
6 Kernel Methods

Kernel methods are widely used in machine learning. They are flexible techniques

that can be used to extend algorithms such as SVMs to define non-linear decision

boundaries. Other algorithms that only depend on inner products between sample

points can be extended similarly, many of which will be studied in future chapters.

The main idea behind these methods is based on so-called kernels or kernel func-

tions, which, under some technical conditions of symmetry and positive-definiteness,

implicitly define an inner product in a high-dimensional space. Replacing the orig-

inal inner product in the input space with positive definite kernels immediately

extends algorithms such as SVMs to a linear separation in that high-dimensional

space, or, equivalently, to a non-linear separation in the input space.

In this chapter, we present the main definitions and key properties of positive

definite symmetric kernels, including the proof of the fact that they define an inner

product in a Hilbert space, as well as their closure properties. We then extend the

SVM algorithm using these kernels and present several theoretical results including

general margin-based learning guarantees for hypothesis sets based on kernels. We

also introduce negative definite symmetric kernels and point out their relevance to

the construction of positive definite kernels, in particular from distances or metrics.

Finally, we illustrate the design of kernels for non-vectorial discrete structures by

introducing a general family of kernels for sequences, rational kernels. We describe

an efficient algorithm for the computation of these kernels and illustrate them with

several examples.

6.1 Introduction

In the previous chapter, we presented an algorithm for linear classification, SVMs,

which is both effective in applications and benefits from a strong theoretical jus-

tification. In practice, linear separation is often not possible. Figure 6.1a shows

an example where any hyperplane crosses both populations. However, one can use

106 Chapter 6 Kernel Methods

(a) (b)

Figure 6.1
Non-linearly separable case. The classification task consists of discriminating between blue and
red points. (a) No hyperplane can separate the two populations. (b) A non-linear mapping can
be used instead.

more complex functions to separate the two sets as in figure 6.1b. One way to de-

fine such a non-linear decision boundary is to use a non-linear mapping Φ from the

input space X to a higher-dimensional space H, where linear separation is possible

(see figure 6.2).

The dimension of H can truly be very large in practice. For example, in the

case of document classification, one may wish to use as features sequences of three

consecutive words, i.e., trigrams. Thus, with a vocabulary of just 100,000 words,

the dimension of the feature space H reaches 1015. On the positive side, the margin

bounds presented in section 5.4 show that, remarkably, the generalization ability of

large-margin classification algorithms such as SVMs do not depend on the dimension

of the feature space, but only on the margin ρ and the number of training examples

m. Thus, with a favorable margin ρ, such algorithms could succeed even in very

high-dimensional space. However, determining the hyperplane solution requires

multiple inner product computations in high-dimensional spaces, which can become

be very costly.

A solution to this problem is to use kernel methods, which are based on kernels

or kernel functions.

Definition 6.1 (Kernels) A function K : X× X→ R is called a kernel over X.

The idea is to define a kernel K such that for any two points x, x′ ∈ X, K(x, x′) be

equal to an inner product of vectors Φ(x) and Φ(y):6

∀x, x′ ∈ X, K(x, x′) = 〈Φ(x),Φ(x′)〉 , (6.1)

6 To differentiate that inner product from the one of the input space, we will typically denote it
by 〈·, ·〉.

6.1 Introduction 107

Φ

Figure 6.2
An example of a non-linear mapping from 2-dimensions to 3-dimensions, where the task becomes
linearly seperable.

for some mapping Φ: X→ H to a Hilbert space H called a feature space. Since an

inner product is a measure of the similarity of two vectors, K is often interpreted

as a similarity measure between elements of the input space X.

An important advantage of such a kernel K is efficiency: K is often significantly

more efficient to compute than Φ and an inner product in H. We will see several

common examples where the computation of K(x, x′) can be achieved in O(N)

while that of 〈Φ(x),Φ(x′)〉 typically requires O(dim(H)) work, with dim(H)� N .

Furthermore, in some cases, the dimension of H is infinite.

Perhaps an even more crucial benefit of such a kernel function K is flexibility:

there is no need to explicitly define or compute a mapping Φ. The kernel K can

be arbitrarily chosen so long as the existence of Φ is guaranteed, i.e. K satisfies

Mercer’s condition (see theorem 6.2).

