Language model

• Goal: determine $P(s = w_1 ... w_k)$ in some domain of interest

$$P(s) = \prod_{i=1}^{k} P(w_i \mid w_1 ... w_{i-1})$$

e.g.,
$$P(w_1w_2w_3) = P(w_1) P(w_2 | w_1) P(w_3 | w_1w_2)$$

• Traditional n-gram language model assumption: "the probability of a word depends only on **context** of n-1 previous words"

$$\Rightarrow \widehat{P}(s) = \prod_{i=1}^{K} P(w_i \mid w_{i-n+1} \dots w_{i-1})$$

- Typical ML-smoothing learning process (e.g., Katz 1987):
 - 1. compute $\widehat{P}(w_i \mid w_{i-n+1} \dots w_{i-1}) = \frac{\#w_{i-n+1} \dots w_{i-1}w_i}{\#w_{i-n+1} \dots w_{i-1}}$ on training corpus
 - 2. smooth to avoid zero probabilities

Traditional n-gram language model

Limitation 1): curse of dimensionality

- Example
- train a 10-gram LM on a corpus of 100.000 unique words
- space: 10-dimensional hypercube where each dimension has 100.000 slots
- model training \leftrightarrow assigning a probability to each of the 100.000¹⁰ slots
- **probability mass vanishes** → more data is needed to fill the huge space
- the more data, the more unique words! → vicious circle
- what about corpuses of 10⁶ unique words?
- → in practice, contexts are typically limited to size 2 (trigram model)
 e.g., famous Katz (1987) smoothed trigram model
- → such short context length is a limitation: a lot of information is not captured

Traditional n-gram language model

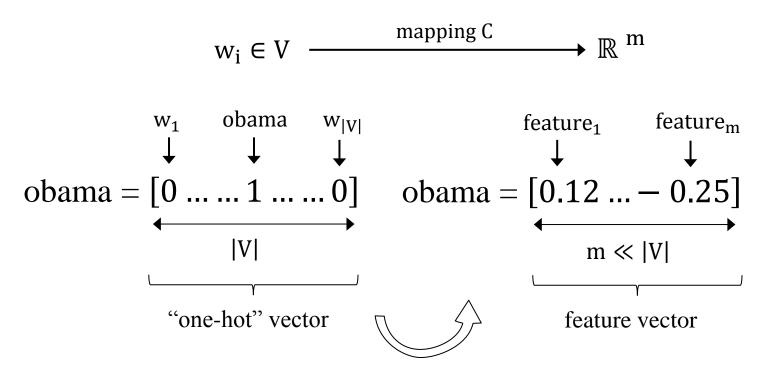
Limitation 2): word similarity ignorance

- We should assign similar probabilities to Obama speaks to the media in Illinois and the President addresses the press in Chicago
- This does not happen because of the "one-hot" vector space representation:

- In each case, word pairs share no similarity
- This is obviously wrong
- We need to encode word similarity to be able to generalize

Word embeddings: distributed representation of words

- Each unique word is mapped to a point in a real continuous m-dimensional space
- Typically, $|V| > 10^6$, 100 < m < 500



- Fighting the curse of dimensionality with:
- compression (dimensionality reduction)
- **smoothing** (discrete to continuous)
- densification (sparse to dense)
- Similar words end up close to each other in the feature space

Google's word2vec (Mikolov et al. 2013a)

- Key idea of word2vec: achieve better performance not by using a more complex model (i.e., with more layers), but by allowing a **simpler (shallower) model** to be trained on **much larger amounts of data**
- Two algorithms for learning words vectors:
 - **CBOW**: from context predict target (focus of what follows)
 - **Skip-gram**: from target predict context
- Compared to Bengio et al.'s (2003) NNLM:
 - no hidden layer (leads to 1000X speedup)
 - projection layer is shared (not just the weight matrix)
 - context: words from both **history & future**:
 - "You shall know a word by the company it keeps" (John R. Firth 1957:11):

```
...Pelé has called Neymar an excellent player...

...At the age of just 22 years, Neymar had scored 40 goals in 58 internationals...

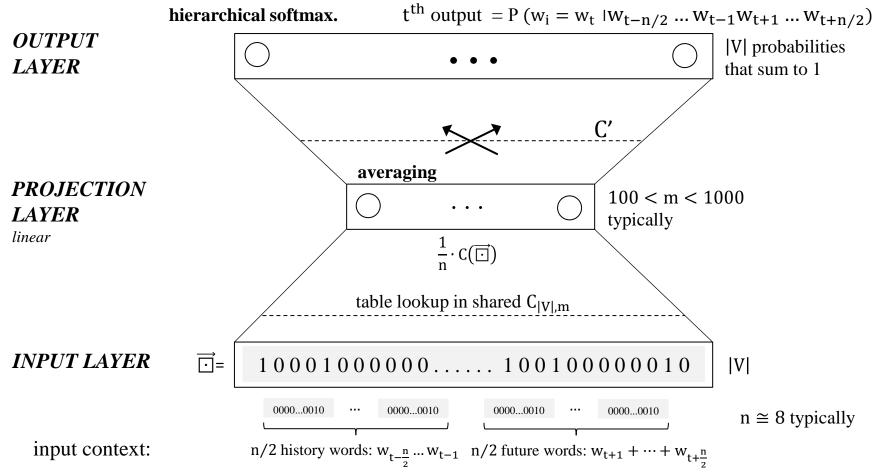
...occasionally as an attacking midfielder, Neymar was called a true phenomenon...
```

