequency Distribution (BFD)
is used as a feature extraction method. In order to create the BFD, the number of
occurrences of each byte value in an input file is counted and an array with elements
from 0 to 255 is created. Then each element of the array is normalized by dividing
with the maximum occurrence. The final result is a file containing 256 features for
each instance. The next stage is feature selection, in order to decrease the number
of features. Feature selection is the procedure of finding and selecting the minimum
number of the most informative relevant features (Fig. 12.1).

As a search method a genetic algorithm was used. The idea of using a genetic
algorithm, for feature extraction is not new [14–16], since they can provide candidate
solutions. Each candidate solution (chromosome) is represented by a binary feature
vector of dimension 256, where zero (0) indicates that the respective feature is not
selected, and one (1) indicates that the feature is selected. The score of each candidate
solution is evaluated by a fitness function. As a fitness function the Correlation
based Feature Selection (CFS) [17] algorithm is utilized. This algorithm evaluates
the candidate solutions from the genetic algorithm and choses those which include
features highly associated to the file type category and low correlated with each
other, by calculating each candidate’s solution merit. Let S be a candidate solution
consisting of k features. Themerit of each candidate solution is calculated byEq. 12.1.

Meritsk � krcf√
k + k(k − 1)r f f

(12.1)

where:

rc f is the average value of all feature-classification correlations and
r f f is the average value of all feature-feature correlations.

CFS stops when five consecutive fully expanded candidate solutions show no
improvement [17]. The utilization of the genetic algorithm as a search method and
CFS as an evaluator led to the reduction of the 256 extracted features to 44. The third
and final stage is classification, performed with a one hidden layer neural network
using the backpropagation algorithm. A neural network with one hidden layer was
also used by Harris [18] in order to identify file types. Initially, the data are separated
into a training set (70%) and a test set (30%).

Furthermore, in order to estimate the accuracy of classification during the training
phase a stratified 10 fold cross validation is used [19]. Subsequently, unseen instances
from all categories are presented to the model for evaluation.
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Fig. 12.1 Flowchart of the
proposed method
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12.3 Experimental Setup and Results

Due to thousands of known file types, this research has focused only in images and
portable documents, because of their significance to Digital Forensics. In particular,
this research only included jpeg png, gif (not animated), tiff and pdf files. Further-
more, only whole files and not fragments of files were examined. Caltech 101 [20]
was used as dataset. It is a dataset made by Caltech University containing 9144
images in jpeg format from 101 categories. These images are in 101 subfolders each
one representing one category, therefore the images were extracted to a single folder.
From this jpeg dataset, 5519 images were utilized. Afterwards, these images were
renamed (image 0001 to image 9144) and one third of them were converted to png
format and a similar number to gif format. Total Image Converter [21] (free trial ver-
sion) was used, in order to convert those files. There were no alterations to converted
files regarding size, rotation, crop, further compression, filtering, transparency or
watermark embedded. Table 12.2 shows the conversion parameters used.

The dataset was divided into a training set (70%) and a test set (30%) and the
exact numbers of any file type used from Caltech dataset in both sets, are shown
in Table 12.3. Additionally, 1840 pdf files were added, which were open access
undergraduate theses found online from the library of the Technological Educa-
tional Institute of Crete [22]. The final dataset is uniformly distributed, and its exact
numbers are indicated in Table 12.4. In order to examine if the proposed methodol-
ogy identifies the correct file type if the file is altered, one third of the testing pdf
files (168) were replaced by image files of which their extension and signature was
changed to pdf.

More specifically, the extension of 168 jpeg images was changed from .jpg to .pdf.
Also, with a hex editor the signature of each jpeg image was also changed. The same
procedurewas performed to png and gif images and therefore three new test sets were
created. The first contained 168 altered files of jpeg format, the second contained 168
files of png format and the third contained 168files of gif format. Table 12.5 shows the
changesmade to the 168 files in each new test set. A script written inMATLAB® [23]
was implemented to create the BFD containing 256 features. Waikato Environment

Table 12.2 Conversion parameters

From jpg To png To gif

Image size changed No No

Rotation of the image No No

The image was cropped No No

Image was compressed No –

Any filter applied No –

Transparency of source file
used

Yes Yes

Watermark embedded No No
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Table 12.3 Images utilized from Caltech dataset

Type Training Set Test Set

Number of
images

Image number Number of
images

Image number

jpg 1288 0001–1288 552 1289–1840

png 1288 1841–3128 552 3129–3680

gif 1287 3681–4967 552 4968–5519

Total 3863 1656

Table 12.4 The final dataset

Dataset

Total files Training Testing

jpeg 1840 1288 552

png 1840 1288 552

gif 1839 1287 552

pdf 1840 1288 552

Total 7359 5151 2208

Table 12.5 Changes made to image files

From To

Extension Signature Extension Signature

jpg FF D8 FF E0 xx xx
4A 46 49 46 00

pdf 25 50 44 46

png 89 50 4E 47 0D 0A
1A 0A

pdf 25 50 44 46

gif 47 49 46 38 37 61 pdf 25 50 44 46

forKnowledgeAnalysis (Weka) [24], a popularmachine learning software developed
at the University of Waikato, New Zealand was used for all the experiments. Weka
uses Goldberg’s Genetic Algorithm [25]. The population size was 256, the number
of generations 100, crossover was set to 0.8 and mutation probability to 0.033. CFS
was the fitness function, roulette wheel selection was used to probabilistically select
individuals and the single-point crossover operator was selected. The use of CFS as
a filter selection evaluator and the genetic algorithm as a search strategy resulted to
the selection of 44 features (82.81% reduction).

A multilayer neural network using the backpropagation algorithm was imple-
mented as a classifier in Weka. The neural network consisted of one hidden layer
with 3 nodes. The number of inputs was the 44 selected features and the number of
outputs the 4 possible categories namely jpeg, png, gif and pdf. The learning rate was
set to 0.3 and in order to avoid local minimum and to accelerate the learning process,
the momentum parameter was set to 0.2. The training time (epochs) after experi-
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Table 12.6 Confusion matrix—identifying forged jpg images

Test set Classified as

Image type jpg pdf png gif

jpg 552 0 0 0

pdf (168 jpg) 171 377 2 2

png 0 3 548 1

gif 0 1 7 544

Table 12.7 Confusion matrix—identifying forged png images

Test set Classified as

Image type jpg pdf png gif

jpg 552 0 0 0

pdf (168 png) 3 379 168 2

png 0 3 548 1

gif 0 1 7 544

Table 12.8 Confusion matrix—identifying forged gif images

Test set Classified as

Image type jpg pdf png gif

jpg 552 0 0 0

pdf (168 png) 3 377 2 170

png 0 3 548 1

gif 0 1 7 544

mentation was set to 500. When the training of the neural network was completed
the three test sets described previously were evaluated and the results are shown in
Tables 12.6, 12.7 and 12.8.

Table 12.6 shows the confusion matrix when the neural network tried to identify
forged jpg images (168). When the output of the neural network was compared to the
testing dataset, the “misclassified” files were the altered jpg images. The accuracy of
the proposedmethod to altered jpg imageswas 100%.Table 12.7 shows the confusion
matrix when the neural network tried to identify forged png images (168) and 166
out of 168 images were detected. Two png images were wrongly identified as pdf
files. In the two misclassified png images there were large areas of a specific color
or small variations of a color. Small variations of a color can be found also on pdf
files, which led to misclassification of the images. Therefore 2 out of 168 png altered
files were not predicted correctly. The accuracy of the proposed method to altered
png images was 98.81%. Table 12.8 shows the confusion matrix when the neural
network tried to identify forged gif images (168). The “misclassified” files were the
altered gif images, thus the accuracy of the proposed method in this case was 100%.
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Table 12.9 Final confusion matrix of the proposed method

168 forged files actual type Classified as

jpg pdf png gif

jpg 168 0 0 0

png 0 2 166 0

gif 0 0 0 168

Table 12.10 Results of the k-means algorithm

Altered type (168 altered files) Clustered as

jpg pdf png gif

jpg 1 99 0 68

png 4 84 72 8

gif 30 3 1 134

The accuracy results for the altered images (jpg, png, gif) of the proposed method
are summarized in Table 12.9.

The above results showed that a very simple neural network achieved excellent
results therefore, other traditional classification methods were implemented as well
such as:

• the k-means algorithm,
• a decision tree,
• a Support Vector Machine (SVM),
• Logistic Regression (LR) and
• the k-Nearest Neighbor (k-NN).

The k-means algorithm was implemented in Weka and the three testing sets were
clustered into four categories. The algorithm first computed randomly the initial
centers of the four clusters, then assigned every instance of the testing file to the
cluster whose center was the closest to that instance, by calculating the Euclidean
distance. Thiswas repeated until the assignment of the instances has not been changed
during one iteration. The output of the clustering algorithm was compared to altered
files of the three testing sets and the predictions of this method are summarized on
Table 12.10.