Theorem 6.2 (Mercer’s condition) Let X ⊂ RN be a compact set and let K : X×X→ R
be a continuous and symmetric function. Then, K admits a uniformly convergent

expansion of the form

K(x, x′) =

∞∑

n=0

anφn(x)φn(x′),

with an > 0 iff for any square integrable function c (c ∈ L2(X)), the following

condition holds: ∫ ∫

X×X

c(x)c(x′)K(x, x′)dxdx′ ≥ 0.

This condition is important to guarantee the convexity of the optimization problem

for algorithms such as SVMs, thereby ensuring convergence to a global minimum.

A condition that is equivalent to Mercer’s condition under the assumptions of the

theorem is that the kernel K be positive definite symmetric (PDS). This property

108 Chapter 6 Kernel Methods

is in fact more general since in particular it does not require any assumption about

X. In the next section, we give the definition of this property and present several

commonly used examples of PDS kernels, then show that PDS kernels induce an

inner product in a Hilbert space, and prove several general closure properties for

PDS kernels.

6.2 Positive definite symmetric kernels

6.2.1 Definitions
Definition 6.3 (Positive definite symmetric kernels) A kernel K : X × X → R is said to

be positive definite symmetric (PDS) if for any {x1, . . . , xm} ⊆ X, the matrix

K = [K(xi, xj)]ij ∈ Rm×m is symmetric positive semidefinite (SPSD).

K is SPSD if it is symmetric and one of the following two equivalent conditions

holds:

• the eigenvalues of K are non-negative;

• for any column vector c = (c1, . . . , cm)> ∈ Rm×1,

c>Kc =

n∑

i,j=1

cicjK(xi, xj) ≥ 0. (6.2)

For a sample S = (x1, . . . , xm), K = [K(xi, xj)]ij ∈ Rm×m is called the kernel

matrix or the Gram matrix associated to K and the sample S.

Let us insist on the terminology: the kernel matrix associated to a positive defi-

nite kernel is positive semidefinite . This is the correct mathematical terminology.

Nevertheless, the reader should be aware that in the context of machine learning,

some authors have chosen to use instead the term positive definite kernel to imply

a positive definite kernel matrix or used new terms such as positive semidefinite

kernel .

The following are some standard examples of PDS kernels commonly used in

applications.

Example 6.4 (Polynomial kernels) For any constant c > 0, a polynomial kernel of de-

gree d ∈ N is the kernel K defined over RN by:

∀x,x′ ∈ RN , K(x,x′) = (x · x′ + c)d. (6.3)

Polynomial kernels map the input space to a higher-dimensional space of dimension(
N+d
d

)
(see exercise 6.12). As an example, for an input space of dimension N = 2,

a second-degree polynomial (d = 2) corresponds to the following inner product in

6.2 Positive definite symmetric kernels 109

(−1, 1) (1, 1)

(1,−1)(−1,−1)

x2

x1

(1, 1,−

√

2,+
√

2,−

√

2, 1)

√

2 x1x2

√

2 x1

(1, 1,−

√

2,−

√

2,+
√

2, 1)

(1, 1,+
√

2,−

√

2,−

√

2, 1) (1, 1,+
√

2,+
√

2,+
√

2, 1)

(a) (b)

Figure 6.3
Illustration of the XOR classification problem and the use of polynomial kernels. (a) XOR problem
linearly non-separable in the input space. (b) Linearly separable using second-degree polynomial
kernel.

dimension 6:

∀x,x′ ∈ R2, K(x,x′) = (x1x
′
1 + x2x

′
2 + c)2 =

x2
1

x2
2√

2x1x2√
2c x1√
2c x2

c

·

x′21
x′22√

2x′1x
′
2√

2c x′1√
2c x′2
c

. (6.4)

Thus, the features corresponding to a second-degree polynomial are the original

features (x1 and x2), as well as products of these features, and the constant feature.

More generally, the features associated to a polynomial kernel of degree d are all

the monomials of degree at most d based on the original features. The explicit

expression of polynomial kernels as inner products, as in (6.4), proves directly that

they are PDS kernels.

To illustrate the application of polynomial kernels, consider the example of fig-

ure 6.3a which shows a simple data set in dimension two that is not linearly sep-

arable. This is known as the XOR problem due to its interpretation in terms of

the exclusive OR (XOR) function: the label of a point is blue iff exactly one of

its coordinates is 1. However, if we map these points to the six-dimensional space

defined by a second-degree polynomial as described in (6.4), then the problem be-

comes separable by the hyperplane of equation x1x2 = 0. Figure 6.3b illustrates

that by showing the projection of these points on the two-dimensional space defined

by their third and fourth coordinates.

