COMPLEX ANALYSIS
 WORKSHEET 4
 Instructor: G. Smyrlis

1. Compute

$$
\max \{|f(z)|: z \in K\}, \quad \min \{|f(z)|: z \in K\}
$$

and the points where the above max and min are attained, in each of the following cases:
(i) $f(z)=\left|z^{2}+3 z-1\right|, \quad K=\{z \in \mathbb{C}:|z| \leq 1\}$.
(ii) $f(z)=e^{z^{2}}, \quad K$ is the closed bounded domain with boundary the triangle with vertices $0,-1,1+i$.
2. Consider a holomorphic function f on an open set $U \subseteq \mathbb{C}$ which contains the closed annulus

$$
\Delta=\{z \in \mathbb{C}: 1 \leq|z| \leq 3\} .
$$

Assume that

$$
|f(z)| \leq 1, \text { for }|z|=1 \quad \text { and } \quad|f(z)| \leq 9, \text { for }|z|=3
$$

Show that $|f(z)| \leq|z|^{2}, \quad \forall z \in \Delta$.
3. Let $U \subseteq \mathbb{C}$ be a domain and $f: U \rightarrow \mathbb{C}$ be a nonconstant holomorphic function such that $\operatorname{Re}(f(z)) \geq 0, \forall z \in U$. Prove that $\operatorname{Re}(f(z))>$ $0, \forall z \in U$.
4. Let f be an entire function such that $|f(z)| \geq 1, \forall z \in \mathbb{C}$. Show that f is constant.
5. Let $f=u+i v$ be an entire function with $u^{2} \leq v^{2}$. Show that f is constant.
6. Let f be an entire function such that

$$
|f(z)| \leq M e^{a \operatorname{Re}(z)}, \quad \forall z \in \mathbb{C}
$$

where a, M positive real constants. Show that

$$
f(z)=C e^{a z}, \quad \forall z \in \mathbb{C}
$$

for some positive constant C.
7. Find the Laurent expansion of the function f around the point z_{0} and on the "annulus" Δ, in each of the following cases:
(i) $f(z)=\frac{1}{z(z-1)}, \quad z_{0}=-2, \quad \Delta=\{z \in \mathbb{C}: 2<|z+2|<3\}$.
(ii) $f(z)=\frac{\sin ^{2} z}{z}, \quad z_{0}=0, \quad \Delta=\mathbb{C} \backslash\{0\}$.
(iii) $f(z)=\sin \left(\frac{z}{1-z}\right), \quad z_{0}=1, \quad \Delta=\mathbb{C} \backslash\{1\}$.
8. Let f be holomorphic and bounded on the punctured open disc $D\left(z_{0}, \delta\right) \backslash\left\{z_{0}\right\}, z_{0} \in \mathbb{C}, \delta>0$. Prove that z_{0} is a removable singularity of f. [Hint: Use the integral folmulaes which give the Laurent's coefficients.]
9. Let f be holomorphic on the open disc $D\left(z_{0}, r\right)\left(z_{0} \in \mathbb{C}, r>0\right)$ with

$$
f\left(z_{0}\right)=f^{\prime}\left(z_{0}\right)=f^{\prime \prime}\left(z_{0}\right)=0, \quad f^{\prime \prime \prime}\left(z_{0}\right) \neq 0 .
$$

(i) Show that there exists a holomorphic function φ on $D\left(z_{0}, r\right)$ satisfying

$$
f(z)=\left(z-z_{0}\right)^{3} \varphi(z), \quad \forall z \in D\left(z_{0}, r\right), \quad \varphi\left(z_{0}\right) \neq 0
$$

(ii) Assume that z_{0} is the unique root of f on $D\left(z_{0}, r\right)$. Prove that

$$
\operatorname{Res}\left(\frac{f^{\prime}}{f}, z_{0}\right)=3
$$

10. (i) Let g be holomorphic on some neighborhood of 0 with $g(0) \neq 0$. Show that

$$
\operatorname{Res}\left(\frac{1}{z^{3} g(z)}, 0\right)=\frac{2\left[g^{\prime}(0)\right]^{2}-g^{\prime \prime}(0) g(0)}{2[g(0)]^{3}} .
$$

(ii) Compute the integral

$$
\int_{\gamma} \frac{d z}{z^{2} \sin z}
$$

where $\gamma(t)=4 e^{i t}, \quad t \in[0,2 \pi]$.
11. (i) Find a holomorphic function $\varphi: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
\sin z=(\pi-z) \varphi(z), \quad \forall z \in \mathbb{C}, \quad \varphi(\pi)=1, \quad \varphi^{\prime}(\pi)=0
$$

(ii) Compute the integral

$$
\int_{\gamma} \frac{e^{z}-1}{\sin ^{2} z} d z,
$$

where $\gamma(t)=4 e^{i t}, \quad t \in[0,2 \pi]$.
12. Compute the integral

$$
\int_{\gamma} h(z) d z
$$

where

$$
h(z)=\frac{1}{1-\cos z}+\bar{z} z^{12} \cos \left(1 / z^{3}\right), \quad \gamma(t)=e^{i t}, \quad t \in[0,2 \pi] .
$$

13. Compute the integral

$$
\int_{\gamma}\left(1-z^{2}\right) e^{1 / z} d z,
$$

where $\gamma(t)=e^{i t}, \quad t \in[0,2 \pi]$.
14. Using calculus of residues, prove:
(i) $\int_{0}^{2 \pi} \frac{\cos t}{2+\cos t} d t=2 \pi\left(1-\frac{2}{\sqrt{3}}\right)$.
(ii) $\int_{0}^{\pi} \frac{\sin ^{2} t}{a+\cos t} d t=\pi\left(a-\sqrt{a^{2}-1}\right), \quad a>1$.
15. Using calculus of residues, prove:
(i) $\int_{-\infty}^{+\infty} \frac{x^{4}}{1+x^{6}} d x=\frac{2 \pi}{3}$.
(ii) $\int_{-\infty}^{+\infty} \frac{\cos x}{\left(x^{2}+1\right)^{2}} d x=\pi / e$.
(iii) $\int_{-\infty}^{+\infty} \frac{x \sin x}{1+x^{4}} d x=-\pi \operatorname{Re}\left(a^{2} e^{i a}\right)$, where $a=\frac{1+i}{\sqrt{2}}$.