The accuracy of the k-means algorithm to altered jpg images was 0.006%, to
altered png images 42.85% and to gif images 79.76%. The clustering method failed
to identify correctly the exact type of the altered files.

The algorithm selected for decision tree building was C4.5, developed by Quinlan
[26].More specifically an open source implementation of theC4.5 algorithm inWeka
known as J48 was utilized. The algorithm has a top down approach. It is a recursive
divide and conquer algorithm. The training data are classified instances, while each
one of these instances consists of features along with the class the specific instance
belongs. One feature is selected as root node and the algorithm creates a branch
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Table 12.11 Parameters of the J48 learning algorithm

Parameter Default value Chosen value

Minimum number of instances per leaf 2 1

Use of unpruned trees False False

Confidence factor used for pruning 0.25 0.25

Consider subtree raising operation when pruning True True

Use of binary splits on nominal attributes False False

Table 12.12 The default
parameters of the algorithm

Parameters in Weka

Maximum iterations (MaxIts) −1

Ridge value (ridge) 1.0E−8

for each possible feature value. That splits the instances into subsets, one for each
branch that extends from the root node. The splitting criterion the algorithmuses is the
normalized information gain. The feature with the highest normalized information
gain is chosen to make the decision. Then the procedure is repeated recursively
for each branch, selecting a feature at each node and only instances that reach that
node are used to make the selection. This machine learning algorithm can be fine-
tuned by setting up a lot of parameters. The parameters which were optimized in the
experiment are shown on Table 12.11.

A Support VectorMachine (SVM) is amachine learningmethod based on statistic
learning theory. SVM try to find the maximum margin hyperplane that separates
two classes. An adaptation of the LIBSVM [27] implementation was used in the
following. Four types of kernel function linear, polynomial, radial basis function, and
sigmoid are provided by LIBSVM. A Support Vector Classification (C-SVC) was
used with Radial Basis Function (RBF) kernel. After various conducted experiments,
it was found that the optimal value of gamma (G) parameter of the RBF kernel was 2.

The idea of Logistic Regression (LR) is to make linear regression produce prob-
abilities. Instead of predicting classes, it predicts class probabilities. These class
probabilities are estimated directly using the logit transform. In Weka the Logistic
algorithm was utilized with the default parameter setup as shown on Table 12.12.

k-Nearest Neighbor (k-NN) is a simple algorithm used for classification. The
purpose of the k-NN algorithm is to use a training set—inwhich each one of instances
is already classified—in order to predict the classification of a new unknown instance
in a test set. It is a lazy algorithmas it does not use the instances in training set to do any
generalization. When a new instance is presented from a given test set, the algorithm
searches the entire training set for the k most similar instances (the neighbors). To
determine which of the k instances in the training set are most similar to a new input,
a distance measure is used. The distance measure utilized in this implementation
was the Euclidean distance. The output then can be calculated as the class with the
highest frequency from the k-most similar instances. Each instance votes for their
class and the class with the most votes is taken as the prediction. In order to find
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Table 12.13 Confusion matrix—decision tree (J48)

Forged file’s actual type Classified as

jpg pdf png gif

168 jpg 167 1 0 0

168 png 8 3 157 0

168 gif 0 0 0 168

Table 12.14 Confusion matrix—SVM

Forged file’s actual type Classified as

jpg pdf png gif

168 jpg 168 0 0 0

168 png 3 8 155 2

168 gif 0 1 0 167

Table 12.15 Confusion matrix—logistic regression (lr)

Forged file’s actual type Classified as

jpg pdf png gif

168 jpg 168 0 0 0

168 png 7 6 150 5

168 gif 0 0 0 168

Table 12.16 Confusion matrix—k-nearest neighbor (KNN)

Forged file’s actual type Classified as

jpg pdf png gif

168 jpg 167 1 0 0

168 png 8 3 157 0

168 gif 0 0 0 168

the optimum number of k, different implementations were done in Weka and it was
found that the optimal value of k is 10.

All the above-mentioned classifiers were trained with the same dataset (as in
Table 12.3) and the three test sets were presented to each classification model. The
results for each one are presented in Tables 12.13, 12.14, 12.15 and 12.16.

The combined confusion matrix for every classifier utilized in the experiments is
shown on Table 12.17. The italic cells indicate the maximum accuracy achieved.

It is obvious that the artificial neural network outperformed all other classification
methods. Finally, two more experiments were conducted. The first one concerned
the possibility that the proposed model learned to detect the software used (Total
Image Converter) when converting jpg images to gif and png format. We repeated
the experiment using this time Pixillion [28] (free version) another popular converter.
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Table 12.17 Combined confusion matrix for the five classifiers

Forged file
types

Prediction accuracy (%)

J48 SVM NN LR kNN k-means

jpg 99.40 100.00 100.00 100.00 99.40 0.006

png 93.45 92.26 98.81 89.28 93.45 42.86

gif 100.00 99.40 100.00 100.00 100.00 79.76

Table 12.18 Confusion matrix of the proposed method

168 forged files actual type Classified as

jpg pdf png gif

jpg 168 0 0 0

png 0 8 160 0

gif 0 0 0 168

Table 12.19 Confusion matrix—identifying forged tiff images

Test set Classified as

Image type jpg pdf png tiff

jpg 552 0 0 0

pdf (168 tiff) 3 367 9 173

png 0 3 545 4

tiff 4 4 4 540

Again, no alterations made to the converted images regarding size, crop, filtering or
embedding watermark. The same procedure was repeated to create the final dataset, a
new classification model (ANN) was trained again and the resulted confusion matrix
when the unseen instances from the three test sets with the forged files was presented
to the model is shown in Table 12.18.

Comparing the two confusion matrices i.e. Tables 12.9 and 12.18 it is obvious that
the proposed model shows extremely high accuracy, regardless the software used to
convert jpg images to png and gif format.

The second experiment examined if the proposed method worked as well as for
uncompressed tiff images and whether the proposed model depends on file compres-
sion, although tiff images are not widely used and by a digital forensics viewpoint
are not frequently met. For this, a new dataset was created replacing the gif images
with uncompressed tiff images and the proposed methodology was applied. Once
more, 30% of the pdf files in the testing set were tiff images with altered extension
and signature (in a digital forensics viewpoint). Table 12.19 shows the confusion
matrix when the neural network tried to identify forged tiff images (168).

Only three altered tiff images were misclassified. Two of them were classified as
png images and one as pdf file. Images which misclassified as png, had high color
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depth and this led to misclassification. The image which misclassified as pdf, had
large areas of a specific color, something also found on pdf files. Thus, the accuracy
of the proposed method in uncompressed tiff images was 98.21%.

12.4 Conclusions

In this research a new methodology was proposed—in a digital forensics perspec-
tive—to identify altered file types with high accuracy by employing computational
intelligence techniques. The proposed methodology was applied to the three most
common image file types (jpg, png and gif) as well as to uncompressed tiff images.
A three-stage process involving feature extraction (BFD), feature selection (genetic
algorithm) and classification (neural network) was proposed. Experimental results
were conducted having files altered in a digital forensics perspective. The accuracy of
the proposedmethod to altered jpg images and to gif imageswas 100%, to altered png
images was 98.81% and to altered tiff images was 98.21%. This proposed method
outperformed other examined classifiers such as a traditional k-means clustering
algorithm, a SVM, a decision tree, Logistic Regression and kNN. Experiments were
also conducted regarding the scenario the proposedmodel learned to detect a specific
converter and the results were promising again. Finally, although tiff images are not
frequently met, the proposed model identified forged tiff images with extremely high
accuracy.
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Chapter 13
Deep Learning Analytics

Nikolaos Passalis and Anastasios Tefas

Abstract The recent breakthroughs in Deep Learning have provided powerful data
analytics tools for a wide range of domains ranging from advertising and analyz-
ing users’ behavior to load and financial forecasting. Depending on the nature of the
available data and the task at handDeepLearningAnalytics techniques can be divided
into two broad categories: (a) unsupervised learning techniques and (b) supervised
learning techniques. In this chapter we provide an extensive overview over both cat-
egories. Unsupervised learning methods, such as Autoencoders, are able to discover
and extract the information from the data without using any ground truth informa-
tion and/or supervision from domain experts. Thus, unsupervised techniques can be
especially useful for data exploration tasks, especiallywhen combinedwith advanced
visualization techniques. On the other hand, supervised learning techniques are used
when ground truth information is available and we want to build classification and/or
forecasting models. Several deep learning models are examined ranging from sim-
ple Multilayer Perceptrons (MLPs) to Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs). However training deep learning models is not
always a straightforward task requiring both a solid theoretical background as well
as intuition and experience. To this end, we also present recent techniques that allow
for efficiently training deep learning models, such as batch normalization, residual
connections, advanced optimization techniques and activation functions, as well as
a number of useful practical suggestions. Finally, we present an overview of the
available open source deep learning frameworks that can be used to implement deep
learning analytics techniques and accelerate the training process using Graphics Pro-
cessing Units (GPUs).