110 Chapter 6 Kernel Methods

Example 6.5 (Gaussian kernels) For any constant σ > 0, a Gaussian kernel or radial

basis function (RBF) is the kernel K defined over RN by:

∀x,x′ ∈ RN , K(x,x′) = exp

(
−‖x

′ − x‖2
2σ2

)
. (6.5)

Gaussian kernels are among the most frequently used kernels in applications. We

will prove in section 6.2.3 that they are PDS kernels and that they can be derived by

normalization from the kernels K ′ : (x,x′) 7→ exp
(

x·x′
σ2

)
. Using the power series ex-

pansion of the exponential function, we can rewrite the expression of K ′ as follows:

∀x,x′ ∈ RN , K ′(x,x′) =

+∞∑

n=0

(x · x′)n
σ2n n!

,

which shows that the kernels K ′, and thus Gaussian kernels, are positive linear

combinations of polynomial kernels of all degrees n ≥ 0.

Example 6.6 (Sigmoid kernels) For any real constants a, b ≥ 0, a sigmoid kernel is the

kernel K defined over RN by:

∀x,x′ ∈ RN , K(x,x′) = tanh
(
a(x · x′) + b

)
. (6.6)

Using sigmoid kernels with SVMs leads to an algorithm that is closely related to

learning algorithms based on simple neural networks, which are also often defined

via a sigmoid function. When a < 0 or b < 0, the kernel is not PDS and the

corresponding neural network does not benefit from the convergence guarantees of

convex optimization (see exercise 6.18).

6.2.2 Reproducing kernel Hilbert space
Here, we prove the crucial property of PDS kernels, which is to induce an inner

product in a Hilbert space. The proof will make use of the following lemma.

Lemma 6.7 (Cauchy-Schwarz inequality for PDS kernels) Let K be a PDS kernel. Then,

for any x, x′ ∈ X,

K(x, x′)2 ≤ K(x, x)K(x′, x′). (6.7)

Proof: Consider the matrix K =
(
K(x,x) K(x,x′)
K(x′,x) K(x′,x′)

)
. By definition, if K is PDS,

then K is SPSD for all x, x′ ∈ X. In particular, the product of the eigenvalues of

K, det(K), must be non-negative, thus, using K(x′, x) = K(x, x′), we have

det(K) = K(x, x)K(x′, x′)−K(x, x′)2 ≥ 0,

which concludes the proof. �

The following is the main result of this section.

Theorem 6.8 (Reproducing kernel Hilbert space (RKHS)) Let K : X× X→ R be a PDS

kernel. Then, there exists a Hilbert space H (see definition A.2) and a mapping Φ

6.2 Positive definite symmetric kernels 111

from X to H such that:

∀x, x′ ∈ X, K(x, x′) = 〈Φ(x),Φ(x′)〉 . (6.8)

Furthermore, H has the following property known as the reproducing property:

∀h ∈ H,∀x ∈ X, h(x) = 〈h,K(x, ·)〉 . (6.9)

H is called a reproducing kernel Hilbert space (RKHS) associated to K.

Proof: For any x ∈ X, define Φ(x) : X→ RX as follows:

∀x′ ∈ X, Φ(x)(x′) = K(x, x′).

We define H0 as the set of finite linear combinations of such functions Φ(x):

H0 =

{∑

i∈I
aiΦ(xi) : ai ∈ R, xi ∈ X, |I| <∞

}
.

Now, we introduce an operation 〈·, ·〉 on H0 × H0 defined for all f, g ∈ H0 with

f =
∑
i∈I aiΦ(xi) and g =

∑
j∈J bjΦ(x′j) by

〈f, g〉 =
∑

i∈I,j∈J
aibjK(xi, x

′
j) =

∑

j∈J
bjf(x′j) =

∑

i∈I
aig(xi).

By definition, 〈·, ·〉 is symmetric. The last two equations show that 〈f, g〉 does not

depend on the particular representations of f and g, and also show that 〈·, ·〉 is

bilinear. Further, for any f =
∑
i∈I aiΦ(xi) ∈ H0, since K is PDS, we have

〈f, f〉 =
∑

i,j∈I
aiajK(xi, xj) ≥ 0.