These words will represent **Neymar**

word2vec's Continuous Bag-of-Words (CBOW)

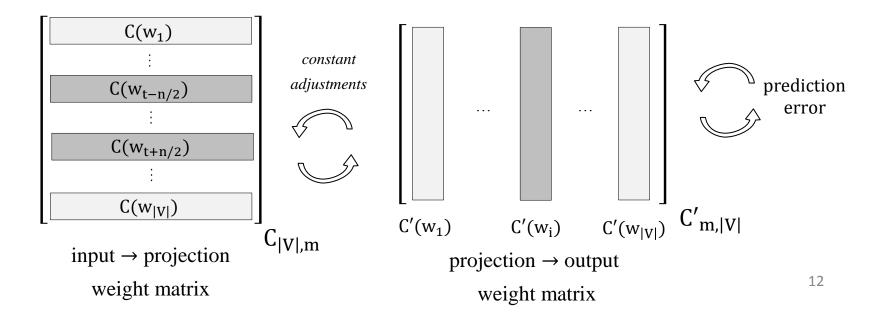
For each training sequence: input = (context, target) pair: $(w_{t-\frac{n}{2}} \dots w_{t-1} w_{t+1} \dots w_{t+\frac{n}{2}}, w_t)$

objective: minimize $E = -\log \widehat{P}(w_t \mid w_{t-n/2} \dots w_{t-1} w_{t+1} \dots w_{t+n/2})$



Weight updating intuition

- For each (context, target=w_t) pair, only the word vectors from matrix C corresponding to the context words are updated
- Recall that we compute $P(w_i = w_t \mid context) \forall w_i \in V$. We compare this distribution to the true probability distribution (1 for w_t , 0 elsewhere)
- If $P(w_i = w_t \mid context)$ is **overestimated** (i.e., > 0, happens in potentially |V| 1 cases), some portion of $C'(w_i)$ is **subtracted** from the context word vectors in C, proportionally to the magnitude of the error
- Reversely, if $P(w_i = w_t \mid context)$ is **underestimated** (< 1, happens in potentially 1 case), some portion of $C'(w_i)$ is **added** to the context word vectors in C
 - → at each step the words move away or get closer to each other in the feature space → clustering
 - → analogy with a **spring force** layout. See online <u>demo</u> with Chrome



word2vec facts

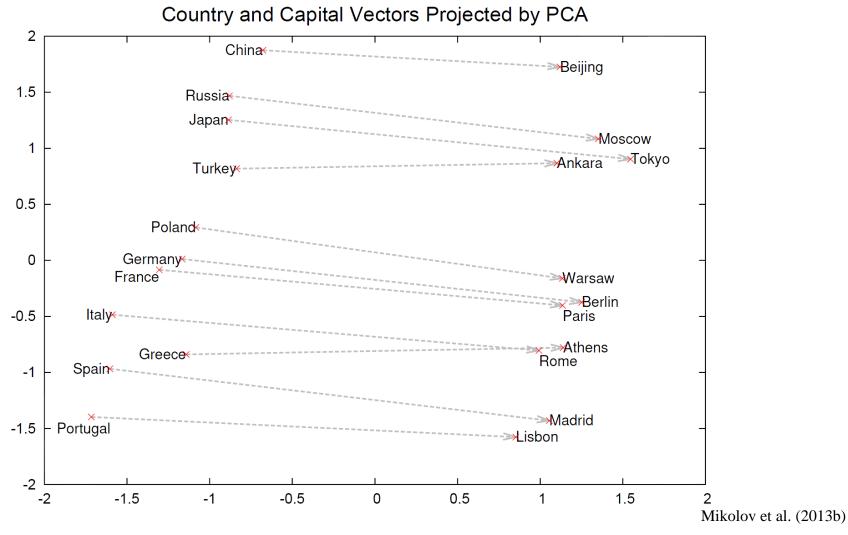
- Complexity is n * m + m * log|V| (Mikolov et al. 2013a)
- On Google news 6B words training corpus, with $|V| \sim 10^6$:
 - CBOW with m = 1000 took 2 days to train on 140 cores
 - Skip-gram with m = 1000 took 2.5 days on 125 cores
 - NNLM (Bengio et al. 2003) took **14 days** on **180 cores**, for m = 100 only! (note that m = 1000 was not reasonably feasible on such a large training set)
- word2vec training speed $\cong 100\text{K}-5\text{M}$ words/s
- Quality of the word vectors:
 - ≯ significantly with **amount of training data** and **dimension of the word vectors** (m), with diminishing relative improvements
 - measured in terms of accuracy on 20K semantic and syntactic association tasks. e.g., words in **bold** have to be returned:

Capital-Country	Past tense	Superlative	Male-Female	Opposite
Athens: Greece	walking: walked	easy: easiest	brother: sister	ethical: unethical

Adapted from Mikolov et al. (2013a)

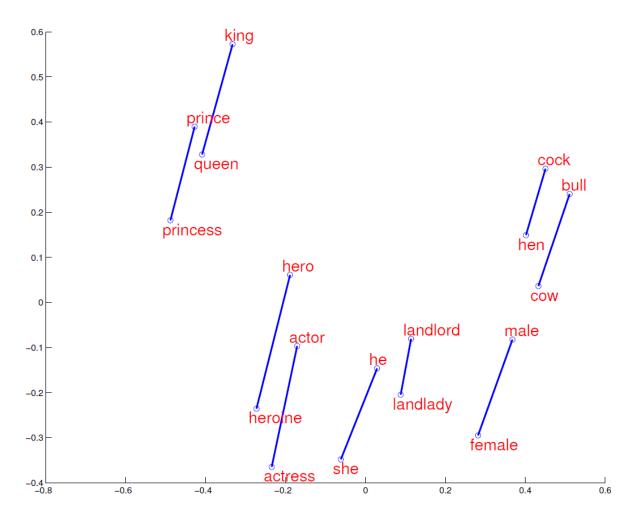
• Best NNLM: 12.3% overall accuracy. Word2vec (with Skip-gram): 53.3%

Remarkable properties of word2vec's word vectors



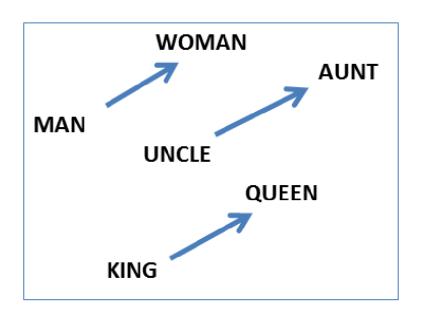
regularities between words are encoded in the difference vectors e.g., there is a constant **country-capital** difference vector

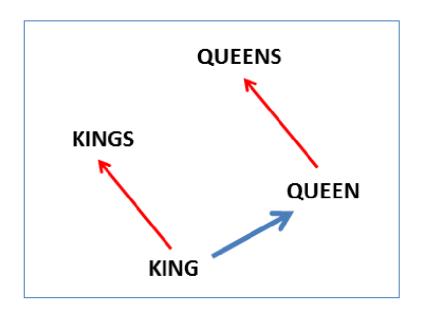
Remarkable properties of word2vec's word vectors



constant **female-male** difference vector

Remarkable properties of word2vec's word vectors





constant **male-female** difference vector

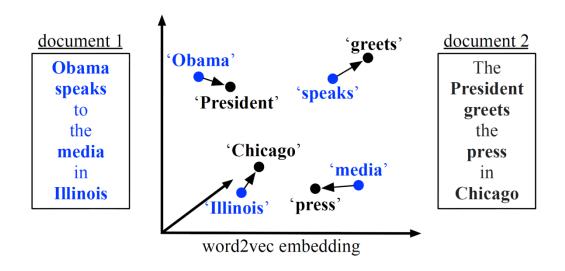
constant **singular-plural** difference vector

• Vector operations are supported and make intuitive sense:

$$w_{king} - w_{man} + w_{woman} \cong w_{queen}$$
 $w_{einstein} - w_{scientist} + w_{painter} \cong w_{picasso}$ $w_{paris} - w_{france} + w_{italy} \cong w_{rome}$ $w_{his} - w_{he} + w_{she} \cong w_{her}$ $w_{windows} - w_{microsoft} + w_{google} \cong w_{android}$ $w_{cu} - w_{copper} + w_{gold} \cong w_{au}$

• Online <u>demo</u> (scroll down to end of tutorial)

Application to document classification



With the BOW representation D_1 and D_2 are at equal distance from D_0 . Word embeddings allow to capture the fact that D_1 is closer.