N. Passalis (B) · A. Tefas
Aristotle University of Thessaloniki, Thessaloniki, Greece
e-mail: passalis@csd.auth.gr

A. Tefas
e-mail: tefas@aiia.csd.auth.gr

© Springer International Publishing AG, part of Springer Nature 2019
G. A. Tsihrintzis et al. (eds.), Machine Learning Paradigms, Intelligent Systems
Reference Library 149, https://doi.org/10.1007/978-3-319-94030-4_13

339

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-94030-4_13&domain=pdf


340 N. Passalis and A. Tefas

13.1 Introduction

The recent breakthroughs in Deep Learning have provided powerful data analytics
tools for a wide range of domains ranging from advertising and analyzing users’
behavior [19], to load and financial forecasting [68, 79, 80]. Developing more accu-
rate models using deep learning techniques provides several benefits to domain
experts and users. For example, better understanding the users’ behavior allows for
deploying more targeted advertising campaigns or developing products that better
fit the needs of the customers. Financial forecasting models can provide useful indi-
cators about the state of financial markets protecting the investors from unwanted
losses, while accurate load prediction allows for more precise resource planning
lowering the cost of acquiring the relevant goods/services, e.g., electricity.

In this chapter the most important deep learning tools are presented. However,
developing and deploying a deep learningmodel is not always a straightforward task.
To this end, recent techniques that allow for efficiently training deep learning models
as well as a number of useful practical suggestions are provided through this chapter
to equip the reader with the necessary tools for overcoming many difficulties that
may arise. The rest of the chapter is structured as follows. First, the used notation is
briefly introduced and the necessary preliminaries are provided in Sect. 13.2.

Next, in Sect. 13.3, the unsupervised deep learning models are introduced.
Unsupervised learning methods are able to discover and extract the information
from the data without using any ground truth information and/or supervision from
domain experts. Thus, these techniques can be especially useful for data exploration
tasks [16]. An unsupervised deep learning model, the autoencoder [30], is presented
in detail, as well as several variants of it, such as denoising autoencoders [85], sparse
autoencoders [31] and contractive autoencoders [69]. Also, it is demonstrated how to
combine the aforementioned methods with advanced visualization techniques, such
as the t-SNE algorithm [47].

Section 13.4 provides an overview of supervised deep learning models. Super-
vised learning techniques are usedwhen ground truth information is available andwe
want to build classification and/or forecasting models. First, the Multilayer Percep-
trons (MLPs) [25], that were among the first practical neural networks that were used
to handle pattern recognition tasks with satisfactory results, are presented. However,
when well-defined spatial or temporal relationships exist within the input data, more
advanced models can be used. Convolutional Neural Networks (CNNs) are neural
architectures that are able to take into account the spatial arrangement of the input
features [43], while Recurrent Neural Networks (RNNs) are capable of exhibiting
dynamic temporal behavior when processing sequences of arbitrary length, such as
texts or timeseries, allowing them to model the long-term relationships between dis-
tant words or points [10, 21]. Both the CNNs and the RNNs are also presented in
Sect. 13.4. Apart from unsupervised and supevised deep learning techniques, deep
reinforcement learning methods have also achieved state-of-the-art results in various
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control tasks and games [52]. However, the study of reinforcement learning tech-
niques is out of the scope of this chapter that focuses on deep learning analytics.

Developing, training and deploying deep learning models is a challenging and
demanding task. To alleviate this issue, a number of open source deep learning
frameworks have been developed. These frameworks are capable of greatly simpli-
fying the process of developing and deploying a deep learning model. Also, most of
them provide transparent support for accelerating the training process usingGraphics
Processing Units, significantly reducing the training time. Section 13.5 provides an
overview of some deep learning frameworks, along with a short example of how to
use one of them to develop a deep learning model. Finally, Sect. 13.6 concludes this
chapter.

13.2 Preliminaries and Notation

The necessary preliminaries are provided and the used notation is introduced in this
Section. LetX be a collection of objects, e.g., images, text documents, videos, etc.
These objects may be unstructured and they may need several preprocessing steps
before they can be used for any learning task. Therefore, some featuresmust be iden-
tified and extracted from each object. This process is called feature extraction [24].
Feature extraction may involve very simple techniques, such as directly using the
raw pixel values of an image, or more advanced ones, such as using scale-invariant
features [45], or constructing a dictionary of the words that appear in a collection of
documents and expressing each document using this dictionary [13]. After the fea-
ture extraction process, each object is represented by a vector x ∈ R

n , where n is the
dimensionality of the extracted vectors. Most deep learning techniques require these
vectors to have constant dimensionality, i.e., n is not allowed to vary between differ-
ent objects. However, some recent techniques, e.g., CNNs with global pooling [61],
and RNNs [21], can also directly handle features with variable dimensionality (e.g.,
images with different sizes or texts with different lengths). At this point, it should
be stressed that the fundamental idea behind deep learning is to extract a very basic
set of features and then let the model learn automatically learn more complex fea-
tures instead of using hand-engineered features, e.g., [5, 45]. Indeed, it has been
demonstrated that deep learning leads to great improvements over using handcrafted
features [41]. It is also useful to define the data matrix X ∈ R

N×n that contains N
data samples (each of dimensionality n). For unsupervised learning tasks only the
data matrix is available, while for supervised learning tasks the data matrix is accom-
panied by a label vector t ∈ R

N that contains the labels that denote the category of
each sample or continuous values that describe the attribute that we want to predict.
Finally, the mathematical notation used in the rest of this chapter is summarized in
Table 13.1.
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Table 13.1 Mathematical notation used in this chapter

Notation Meaning

R/Rn /Rn×m the set of real numbers/real n-dimensional vectors/real n × m matrices

X a set of objects (appropriately defined in the context)

x a scalar number

x or X a vector/matrix/tensor (appropriately defined in the context)

[x]i the i-th element of the vector x

[X]i j the element in the i-th row and j-th column of the matrix X

xi the i-th vector of a collection of N vectors (appropriately defined in the
context)

x[t] or X[t] the vector/matrix used at the t-th timestep of a process

[a,b] the concatenation (stacking) of two vectors a and b

||x||1/||x||2 the l1/l2 norm of vector x

||X||F the Frobenius norm of matrix X

XT the transpose of matrix X

a � b the elementwise (Hadamard) product between the vectors a and b
∂L
∂x the partial derivative of function L with respect to vector x

log(x) the natural logarithm of x

tanh(x) the hyperbolic tangent of x

max(a, b) the maximum between two numbers a and b

exp(x) the exponential function with base e

E[x] the expected value of a set of observations represented by the variable x
(appropriately defined in the context)

Var [x] the variance of a set of observations represented by the variable x
(appropriately defined in the context)

f (x) a function f (·) that is applied elementwise on the vector x (only when f (a) is
a scalar unary function and a ∈ R)

13.3 Unsupervised Learning

In many cases, we do not know yet what we are looking for in the data, but we
want to extract all the valuable information they contain for further processing and
analysis, such as visualizing the data in a low-dimensional space [47], discovering
interesting patterns using cluster analysis [4], or detecting outliers [3]. This learning
scenario is called unsupervised learning [8], since we are interested in uncovering
the latent structures of the data without using any supervision from domain experts or
ground truth information, e.g., labels. Unsupervised learning is becoming increas-
ingly important in the Big Data era allowing us to exploit the vast amount of the
available unlabeled data.

Autoencoders [30], along with Restricted Boltzmann Machines [71], are among
the major deep learning tools used for unsupervised learning tasks. Both of them are
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Fig. 13.1 A deep autoencoder: the encoder is used to map the input into a lower dimensional
representation (possibly through multiple intermediate mappings), while the decoder reconstructs
the original input using the reverse procedure

capable of reducing the dimensionality of the data, similar to classical dimension-
ality reduction techniques [83], while maintaining most of the useful information
contained in the data. The main focus of this section is on deep autoencoding tech-
niques, since they are the most frequently used unsupervised deep learning technique
in the last few years. The rest of this section is structured as follows. First, the basic
structure of an autoencoder is described in detail. Then, it is demonstrated how
autoencoders can be used as the building block to form powerful deep neural net-
works capable of extracting useful higher level information from the data. Also, we
demonstrate how to use advanced visualization techniques, such as the t-distributed
stochastic neighbor embedding (t-SNE) algorithm [47], or the Similarity Embedding
Framwork (SEF) [59], with the representation learned with deep auto-encoders to
perform data exploration tasks. Finally, some useful variants of autoencoders that
are capable of extracting representations with specific properties, e.g., sparse repre-
sentations, are presented.