Thus, 〈·, ·〉 is positive semidefinite bilinear form. This inequality implies more

generally using the bilinearity of 〈·, ·〉 that for any f1, . . . , fm and c1, . . . , cm ∈ R,

m∑

i,j=1

cicj〈fi, fj〉 =
〈 m∑

i=1

cifi,

m∑

j=1

cjfj

〉
≥ 0.

Hence, 〈·, ·〉 is a PDS kernel on H0. Thus, for any f ∈ H0 and any x ∈ X, by

lemma 6.7, we can write

〈f,Φ(x)〉2 ≤ 〈f, f〉〈Φ(x),Φ(x)〉.

Further, we observe the reproducing property of 〈·, ·〉: for any f =
∑
i∈I aiΦ(xi) ∈

H0, by definition of 〈·, ·〉,
∀x ∈ X, f(x) =

∑

i∈I
aiK(xi, x) = 〈f,Φ(x)〉 . (6.10)

112 Chapter 6 Kernel Methods

Thus, [f(x)]2 ≤ 〈f, f〉K(x, x) for all x ∈ X, which shows the definiteness of 〈·, ·〉.
This implies that 〈·, ·〉 defines an inner product on H0, which thereby becomes a

pre-Hilbert space. H0 can be completed to form a Hilbert space H in which it is

dense, following a standard construction. By the Cauchy-Schwarz inequality, for

any x ∈ X, f 7→ 〈f,Φ(x)〉 is Lipschitz, therefore continuous. Thus, since H0 is

dense in H, the reproducing property (6.10) also holds over H. �

The Hilbert space H defined in the proof of the theorem for a PDS kernel K is called

the reproducing kernel Hilbert space (RKHS) associated to K. Any Hilbert space

H such that there exists Φ: X → H with K(x, x′) = 〈Φ(x),Φ(x′)〉 for all x, x′ ∈ X

is called a feature space associated to K and Φ is called a feature mapping . We

will denote by ‖ · ‖H the norm induced by the inner product in feature space H:

‖w‖H =
√
〈w,w〉 for all w ∈ H. Note that the feature spaces associated to K

are in general not unique and may have different dimensions. In practice, when

referring to the dimension of the feature space associated to K, we either refer to

the dimension of the feature space based on a feature mapping described explicitly,

or to that of the RKHS associated to K.

Theorem 6.8 implies that PDS kernels can be used to implicitly define a feature

space or feature vectors. As already underlined in previous chapters, the role played

by the features in the success of learning algorithms is crucial: with poor features,

uncorrelated with the target labels, learning could become very challenging or even

impossible; in contrast, good features could provide invaluable clues to the algo-

rithm. Therefore, in the context of learning with PDS kernels and for a fixed input

space, the problem of seeking useful features is replaced by that of finding useful

PDS kernels. While features represented the user’s prior knowledge about the task

in the standard learning problems, here PDS kernels will play this role. Thus, in

practice, an appropriate choice of PDS kernel for a task will be crucial.

6.2.3 Properties
This section highlights several important properties of PDS kernels. We first show

that PDS kernels can be normalized and that the resulting normalized kernels are

also PDS. We also introduce the definition of empirical kernel maps and describe

their properties and extension. We then prove several important closure properties

of PDS kernels, which can be used to construct complex PDS kernels from simpler

ones.

To any kernel K, we can associate a normalized kernel K ′ defined by

∀x, x′ ∈ X, K ′(x, x′) =

0 if (K(x, x) = 0) ∨ (K(x′, x′) = 0)
K(x,x′)√

K(x,x)K(x′,x′)
otherwise.

(6.11)

6.2 Positive definite symmetric kernels 113

By definition, for a normalized kernel K ′, K ′(x, x) = 1 for all x ∈ X such that

K(x, x) 6= 0. An example of normalized kernel is the Gaussian kernel with param-

eter σ > 0, which is the normalized kernel associated to K ′ : (x,x′) 7→ exp
(

x·x′
σ2

)
:

∀x,x′ ∈ RN ,
K ′(x,x′)√

K ′(x,x)K ′(x′,x′)
=

e
x·x′
σ2

e
‖x‖2
2σ2 e

‖x′‖2
2σ2

= exp

(
−‖x

′ − x‖2
2σ2

)
. (6.12)

Lemma 6.9 (Normalized PDS kernels) Let K be a PDS kernel. Then, the normalized

kernel K ′ associated to K is PDS.

Proof: Let {x1, . . . , xm} ⊆ X and let c be an arbitrary vector in Rm. We will show

that the sum
∑m
i,j=1 cicjK

′(xi, xj) is non-negative. By lemma 6.7, if K(xi, xi) = 0

then K(xi, xj) = 0 and thus K ′(xi, xj) = 0 for all j ∈ [m]. Thus, we can assume

that K(xi, xi) > 0 for all i ∈ [m]. Then, the sum can be rewritten as follows:

m∑

i,j=1

cicjK(xi, xj)√
K(xi, xi)K(xj , xj)

=

m∑

i,j=1

cicj 〈Φ(xi),Φ(xj)〉
‖Φ(xi)‖H ‖Φ(xj)‖H

=

∥∥∥∥∥
m∑

i=1

ciΦ(xi)

‖Φ(xi)‖H

∥∥∥∥∥

2

H

≥ 0,

where Φ is a feature mapping associated to K, which exists by theorem 6.8. �

As indicated earlier, PDS kernels can be interpreted as a similarity measure since

they induce an inner product in some Hilbert space H. This is more evident for a

normalized kernel K since K(x, x′) is then exactly the cosine of the angle between

the feature vectors Φ(x) and Φ(x′), provided that none of them is zero: Φ(x) and

Φ(x′) are then unit vectors since ‖Φ(x)‖H = ‖Φ(x′)‖H =
√
K(x, x) = 1.

While one of the advantages of PDS kernels is an implicit definition of a fea-

ture mapping, in some instances, it may be desirable to define an explicit feature

mapping based on a PDS kernel. This may be to work in the primal for various

optimization and computational reasons, to derive an approximation based on an

explicit mapping, or as part of a theoretical analysis where an explicit mapping

is more convenient. The empirical kernel map Φ associated to a PDS kernel K is

a feature mapping that can be used precisely in such contexts. Given a training

sample containing points x1, . . . , xm ∈ X, Φ: X→ Rm is defined for all x ∈ X by

Φ(x) =

K(x, x1)
...

K(x, xm)

 .

Thus, Φ(x) is the vector of the K-similarity measures of x with each of the training

points. Let K be the kernel matrix associated to K and ei the ith unit vector.

Note that for any i ∈ [m], Φ(xi) is the ith column of K, that is Φ(xi) = Kei. In

114 Chapter 6 Kernel Methods

particular, for all i, j ∈ [m],

〈Φ(xi),Φ(xj)〉 = (Kei)
>(Kej) = e>i K2ej .

Thus, the kernel matrix K′ associated to Φ is K2. It may desirable in some cases

to define a feature mapping whose kernel matrix coincides with K. Let K†
1
2 denote

the SPSD matrix whose square is K†, the pseudo-inverse of K. K†
1
2 can be derived

from K† via singular value decomposition and if the matrix K is invertible, K†
1
2

coincides with K−1/2 (see appendix A for properties of the pseudo-inverse). Then,

Ψ can be defined as follows using the empirical kernel map Φ:

∀x ∈ X, Ψ(x) = K†
1
2 Φ(x).

Using the identity KK†K = K valid for any symmetric matrix K, for all i, j ∈ [m],

the following holds:

〈Ψ(xi),Ψ(xj)〉 = (K†
1
2 Kei)

>(K†
1
2 Kej) = e>i KK†Kej = e>i Kej .

Thus, the kernel matrix associated to Ψ is K. Finally, note that for the feature

mapping Ω: X→ Rm defined by

∀x ∈ X, Ω(x) = K†Φ(x),

for all i, j ∈ [m], we have 〈Ω(xi),Ω(xj)〉 = e>i KK†K†Kej = e>i KK†ej , using the

identity K†K†K = K† valid for any symmetric matrix K. Thus, the kernel matrix

associated to Ω is KK†, which reduces to the identity matrix I ∈ Rm×m when K

is invertible, since K† = K−1 in that case.

As pointed out in the previous section, kernels represent the user’s prior knowl-

edge about a task. In some cases, a user may come up with appropriate similarity

measures or PDS kernels for some subtasks — for example, for different subcate-

gories of proteins or text documents to classify. But how can the user combine these

PDS kernels to form a PDS kernel for the entire class? Is the resulting combined

kernel guaranteed to be PDS? In the following, we will show that PDS kernels are

closed under several useful operations which can be used to design complex PDS

kernels. These operations are the sum and the product of kernels, as well as the

tensor product of two kernels K and K ′, denoted by K ⊗K ′ and defined by

∀x1, x2, x
′
1, x
′
2 ∈ X, (K ⊗K ′)(x1, x

′
1, x2, x

′
2) = K(x1, x2)K ′(x′1, x

′
2).