13.3.1 Deep Autoencoders

Autoencoders are neural networks trained to reconstruct their input through (a typi-
cally) lower dimensional intermediate representation. An autoencoder is composed
of two parts: (a) an encoder that maps the original input into the intermediate rep-
resentation (also called hidden representation) and (b) a decoder that reconstructs
the original input from the intermediate representation. If the autoencoder manages
to reconstruct its input using the intermediate representation, then that means that
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the intermediate representation maintains all the information contained in the orig-
inal image. The aforementioned process is illustrated in Fig. 13.1. Also, note that
the encoder and the decoder might use several internal intermediate representation
before outputting the final one giving rise to deep (or stacked) autoencoders.

Typically, we force the network to strip out the noise from the data and extract
only the important information by using a significantly smaller intermediate rep-
resentation. To understand this consider an autoencoder that maps its input into a
representation of the same dimensionality as the input. In this case, learning the
identity mapping, i.e., simply copying the input into the intermediate representation,
leads to perfect reconstruction of the input of the autoencoder. However, this kind
of autoencoder is not useful, since it is not able either to reduce the dimensionality
of the data or to extract the important information from them. On the other hand,
when the intermediate representation is smaller, the network is forced to focus on
the important features of the data in order to be able to efficiently compress the rep-
resentation. However, it worths mentioning that it was experimentally verified that
even when the dimensionality of the intermediate representation is equal (or even
larger) than the dimensionality of the input, the autoencoders are still able, under
certain conditions, to extract a useful representation [6].

13.3.1.1 Autoencoders

An autoencoder is formally defined as follows. Given an n-dimensional input vector
x ∈ R

n the autoencoder employs the encoder f (x) = h ∈ R
m to extract the interme-

diate representation h. As it was already mentioned, typically the dimensionality of
the intermediate representation is significantly smaller, i.e., m � n. Then the orig-
inal input is reconstructed using the decoder g(·), i.e., x̃ = g(h) = g( f (x)) ∈ R

n .
The reconstruction error is typically measured using the squared error function:

Lae =
n∑

j=0

([x] j − [x̃] j )2 = ||x − x̃||22, (13.1)

where the notation [x] j is used to refer to the j-th element of the vector x and ||x||2
denotes the l2 norm of the vector x. Note that a set of data X = {x1, x2, ..., xN },
where N denotes the number of data points, is usually used to train an autoencoder.
Therefore, itmakesmore sense to evaluate the quality of the autoencoder by averaging
the reconstruction error over the training set. That is, Eq. (13.1) is extended as follows:

L (batch)
ae = 1

N

N∑

i=1

n∑

j=1

([xi ] j − [x̃i ] j )2 = 1

N

N∑

i=1

||xi − x̃i ||22, (13.2)

When the input features of the autoencoder can be interpreted as probabilities, i.e.,
they are bounded into the [0, ..., 1] interval, other loss functions can be also used to
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Fig. 13.2 The basic structure of an autoencoder. First, the input x is transformed into a lower dimen-
sional representation h through a (non-linear) fully connected layer (encoder). Then, the decoder is
used to reconstruct the original input using only the compressed low dimensional representation.
The bias terms used in the hidden and the output layers are omitted for presentation purposes

measure the reconstruction error. One of them is the binary cross-entropy loss:

Lae−ent = −
n∑

i=0

[x] j log([x̃] j ) + (1 − [x] j ) log(1 − [x̃] j ). (13.3)

Both the encoder and the decoder are usually defined as simple fully connected
neural layers [25]. The detailed architecture of an autoencoder is shown in Fig. 13.2.
The encoder consists of m neurons, while the decoder of n neurons. Therefore, the
encoder is defined as:

f (x) = σ(Wencx + benc), (13.4)

whereWenc ∈ R
m×n are the weights of the fully connected layer used in the encoder

and benc ∈ R
m contains the corresponding bias terms for each neuron. Note that the

output of each neuron is passed through the activation function σ(·) ∈ R. Several
choices exist for the activation function σ(·). Among the most widely used activa-
tion functions are the sigmoid function σsigm(u) = 1

1+e−x [25], the hyperbolic tangent
function σtanh(u) = tanh(u) [25], and the (more modern) rectifier linear unit activa-
tion (also calledReLU)σReLU (u) = max(0, u) [23]. The decoder is similarly defined
as:

f (x) = σ(Wdech + bdec), (13.5)
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whereWdec ∈ R
n×m are the weights of the fully connected layer used in the encoder

and bdec ∈ R
n contains the corresponding bias terms for each neuron. Typically,

the weights of the encoder and the decoder are tied together, i.e., W = Wenc =
WT

dec. Note that the data must be appropriately scaled to match the output range of
the activation function used in the decoder. For example, if the sigmoid activation
function is used, then the data x must lie in the interval [0...1], since the network is
not capable of producing values outside this range.

Using a non-linear activation function significantly increases the expressive
power of the autoencoder allowing for modeling more complex phenomena
(note that even the simple XOR gate cannot be implemented in an neural
network without using non-linear activation functions [25]). However, using
activation functions that get easily saturated, such as the sigmoid activation,
can sometimes have a detrimental effect on training the network due to a
phenomenon known as vanishing gradients (more details regarding these phe-
nomena are given later in this section).

We have defined the structure of an autoencoder, but we have not provided a way
to actually train the autoencoder to fit the avaiable data and learn a useful intermediate
representation. Similar to most neural network architectures the well known back-
propagation algorithm can be used to this end [25]. Back-propagation provides an
efficient to way to update the weights of a neural network using the gradient descent
optimization algorithm. For the autoencoder described above the updates for each
iteration t of gradient descent are calculated as:

W[t+1] = W[t] − η
∂L (batch)

ae

∂W[t] , (13.6)

b[t+1]
enc = b[t]

enc − η
∂L (batch)

ae

∂b[t]
enc

, (13.7)

and

b[t+1]
dec = b[t]

dec − η
∂L (batch)

ae

∂b[t]
dec

. (13.8)

where η is the learning rate of the algorithm. The learning rate is typically set to
a small positive value (e.g., η = 0.001) that allows for smooth convergence of the
optimization process.
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Even though plain gradient descent can be used to learn the parameters of a
network, sometimes it can be difficult to select the appropriate learning rate for
optimizing deep neural networks. This becomes even worse when the mag-
nitude of the gradients is different for different parameters of the network,
requiring using separate learning rates for each set of parameters. These prob-
lems are addressed by more advanced gradient descent-based optimization
techniques that are able to adapt to the behavior of each parameter, such as
the Adagrad [18], the Adadelta [92], and more recently, the Adam [39].

Even though some of these techniques also perform a kind of learning rate
annealing, i.e., they effectively reduce the learning rate as the training process
progresses [39], it is often useful to use an explicit learning rate annealing
schedule [72]. Temporal averaging techniques can also improve the conver-
gence of the training process [39, 60].

To accelerate the convergence of the optimization process usually mini-batch
gradient descent is used, i.e., small batches of the data are used to calculate the
loss function defined in Eq. (13.2) instead of the whole dataset. After performing a
sufficient number of iterations, the weights of the autoencoder converge. Note that
the general problem of minimizing the loss function (13.2) is non-convex and the
gradient descent algorithm usually ends up to a local minimum. However, as it was
throughly demonstrated in the neural network literature [12], these local minima are
usually good enough for most practical problems.

When a linear activation function is used, i.e., σ(u) = u, and the squared error
is used as the loss function (as defined in Eq. (13.2)), then the autoencoder
actually performs Principal Compoment Analysis (PCA) [2]. However, when
non-linear activation functions are used, the expressive power of the autoen-
coder increases significantly and different solutions from the plain PCA are
obtained. Furthermore, autoencoders are capable of learning representations
oriented to the task at hand, such as sparse representations and representations
more robust to noise, as demonstrated in Sect. 13.3.2.

The well known MNIST dataset [44], that contains 70,000 images of ten hand-
written digits (0–9) is used to demonstrate the ability of autoencoders to learn com-
pact representations fromwhich we can reconstruct the original images. TheMNIST
dataset is split into 60,000 train images (used to train the usedmodels) and 10,000 test
images (used to evaluate the trained models). The experimental results are shown in
Fig. 13.3. As the dimensionality of the hidden representation increases, more infor-
mation is retained, leading to better reconstruction of the input images. However,
even when the original image (that contains 28 × 28 = 784 pixels) is compressed
into a vector of just 20 values, the autoencoder is able to reconstruct a quite good
approximation of each digit.
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(a) Original digits from the MNIST dataset.

(b) Reconstructed digits using an autoencoder with 20 hidden neurons.

(c) Reconstructed digits using an autoencoder with 50 hidden neurons.

(d) Reconstructed digits using an autoencoder with 100 hidden neurons.

Fig. 13.3 Comparing the effect of the size of the learned representation of an autoencoder on the
reconstruction accuracy

Achieving the lowest possible reconstruction error does not always guarantee
that we have learned the best representation. Usually increasing the size of
the intermediate representation lowers the reconstruction error. But this comes
with the risk of either learning a mapping close to the identity mapping or sim-
ply memorizing the input samples without extracting a useful representation.
This phenomemon is known in the machine learning literature as overfitting.
To avoid overfitting the models, a separate validation set (that is not contained
in the train set) must be used to evaluate the ability of the model to generalize
on new unknown samples.