They also include the pointwise limit: given a sequence of kernels (Kn)n∈N such

that for all x, x′ ∈ X (Kn(x, x′))n∈N admits a limit, the pointwise limit of (Kn)n∈N is

the kernel K defined for all x, x′ ∈ X by K(x, x′) = limn→+∞(Kn)(x, x′). Similarly,

if
∑∞
n=0 anx

n is a power series with radius of convergence ρ > 0 and K a kernel

taking values in (−ρ,+ρ), then
∑∞
n=0 anK

n is the kernel obtained by composition

6.2 Positive definite symmetric kernels 115

of K with that power series. The following theorem provides closure guarantees for

all of these operations.

Theorem 6.10 (PDS kernels — closure properties) PDS kernels are closed under sum,

product, tensor product, pointwise limit, and composition with a power series∑∞
n=0 anx

n with an ≥ 0 for all n ∈ N.

Proof: We start with two kernel matrices, K and K′, generated from PDS kernels

K and K ′ for an arbitrary set of m points. By assumption, these kernel matrices

are SPSD. Observe that for any c ∈ Rm×1,

(c>Kc ≥ 0) ∧ (c>K′c ≥ 0)⇒ c>(K + K′)c ≥ 0.

By (6.2), this shows that K + K′ is SPSD and thus that K +K ′ is PDS. To show

closure under product, we will use the fact that for any SPSD matrix K there exists

M such that K = MM>. The existence of M is guaranteed as it can be generated

via, for instance, singular value decomposition of K, or by Cholesky decomposition.

The kernel matrix associated to KK ′ is (KijK
′
ij)ij . For any c ∈ Rm×1, expressing

Kij in terms of the entries of M, we can write

m∑

i,j=1

cicj(KijK
′
ij) =

m∑

i,j=1

cicj

([m∑

k=1

MikMjk

]
K′ij

)

=

m∑

k=1

[m∑

i,j=1

cicjMikMjkK
′
ij

]

=

m∑

k=1

z>k K′zk ≥ 0,

with zk =

[
c1M1k...
cmMmk

]
. This shows that PDS kernels are closed under product.

The tensor product of K and K ′ is PDS as the product of the two PDS kernels

(x1, x
′
1, x2, x

′
2) 7→ K(x1, x2) and (x1, x

′
1, x2, x

′
2) 7→ K ′(x′1, x

′
2). Next, let (Kn)n∈N

be a sequence of PDS kernels with pointwise limit K. Let K be the kernel matrix

associated to K and Kn the one associated to Kn for any n ∈ N. Observe that

(∀n, c>Knc ≥ 0)⇒ lim
n→∞

c>Knc = c>Kc ≥ 0.

This shows the closure under pointwise limit. Finally, assume that K is a PDS

kernel with |K(x, x′)| < ρ for all x, x′ ∈ X and let f : x 7→∑∞
n=0 anx

n, an ≥ 0 be a

power series with radius of convergence ρ. Then, for any n ∈ N, Kn and thus anK
n

are PDS by closure under product. For any N ∈ N,
∑N
n=0 anK

n is PDS by closure

under sum of anK
ns and f ◦K is PDS by closure under the limit of

∑N
n=0 anK

n

as N tends to infinity. �

116 Chapter 6 Kernel Methods

The theorem implies in particular that for any PDS kernel matrix K, exp(K) is

PDS, since the radius of convergence of exp is infinite. In particular, the kernel

K ′ : (x,x′) 7→ exp
(

x·x′
σ2

)
is PDS since (x,x′) 7→ x·x′

σ2 is PDS. Thus, by lemma 6.9,

this shows that a Gaussian kernel, which is the normalized kernel associated to K ′,
is PDS.

6.3 Kernel-based algorithms

In this section we discuss how SVMs can be used with kernels and analyze the

impact that kernels have on generalization.