13.3.1.2 Stacked Autoencoders

Multiple autoencoders can be stacked to form Deep Autoencoders (also called
Stacked Autoencoders in the literature [85]), as shown in Fig. 13.1. Deep autoen-
coders can learn increasingly complex feature representations, effectively extract-
ing the high level information from the data without any supervision from domain
experts/ground truth information. First, the encoding function of the autoencoders
is applied in series and then the original representation is reconstructed by apply-
ing the corresponding decoders in reverse order. There are several proposed ways
to train deep autoencoders. In the early years of Deep Learning, a layer-wise pre-
training procedure was followed [7]. That is, each autoencoder was first indepen-
dently trained (using the representation extracted from the previous encoder) and then
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the whole architecture was finetuned using the regular back-propagation algorithm
(as described above).

But why we couldn’t just directly apply the back-propagation algorithm? The
answer lies on the vanishing gradients phenomenon that greatly affected the early
deep learning models [22, 54]. Even though this phenomenon might has different
causes for different models, it is mainly caused when highly non-linear activation
functions are used without properly initializing the model. This led to saturating
the activation functions, that in turn led to very small gradients (the derivative of
a saturated activation function has very small magnitude). This problem only got
worse as the depth of the network increased, making impossible to train the first
layers of the network. Using the proposed layer-wise pre-training approach allowed
for overcoming this problem, since it was ensured that most neurons will avoid oper-
ating in their saturation regions. However, later it was found that using appropriate
initialization schemes, such as the Glorot initilization [22], and activation functions,
such as the ReLU activation [23], allow for overcoming the aforementioned problem
without using this time consuming layer-wise pre-training. Therefore, this kind of
pre-training is usually no longer used in modern deep learning architectures.

Using deep autoencoders with a linear activation function does not increase the
expressive power of themodel. Indeed, it is easy to show that suchdeepnetwork
is equivalent to a single autoencoder where its weights are appropriately set
(simply by multiplying the weight matrices of the used autoencoders).

13.3.1.3 Visualizing the Data

Deep autoencoders can be directly used to visualize the data in two or three dimen-
sions simply by setting the appropriate size for the hidden representation, i.e.,m = 2
or m = 3. However, in such low dimensional spaces several special phenomena
occur, such as the well-known crowding problem [47], which refers to the inability
of low dimensional spaces to accurately model the distances of a high-dimensional
space. To understand why this happens, consider a 10-dimensional space, where
it is possible to place 11 points in such way that are all equidistant to each other.
However, there is no way to achieve this in a 2- or 3-dimensional space. Therefore,
any low-dimensional mapping of these 11 points will fail to accurately model their
relationships in the high dimensional space.

To reduce the effect of the aforementioned limitations, advanced visualization
techniques, such as the t-distributed stochastic neighbor embedding (t-SNE) algo-
rithm [47], or the Similarity Embedding Framework (SEF) [59], were proposed.
However, even these techniques usually perform better when the dimensionality of
the input data is low. Therefore, deep autoencoders can be combined with the t-SNE
algorithm or the SEF to provide more accurate and meaningful visualizations of
the data that can be used for data exploration/interactive data analysis/etc. To do
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so, first a deep autoencoder is used to reduce the dimensionality of the data by a
significant factor (e.g., the 784-dimensional MNIST images can be reduced to just
50 dimensions) and then the t-SNE algorithm or the SEF is used for visualizing the
resulting vectors in a very low-dimensional space. That way, better visualizations
can be obtained than directly applying autoencoders to visualize the data. Note that
the SEF can be also used to visualize out-of-sample data, i.e., data that were not
contained in the original training set, allowing for interactive visualization of larger
datasets.

13.3.2 Autoencoder Variants

According to the task at hand, the autoencoders can be appropriately adapted to
ensure that useful intermediate representations will be learned. In this Subsection
three variants of the classical autoencoder, the denoising autoencoder, the sparse
autoencoder and the contractive autoencoder, are presented.

13.3.2.1 Denoising Autoencoders

To make an autoencoder more robust to noise we can stochastically corrupt its input
during the training process while requesting to reconstruct the original uncorrupted
input. The most straightforward way to do so is to randomly zero some of the input
features for each sample [85]. The percentage of the corrupted input features usually
ranges from 10 to 50%. Forcing the network to guess the missing values of the
input makes the autoencoder more robust to noise, while allowing for performing
denoising and preventing overfitting the autoencoder even when large intermediate
representations are used. Note that this process is actually very similar to the dropout
technique [76], that also randomly zeros some of the input features. Also, note that
other types of noise, such as simple Gaussian noise can be also applied to the input
images. The ability of denoising autoencoders to recover the original image, even
though a significant amount of Gaussian noise has been introduced, is demonstrated
in Fig. 13.4.

13.3.2.2 Sparse Autoencoders

The reasoning behind sparse autoencoders is to associate only some of the intermedi-
ate neurons with specific regions of the input space. This way interesting patterns in
the data can be discovered without overfitting the autoencoder even when the inter-
mediate representation is larger that the actual input. Ideally, a sparse autoencoder
might be able to assocciate specific neuronswith the actual classes of the ground truth
information (when they exist). In other cases, it might be able to uncover features of
the input data that were previously unknown even to the domain experts.
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(a) Stochastically corrupted digits from the MNIST dataset using Gaussian noise.

(b) Reconstructed digits from the noisy input using an denoising autoencoder with 200
hidden neurons.

Fig. 13.4 Demonstrating the ability of denoising autoencoders to recover the original image even
when a significant amount of noise is introduced

There are several ways to enforce sparsity constraints on the learned representa-
tion, e.g., by using k-sparse autoencoder [49], or by adding a sparsity term in the
loss function that penalizes non-sparse intermediate representations [31]. The lat-
ter approach is described in this Subsection. More specifically, the activations of
the intermediate representation are penalized using the Kullback-Leibler divergence
function [31]. To this end, the mean activation of the intermediate representation is
measured as:

ρ̂ = 1

N

N∑

i=1

f (xi ). (13.9)

Then, we demand that the average activation of each neuron is close to a predifined
sparsity parameter ρ. Typically, the sparsity parameter is set to a small positive
number near 0, e.g., ρ = 0.05. This effectively forcesmost neurons to be deactivated,
i.e., their output to be near zero,most of the time,while only allowing a few (different)
neurons to fire for each sample. This sparsity constraint is enforced byminimizing the
Kullback-Leibler divergence between two Bernoulli random variables with means
ρ and [ρ̂] j (for each encoder neuron j). Therefore, the sparsity constraint is defined
as:

Lsparsi t y =
m∑

j=1

ρ log(
ρ

[ρ̂] j ) + (1 − ρ) log(
(1 − ρ)

(1 − [ρ̂] j ) ), (13.10)

while the loss function used for the optimization is now defined as the weighted sum
between the reconstruction loss and the sparsity penalty:

L (batch)
sae = L (batch)

ae + αsparseLsparsi t y, (13.11)

where the parameter αsparse controls the importance of the sparsity constrains.
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13.3.2.3 Contractive Autoencoders

Another way tomake autoencoders more robust to noise is to ensure that the interme-
diate representation will be insensitive to small perturbations of the input. Similarly
to the sparse autoencoder, this can be achieved by adding an appropriate term to the
used loss function that penalizes autoencoders that are sensitive to small perturba-
tions of their input. A way to measure the sensitivity of the learned representation is
to use the Frobenius norm of the Jacobian J f (x) of the encoder [69]:

Lcon =
N∑

i=0

||J f (xi )||2F =
N∑

i=0

n∑

j=0

m∑

l=0

(
∂[ f (xi )]l
∂[xi ] j

)2

. (13.12)

Minimizing Eq. (13.12) ensures that the learned representationwill be robust to small
changes of the input. Again, the total loss function can be defined as the weighted
sum of the reconstruction loss and the contractive penalty:

L (batch)
cae = L (batch)

ae + αconLcon, (13.13)

where the parameter αcon again controls the contractive penalty.

There are also several other interesting autoencoder variants, such as the vari-
ational autoencoders [40], that are also able to generate samples of the under-
lying data distribution, and discriminative autoencoders [53, 70], that are able
to introduce supervised information into the learned representation.

Apart from autoencoders, clustering techniques can be also used to extract use-
ful information from the data without supervision [38, 57, 64, 90]. Clustering
is the task of grouping a set of objects into groups (clusters), where each object
is as similar as possible to the objects of its cluster and as dissimilar as possible
to the objects of the other clusters. Similarly to visualization techniques, clus-
tering can be used with the representation extracted from deep autoencoders,
since most clustering algorithms tend to work better with low-dimensional
data. Note that a few deep learning-based extensions of clustering techniques
also exist [29, 42].