6.3.1 SVMs with PDS kernels
In chapter 5, we noted that the dual optimization problem for SVMs as well as the

form of the solution did not directly depend on the input vectors but only on inner

products. Since a PDS kernel implicitly defines an inner product (theorem 6.8), we

can extend SVMs and combine it with an arbitrary PDS kernel K by replacing each

instance of an inner product x ·x′ with K(x, x′). This leads to the following general

form of the SVM optimization problem and solution with PDS kernels extending

(5.33):

max
α

m∑

i=1

αi −
1

2

m∑

i,j=1

αiαjyiyjK(xi, xj) (6.13)

subject to: 0 ≤ αi ≤ C ∧
m∑

i=1

αiyi = 0, i ∈ [m].

In view of (5.34), the hypothesis h solution can be written as:

h(x) = sgn
(m∑

i=1

αiyiK(xi, x) + b
)
, (6.14)

with b = yi −
∑m
j=1 αjyjK(xj , xi) for any xi with 0 < αi < C. We can rewrite

the optimization problem (6.13) in a vector form, by using the kernel matrix K

associated to K for the training sample (x1, . . . , xm) as follows:

max
α

2 1>α− (α ◦ y)>K(α ◦ y) (6.15)

subject to: 0 ≤ α ≤ C ∧α>y = 0.

In this formulation, α ◦ y is the Hadamard product or entry-wise product of the

vectors α and y. Thus, it is the column vector in Rm×1 whose ith component

equals αiyi. The solution in vector form is the same as in (6.14), but with b =

yi − (α ◦ y)>Kei for any xi with 0 < αi < C.

6.3 Kernel-based algorithms 117

This version of SVMs used with PDS kernels is the general form of SVMs we

will consider in all that follows. The extension is important, since it enables an

implicit non-linear mapping of the input points to a high-dimensional space where

large-margin separation is sought.

Many other algorithms in areas including regression, ranking, dimensionality re-

duction or clustering can be extended using PDS kernels following the same scheme

(see in particular chapters 9, 10, 11, 15).

6.3.2 Representer theorem
Observe that modulo the offset b, the hypothesis solution of SVMs can be written

as a linear combination of the functions K(xi, ·), where xi is a sample point. The

following theorem known as the representer theorem shows that this is in fact a

general property that holds for a broad class of optimization problems, including

that of SVMs with no offset.

Theorem 6.11 (Representer theorem) Let K : X × X → R be a PDS kernel and H its

corresponding RKHS. Then, for any non-decreasing function G : R → R and any

loss function L : Rm → R ∪ {+∞}, the optimization problem

argmin
h∈H

F (h) = argmin
h∈H

G(‖h‖H) + L
(
h(x1), . . . , h(xm)

)

admits a solution of the form h∗ =
∑m
i=1 αiK(xi, ·). If G is further assumed to be

increasing, then any solution has this form.

Proof: Let H1 = span({K(xi, ·) : i ∈ [m]}). Any h ∈ H admits the decomposition

h = h1 + h⊥ according to H = H1 ⊕ H⊥1 , where ⊕ is the direct sum. Since G is

non-decreasing, G(‖h1‖H) ≤ G(
√
‖h1‖2H + ‖h⊥‖2H) = G(‖h‖H). By the reproducing

property, for all i ∈ [m], h(xi) = 〈h,K(xi, ·)〉 = 〈h1,K(xi, ·)〉 = h1(xi). Thus,

L
(
h(x1), . . . , h(xm)

)
= L

(
h1(x1), . . . , h1(xm)

)
and F (h1) ≤ F (h). This proves the

first part of the theorem. If G is further increasing, then F (h1) < F (h) when

‖h⊥‖H > 0 and any solution of the optimization problem must be in H1. �

6.3.3 Learning guarantees
Here, we present general learning guarantees for hypothesis sets based on PDS

kernels, which hold in particular for SVMs combined with PDS kernels.

The following theorem gives a general bound on the empirical Rademacher com-

plexity of kernel-based hypotheses with bounded norm, that is a hypothesis set

of the form H = {h ∈ H : ‖h‖H ≤ Λ}, for some Λ ≥ 0, where H is the RKHS

associated to a kernel K. By the reproducing property, any h ∈ H is of the form

x 7→ 〈h,K(x, ·)〉 = 〈h,Φ(x)〉 with ‖h‖H ≤ Λ, where Φ is a feature mapping associ-

ated to K, that is of the form x 7→ 〈w,Φ(x)〉 with ‖w‖H ≤ Λ.