13.4 Supervised Learning

In contrast to unsupervised learning, supervised learning techniques are used when
ground truth information, e.g., label annotations for the data, is available. Supervised
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Fig. 13.5 A Multilayer perceptron with 3 layers. First, the input x is transformed into a sequence
of lower dimensional representations y(1) and y(2) through two (non-linear) fully connected layers.
Then, a fully connected layer is used to obtain the final output of the network. When the MLP
is used for classification, each output neuron corresponds to a category (class) that the network
recognizes. The input sample x belongs to the category that corresponds to the output neuron with
the largest activation. For regression tasks the output neurons directly regress the values of the
predicted attributes. The bias terms have been omitted for presentation purposes

learning can either refer to classification problems, i.e., predicting the category of a
sample, or to regressionproblems, i.e., predicting a (continuous) value for a numerical
attribute. For example, recognizing which animal is depicted in an image is a typical
classification problem, while predicting the future load (as a numerical value) of an
energy distribution system based on the current conditions is a typical regression
problem. Both tasks can be handled with great success by deep neural models, such
as Convolutional Neural Networks [41], and Recurrent Neural Networks [37], that
are able to provide powerful classification and forecasting tools. Note that selecting
the appropriate model depends mainly on the task at hand as well as on the nature of
the data.

The rest of this section is structured as follows. First, a simple deep learning
model, the Multilayer Perceptron (MLPs), is introduced. Then, the more powerful
Convolutional Neural Networks (CNNs) and theRecurrent Neural Networks (RNNs)
are described and several properties of the models are discussed. Finally, through
this section, we provide guidelines and tips on selecting the most appropriate model
for the task at hand.
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13.4.1 Multilayer Perceptrons

Multilayer Perceptrons (MLPs) were among the first practical neural networks that
were used to handle pattern recognition tasks with satisfactory results [25]. Even
though they are nowadays largely superseded bymore advanced neural architectures,
they are still used either as a part of more complex models, e.g., as the last layers of
a Convolutional Neural Network or a Recurrent Neural Network, or as standalone
models for less demanding tasks. MLPs are composed of a series of fully connected
layers, similar to the autoencoders described in Sect. 13.3.1. However, instead of
reconstructing their input, the output layer is responsible for either predicting the
class of the input vector or the values for some numerical attributes. Therefore, the
loss functions used for training the network must appropriately measure how well
the predictions of the network match the supplied ground truth information.

When well-defined temporal or spatial relationships exist between the values
contained in the input feature vector, then the CNN and/or the RNN models
are usually better candidates since they are able to take into account such
relationships. Typical examples of data that exhibit such kind of relationships
are images, text and time-series.

The structure of an MLP with 3 layers is shown in Fig. 13.5. The input vector
x ∈ R

n is first transformed to the intermediate representations y(1) ∈ R
n(1)

and y(2) ∈
R

n(2)
before producing the final output of the network y(out) ∈ R

n(out)
. More formally,

the output of each layer is calculated as:

y(1) = σ (1)(W1x + b1), (13.14)

y(2) = σ (2)(W2y(1) + b2), (13.15)

and
y(out) = σ (out)(Wouty(2) + bout ), (13.16)

where W1 ∈ R
n(1)×n , W2 ∈ R

n(2)×n(1)
and Wout ∈ R

n(out)×n(2)
are the weights of each

of the layers and b1 ∈ R
n(1)

, b2 ∈ R
n(2)

and bout ∈ R
n(out)

are the corresponding bias
terms. Note that different activation functions can be used for each of the layers
(denoted by σ (1)(·), σ (2)(·) and σ (out)(·) respectively). MLPs with more or less layers
can be similarly defined. However, in contrast to Convolutional Neural Networks that
can have more than 1000 layers [32], MLPs are usually limited to 3–4 layers, since
increasing the number of layers usually does not improve the accuracy of the network,
while increasing the risk of overfitting.



13 Deep Learning Analytics 355

As it was already mentioned in Sect. 13.3, the ReLU activation function [23],
along with more sophisticated initilization techniques [22, 51], made it pos-
sible for training deep neural networks. The vanishing gradients problem was
tackled by the piece-wise linear behavior of the ReLU activation, while still
allowing the network to model non-linear phenomena. Recall that the ReLU
function is defined as:

σReLU (u) = max(0, u) =
{
u if u > 0

0 otherwise.
(13.17)

Note that when a neuron outputs a negative value, i.e., the output of the ReLU
is 0, it receives no gradients and it becomes essentially trapped in its state.

To overcome this issue, several variants of the ReLU function have been
proposed. The Leaky ReLU overcomes this issue by providing a small gradient
when the neuron is not activated [46]. The Leaky ReLU is thus defined as
follows:

σLReLU (u) =
{
u if u > 0

αReLUu otherwise,
(13.18)

where αReLU is a small positive number, i.e., αReLU = 0.01. The behavior of
the ReLU is compared to the Leaky ReLU in the following plot:

Note that for positive input both functions have the same behavior, but the
Leaky ReLU provides a small activation for negative values allowing for train-
ing the corresponding neurons. Parametric ReLU further improves the behav-
ior of the Leaky ReLU function by allowing for learning the slope parameter
αReLU [27].
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When MLPs are used for classification tasks, each of the output neurons corre-
sponds to each of the categories that the network has to predict. That is, an input
sample x belongs to the category that is associated with the output neuron with the
largest activation. To obtain a probability distribution over the predicted categories
and easily transform arbitrary large or small values that the network might produce
into a specific range, the softmax activation is usually used for the output layer:

σ
(out)
so f tmax ([u(out)] j ) = exp([u(out)] j )

∑n(out)

i=1 exp([u(out)]i )
, (13.19)

where u(out) = Wouty(2) + bout is the pre-activation response of the output neurons.
Before being able to actually produce useful results, theMLPsmust be trained. Let

X = {x1, x2, ..., xN }, be a train set composed of N training samples. Each sample
is represented as an n-dimensional feature vector that describes the properties of the
corresponding sample. These vectors might contain essentially anything that can be
useful for predicting the attributes we are interested in. Examples of such features
include the raw values of an image [43], measurements of various sensors [82],
hand-crafted features [63], and others.

Normalizing the input features is crucial to avoid saturating the activation
functions and ensuring that every feature is equally important. Usually the
features are normalized either to a specific interval, i.e., to [0, ..., 1], (this kind
of normalization is called min-max scaling) or to have zero mean and unit
variance (called standardization or z-score scaling).

In supervised learning each training feature vector xi is also accompanied by a
label ti that describes the attribute that we want to predict. For regression tasks,
the label ti ∈ R is just a real number that contains the target value. For classifica-
tions tasks several ways exist to encode the information of different categories. The
most frequently used approach is to use vectors that contain as many values as the
different categories that exist in our data, i.e., ti ∈ R

nc , where nc is the number of
categories [25]. Then, each dimension of this vector is associated with a specific
class (one-hot encoding):

[ti ] j =
{
1, if the i-th sample belongs to the j-th class

0, otherwise.
(13.20)

For example, for a classificationproblemwhere the samples belong to three categories
the following vectors can be used: (1, 0, 0) for the first category, (0, 1, 0) for the
second category and (0, 0, 1) for the third category. As it was alreadymentioned, this
implies that the number of output neurons must be equal to the number of the classes,
i.e., n(out) = n(c). Also, error correcting codes can be used to make the network more
robust to misclassifications [34]. Similar encodings can be used for handling multi-
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label problems [93], i.e., problems where each sample belongs to several categories.
In such cases, the number of output neurons must be appropriately adjusted.

The MLP is trained to directly predict the vectors ti . For both regression and
classification tasks, themean squared error loss can be used for training the network:

Lmlp = 1

N

N∑

i=1

n(out)∑

j=1

([y(out)
i ] j − [ti ] j )2 = 1

N

N∑

i=1

||y(out) − ti ||22. (13.21)

However, when dealing with classification problems the mean squared error loss is
usually not preferred. Instead, the cross-entropy loss function is used (combined with
the softmax activation function to ensure that the output of the network is a proper
probability distribution over the predicted categories):

Lmlp = − 1

N

N∑

i=1

n(out)∑

j=1

[ti ] j log([y(out)
i ] j ). (13.22)

Note that when the softmax activation with the cross-entropy loss are used, the
network actually performs a variant of non-linear multinomial logistic regression.
Similarly to the autoencoders, the network can be trained using the gradient descent
method:

W[t+1] = W[t] − η
∂Lmlp

∂W[t] , (13.23)

where the notation W is used to refer to the concatenation of all the parameters of
the network, i.e,W = [W1,W2,Wout ,b1,b2,bout ] for the example MLP presented
in this section, and η is the used learning rate.

When layers with a large number of neurons are used, then the network can overfit
the data, i.e., almost perfectly learn the train data, while performing poorly on other
unseen data. This behavior is demonstrated in the left training curve plot of Fig. 13.6,
where theMNIST dataset is used to train the model. It is easy to see that after the first
10 iterations point the test loss starts increasing while the train loss still decreases
and converges normally. A lot of techniques have been proposed to overcome this
problem. These techniques are known in the literature as regularization methods.

Perhaps the simplest regularization approach is to identify the point where the
network starts overfitting the data and stop the training process. This process is
known as early stopping [91]. Also, reducing the number of neurons in the hidden
layers of the network can also alleviate this problem, even though this comes at the
cost of also reducing the learning capacity of the model. Furthermore, penalizing
large weights, that in turn lead to large activations, reduces the risk of overfitting
the data. Usually the weights are penalized by adding an appropriate term in the
loss function weighted by a regularization parameter. Two common option are the
l1-normalization and the l2-normalization. For l1-normalization the l1 norm of the
weight matrix is used, while for the l2-regularization the l2 norm is used [25]. For
example, for using l2-normalization the loss function defined in Eq. (13.22) must be
modified as:
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Lmlp = − 1

N

N∑

i=1

n(out)∑

j=1

[ti ] j log([y(out)
i ] j ) + αreg(||W1||22 + ||W2||22 + ||Wout ||22),

(13.24)
where the parameter αreg is a small positive number, i.e., 0.001, that controls the
regularization process. The l1 normalization leads to sparse solutions, while the l2

regularization heavily penalizes larger weights, thus leading to more dense small
weights. More advanced regularization techniques include the dropout [76], and
the dropconnect [87], techniques that randomly deactivate neurons and connections
between neurons during the training process, as well as data augmentation tech-
niques [9, 15]. In the right learning curve of Fig. 13.6, the ability of a regularization
technique (dropout) to improve the generalization ability of the network and reduce
the overfitting phenomena is clearly demonstrated. The overfitting is greatly reduced
for the regularized model (the test loss does not increase to the same extent), while
the network achieves an overall lower generalization error. Finally, it should be noted
that the aforementioned regularization techniques can be applied to any of themodels
presented in this Section, e.g., they can be also used for regularizing a CNN or an
RNN, further improving their accuracy.

Using very strong regularization, e.g., a large number for the regularization
parameter αreg or dropping a very large number of neurons during the train-
ing, could possibly lead to underfitting, preventing the network from learning
anything useful.

MLPs can only handle fixed sized inputs, i.e., the size of the input vectors must
be constant and known beforehand. However, in some cases a varying number
of feature vectors might be extracted from each object (e.g., when dealing with
time-series data [65], or using hand-crafted feature extractors [45]). In these
cases, neural formulations of the Bag-of-Features representation can be used to
compile a trainable fixed length histogram representation of the objects before
feeding them to MLP [63].

Retrieval orClassification? In some caseswemight be interested in retrieving
objects similar to a reference query object, instead of predicting its category.
In such cases, information retrieval techniques can be used [13]. When super-
vised information exist for some of the objects stored in the database, then
the retrieval process can be fine-tuned towards the task at hand, significantly
improving the retrieval precision [56, 62, 81].
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Fig. 13.6 Training a network without (left plot) and with (right plot) a regularization technique
(dropout [76]). The network that does not use regularization heavily overfits the data (the test loss
increases during the training), while the regularized network exhibits a significantly better behavior
(the test loss remains relatively stable after the first 10 epochs)

13.4.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are neural architectures that are able to take
into account the spatial arrangement of the input features, while implementing a
technique known as weight sharing [28, 43, 75, 77]. Weight sharing refers to using
the same weights over different regions of the input data, allowing for detecting the
same features at different locations. Apart from providing translation invariance,
weight sharing also reduces the number of parameters that we have to learn making
the network more resistant to overfitting. This process was inspired by the visual
cortex of many animals, where it has been observed that specialized neurons that
individually respond to small regions of the visual field exist [33]. The region that
each neuron covers is called receptive field of the neuron.

Several deep convolutional architectures with a varying number of layers have
been proposed, including the GoogLeNet [77], the VGG [75] and the ResNet [28]. It
worths mentioning that the ResNet architecture is capable of scaling up to more than
1000 layers by the use of residual connections [28]. Residual connections support
the direct flow of information between non-neighboring layers effectively allowing
the network to incrementally finetune the extracted representation and improve the
generalization performance even when a large number of layers is used.

The typical architecture of a CNN that operates on 2-dimensional images is shown
in Fig. 13.7. CNNs are composed of a series of convolutional and pooling layers,
usually followed by anMLP classifier. Each convolutional layer containsmany filters
that are (implicitly) trained to detect a specific type of feature. Each filter is sequen-
tially applied to all valid locations (usually where it fully overlaps with the input
image) leading to a (usually smaller) feature map that describes the regions of the
input that a specific feature has been detected. After applying several filters we end
up with a volume of feature maps that are then fed to the next layer. Several convolu-
tional layers can be stacked or pooling layers can be used in between them to reduce
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Fig. 13.7 A convolutional neural network with 2 convolutional and 2 pooling layers. The input
image is fed into a convolutional layer that applies several convolutional filters leading to the
first feature map that is then subsampled using a pooling layer. Then, this process is repeated
before flattening the last feature maps into a vector that is fed to an MLP that performs the final
classification/regression task

the size of the extracted feature maps. Pooling layers also increase the translation
invariance of the neural network discarding the spatial information from the detected
features. Note that the first convolutional layers detect simple features, such as plain
edges, while the deeper convolutional layers have larger receptive fields and respond
to more complex structures, such as object shapes. The interested reader is referred
to [48], where the features detected by a CNN at various levels are visualized.

Let x ∈ R
nch×k×k be a k × k part of the input image (with nch channels, e.g., nch =

3 for color images, nch = 1 for grayscale images) that is fed into a convolutional filter
with size k × k. Then, the response of the filter is calculated as:

y =
nch∑

l=1

σ(

k∑

i=1

k∑

j=1

[x]li j [W]li j + b), (13.25)

whereW ∈ R
nch×k×k are the weights of the filter and b ∈ R its bias. A convolutional

filter is very similar to a fully connected neuron, with one important difference:
a convolutional filter is repeatedly applied into the input at different neighboring
locations, leading to a feature map instead of a single output value, as shown in
Fig. 13.8. For example, for an image with size 4 × 4 and filter with size 3 × 3
the resulting feature map has size 2 × 2, since the filter is applied on 2 different
positions both in the horizontal and the vertical axis. Recall that many filters are
applied (each one detects a different feature type) leading to a volume of features
maps. For example, for 10 filters with size 3 × 3 the output volume in the previous
example will be 10 × 2 × 2. The next convolutional layers take into account the
volume of the previous feature maps, as defined in Eq. (13.25). Again, a non-linear
activation function σ(·) is used to allow the neural network to exhibit non-linear
behavior.

Except of the convolutional layers, pooling layers are also used in almost every
CNN architecture. Among the most commonly used polling layers are the max pool-
ing and the average pooling layers that replace a k × k region of each featuremapwith
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Fig. 13.8 Applying a 3 × 3 convolutional filter to a 4 × 4 input image leading to a 2 × 2 feature
map

its max/average (respectively). The process of applying a 2 × 2 max polling operator
on a 4 × 4 feature map is shown in Fig. 13.9. This allows for effectively reducing
the size of the extracted feature maps by a factor of k (typically k = 2), as well as
increasing the translation invariance of the network. Modern CNN architectures also
use global pooling operators that completely discard any spatial information. How-
ever, global pooling also reduces the size of the subsequent MLP layers and allows
the network to handle arbitrary sized images. Other advanced pooling operators
include the Spatial Pyramid Pooling [26], that re-introduces spatial information into
the pooled representation, the Bag-of-Features Pooling [61], and fast linear pooling
techniques [58], that are capable of reducing the size of a CNN while improving its
accuracy.

Another kind of layer that is also frequently used in CNNs is the batch normal-
ization layer [35]. Batch normalization is a normalization technique that reduces
the internal covariate shift that is caused during the training process, allowing for
both increasing the convergence speed as well as reducing the risk of overfitting the
network. Batch normalization works as follows. First, the mean E[u] and the vari-

Fig. 13.9 Applying 2 × 2 max pooling to a 4 × 4 feature map leading a subsampled 2 × 2 feature
map
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ance Var [u] of the activation u of a neuron (before applying the activation function)
are calculated over the samples of a batch. Then, this activation is replaced by the
following:

ybn = γ
u − E[u]√
(Var [u] + ε

+ β, (13.26)

where γ and β are the scale and shift parameters that are to be learned during the
training. This transformation allows for keeping the distribution that the subsequent
layers receive relatively constant, while any adjustments can be easily performed
using the γ and the β parameters without having to rescale and shift all the weights
of a layer. Equation (13.26) is applied separately for all the neurons/filters of a layer
both during the training and the testing. Note again that batch normalization is usually
applied immediately before the activation function.

Even though CNNs are mainly used for image analysis, they can be also used
for any task that involves either spatial or temporal relationships between the used
features. Examples of such tasks include text analysis/classification [17, 73], and
timeseries analysis and forecasting [79, 94]. In these cases, 1-dimensional convolu-
tion is used (instead of 2-dimensional convolution) taking into account the temporal
succession of the features, e.g., the words of a text or the points of a timeseries.

Word embeddings are powerful models that can be used with deep learning text
analysis techniques, since they allow for mapping each word into a vector that
captures its semantic content [66]. Word embedding models can be combined
with many deep learning techniques, such as CNNs [73], RNNs [86], or even
deep Neural Bag-of-Features formulations [55].

13.4.3 Recurrent Neural Networks

Multilayer Perceptrons and Convolutional Neural Networks are feedforward net-
works, since the information flows from the network’s input to the network’s output.
In contrast, in Recurrent Neural Networks (RNNs) (part of) the output of the network
is redirected to the input forming a directed cycle. RNNs are capable of exhibiting
dynamic temporal behavior and processing sequences of arbitrary length, such as a
texts or timeseries, while being able to model the long-term relationships between
distant words or points. These properties rendered RNNs excellent candidates for
handling such tasks, ranging from time-series forecasting [20, 80], to text under-
standing and generation [74, 84, 88].

Early RNNs models were notoriously difficult to train, mainly due to the prob-
lems of vanishing and exploding gradients [54]. The problem of exploding gradients
describes the opposite situation of that of vanishing gradients, where the derivatives
are getting continuously larger making the training procedure unstable. Intuitively,
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when the largest eigenvalue of the weight matrix is less than 1, then the repeated
application of the weight matrix causes the gradient to vanish to zero, while when
the largest eigenvalue of the weight matrix is larger than 1, then the gradients explode
to infinity.

These problems were addressed by the Long Short-term Memory (LSTM)
model [21], that overcomes these issues using a plain linear activation for the recur-
rent part of the model. Since the derivative of the linear activation is always 1 the
errors are back-propagated through the previous time-steps without vanishing. That
also allows the network to establish long term relationships between temporally dis-
tant features. In this section, a slightly simpler andmoremodern version of the LSTM
model, the Gated Recurrent Unit (GRU) [10], is presented.

GRUs, like the rest of the recurrent models, receive an input vector x[t] ∈ R
n for

each timestep and produce an output vector h[t] ∈ R
m that also encodes the current

state of the model. One crucial component of the GRU model is the update gate that
decides how much information will flow into the model from the previous output
h[t−1] and from the new state h̃[t−1]. The output of the update gate is calculated as:

z[t] = σsigm(Wz[h[t−1], x[t]]) ∈ R
m, (13.27)

where the notation [h[t−1], x[t]] is used to refer to the concatenation of the vectors
h[t−1] and x[t] andWz ∈ R

m×(m+n) are the weights of the update gate. The new state
of the model is calculated as:

h̃[t] = σtanh(Wh[r[t] � h[t−1], x[t]]) ∈ R
m, (13.28)

where Wh ∈ R
m×(m+n) are the weights for calculating the new state, the operator

� refers to the element-wise product between two vectors (Hadamard product) and
r[t] ∈ R

m is the output of the gate that controls how much information of the current
state will be used to compute the new state. The output of this gate is calculated as:

r[t] = σsigm(Wr [h[t−1], x[t]]) ∈ R
m, (13.29)

whereWr ∈ R
m×(m+n) are the weights of the gate. Finally, the output of the GRU is

computed as the weighted sum between the old and the new state according to the
output of the update gate z[t]:

h[t] = (1 − z[t]) � h[t−1] + z[t] � h̃[t]. (13.30)

The bias terms have been omitted from the above equations for presentation purposes.
GRUs can be used to produce a prediction either immediately after each timestep

(by feeding the current output h[t] to the used classifier, i.e., the MLP), as shown in
Fig. 13.10, or after all the feature vectors have been fed to the model, as shown in
Fig. 13.11. Depending on the task at hand, the appropriate architecture technique can
be selected. All the parameters of the model are learned using a variant of the reg-
ular backpropagation algorithm, called backpropagation through time (BPTT) [89].
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Fig. 13.10 Using a GRU to model a temporal sequence of vector [x[1], x[2], x[3]] and classify each
point of the sequence using an MLP. The same GRU and MLP are used for every timestep

Fig. 13.11 Using a GRU to model a temporal sequence of vector [x[1], x[2], x[3]] and classify the
whole sequence using an MLP. The same GRU is used for every timestep

BPTT essential works by unfolding the repeated application of the weights of the
network through time and then accumulating the corresponding derivatives before
applying the gradient descent updates.

13.5 Deep Learning Frameworks

Implementing and deploying deep learningmodels can be a difficult task for a number
of reasons. First, implementing the backpropagation algorithm requires analytically
deriving the partial derivatives of the loss function with respect to all the parameters
of the model. These derivatives must be appropriately updated when any changes
are made either to the network architecture or to the loss function. As the models
get deeper and more complicated this process is becoming increasingly difficult.
Also, training deepmodels is a computationally intensive task. To this end, Graphical
ProcessingUnits (GPUs) are usually used to accelerate the training process.However,
the switch between CPU and GPU is not transparent and usually requires porting
and rewriting a large part of the code that implements the neural network. Finally,
without a common way to store a neural network it is especially difficult to share
a pretrained model, often requiring retraining the model from scratch (or writing
specialized code to read the network parameters).



13 Deep Learning Analytics 365

Several open source deep learning frameworks were developed to overcome the
aforementioned difficulties.Most of these frameworks support automatic differentia-
tion, i.e., only the structure of the network needs to be defined and the used framework
automatically implements the backpropagation algorithm. Furthermore, these frame-
works also allow for switching between the CPU and the GPU for the optimization
and the deployment process transparently (in many cases this is just a matter of
switching a flag in the code), and thus significantly accelerating the training process
without any additional programming effort. Finally, the community usually provides
many implementation of well known network architectures along with pre-trained
models. This allows for easily testing, extending and deploying existingmodels with-
out having to retrain them (in some cases the training process using large datasets,
such as the ImageNet dataset [41], might take weeks, even when high-end GPUs are
used).

Among the most well-known deep learning frameworks are Caffe [36], Tensor-
flow [1], CNTK [50], and Torch [14]/PyTorch [67]. Most of them provide interfaces
to various languages (allowing for easily integrating the trained models into various
applications). The same basic set of features is provided by all of the aforementioned
frameworks, so for most deep learning tasks the choice of the framework is more
a matter of personal choice. However, it worths mentioning that, at the moment,
PyTorch is among the few libraries that efficiently support dynamic computational
graphs, i.e., the structure of the network is not predefined but it can dynamically
vary during the training/deployment. Note that there is also a number of other deep
learning frameworks, but it is out of the scope of this chapter to provide an extensive
list of them.

Higher level wrappers, such as Keras [11], also exist. These wrappers work at
even higher level, hiding the complexities of the underlying deep learing framework
further simplifying the process of defining and training a deep learning model. Keras
provides support for three backend frameworks,Theano [78], Tensorflow, andCTNK,
with almost no changes in the code. For example, defining an MLP with three layers
to solve a 10-class classification problem using the Keras library requires less than
10 lines of code. An example is provided below:

from keras .models import Sequential
from keras . layers import Dense
from keras . optimizers import Adam

model = Sequential ()
model.add(Dense(1024, activation=’relu ’ , input_shape=(784,) ) )
model.add(Dense(1024, activation=’relu ’ ) )
model.add(Dense(10, activation=’softmax’) )
model. compile( loss=’categorical_crossentropy ’ ,

optimizer=Adam( l r=0.001) ,
metrics=[’accuracy’ ])

Then, the model can be trained using a single command (the training data are con-
tained in the x_train variable, while the training targets in the y_train variable):

model. f i t (x_train , y_train , batch_size=256, epochs=50)
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while the accuracy of the model can be also easily measured accordingly:

print (model. evaluate (x_test , y_test ) )

The interested reader is referred to [11], for more information regarding the Keras
library.

13.6 Concluding Remarks

The most important deep learning techniques, that can be used for a variety of data
analytics tasks, were presented in this chapter. First, several unsupervised learning
methods, that are capable of discovering and extracting useful information from
the data without supervision, were presented. We also discussed how these tech-
niques can be combined with other methods, such as visualization or clustering
techniques, to allow for efficiently performing several data exploration tasks. Next,
several supervised deep learning techniques, ranging from Multilayer Perceptrons
(MLPs) to Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), were also presented, allowing for building powerful classification and/or
forecasting models. As thoroughly discussed in this chapter, training deep learning
models is not always straightforward.We presented a number of techniques and prac-
tical suggestions that can be used for overcoming several difficulties that may arise
during the training of deep learningmodels. Finally, we briefly reviewed the available
deep learning frameworks and we demonstrated how to use one of them for defining
and training a simple model. That way, we provided the reader with the necessary
skills and intuition to successfully use and deploy deep learning techniques.
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