118 Chapter 6 Kernel Methods

Theorem 6.12 (Rademacher complexity of kernel-based hypotheses) Let K : X×X→ R
be a PDS kernel and let Φ: X→ H be a feature mapping associated to K. Let S ⊆
{x : K(x, x) ≤ r2} be a sample of size m, and let H = {x 7→ 〈w,Φ(x)〉 : ‖w‖H ≤ Λ}
for some Λ ≥ 0. Then

R̂S(H) ≤ Λ
√

Tr[K]

m
≤
√
r2Λ2

m
. (6.16)

Proof: The proof steps are as follows:

R̂S(H) =
1

m
E
σ

[
sup
‖w‖≤Λ

〈
w,

m∑

i=1

σiΦ(xi)
〉]

=
Λ

m
E
σ

[∥∥∥
m∑

i=1

σiΦ(xi)
∥∥∥

H

]
(Cauchy-Schwarz, eq. case)

≤ Λ

m

[
E
σ

[∥∥∥
m∑

i=1

σiΦ(xi)
∥∥∥

2

H

]]1/2

(Jensen’s ineq.)

=
Λ

m

[
E
σ

[m∑

i=1

‖Φ(xi)‖2H
]]1/2

(i 6= j ⇒ E
σ

[σiσj] = 0)

=
Λ

m

[
E
σ

[m∑

i=1

K(xi, xi)
]]1/2

=
Λ
√

Tr[K]

m
≤
√
r2Λ2

m
.

The initial equality holds by definition of the empirical Rademacher complexity

(definition 3.1). The first inequality is due to the Cauchy-Schwarz inequality and

‖w‖H ≤ Λ. The following inequality results from Jensen’s inequality (theorem B.20)

applied to the concave function
√·. The subsequent equality is a consequence of

Eσ[σiσj] = Eσ[σi] Eσ[σj] = 0 for i 6= j, since the Rademacher variables σi and

σj are independent. The statement of the theorem then follows by noting that

Tr[K] ≤ mr2. �

The theorem indicates that the trace of the kernel matrix is an important quantity

for controlling the complexity of hypothesis sets based on kernels. Observe that

by the Khintchine-Kahane inequality (D.24), the empirical Rademacher complexity

R̂S(H) = Λ
m Eσ[‖∑m

i=1 σiΦ(xi)‖H] can also be lower bounded by 1√
2

Λ
√

Tr[K]

m , which

only differs from the upper bound found by the constant 1√
2
. Also, note that if

K(x, x) ≤ r2 for all x ∈ X, then the inequalities 6.16 hold for all samples S.

The bound of theorem 6.12 or the inequalities 6.16 can be plugged into any of the

Rademacher complexity generalization bounds presented in the previous chapters.

In particular, in combination with theorem 5.8, they lead directly to the following

margin bound similar to that of corollary 5.11.

6.4 Negative definite symmetric kernels 119

Corollary 6.13 (Margin bounds for kernel-based hypotheses) Let K : X × X → R be a

PDS kernel with r2 = supx∈XK(x, x). Let Φ: X → H be a feature mapping asso-

ciated to K and let H = {x 7→ w · Φ(x) : ‖w‖H ≤ Λ} for some Λ ≥ 0. Fix ρ > 0.

Then, for any δ > 0, each of the following statements holds with probability at least

1− δ for any h ∈ H:

R(h) ≤ R̂S,ρ(h) + 2

√
r2Λ2/ρ2

m
+

√
log 1

δ

2m
(6.17)

R(h) ≤ R̂S,ρ(h) + 2

√
Tr[K]Λ2/ρ2

m
+ 3

√
log 2

δ

2m
. (6.18)

6.4 Negative definite symmetric kernels

Often in practice, a natural distance or metric is available for the learning task

considered. This metric could be used to define a similarity measure. As an ex-

ample, Gaussian kernels have the form exp(−d2), where d is a metric for the input

vector space. Several natural questions arise such as: what other PDS kernels can

we construct from a metric in a Hilbert space? What technical condition should d

satisfy to guarantee that exp(−d2) is PDS? A natural mathematical definition that

helps address these questions is that of negative definite symmetric (NDS) kernels.

Definition 6.14 (Negative definite symmetric (NDS) kernels) A kernel K : X × X → R
is said to be negative-definite symmetric (NDS) if it is symmetric and if for all

{x1, . . . , xm} ⊆ X and c ∈ Rm×1 with 1>c = 0, the following holds:

c>Kc ≤ 0.

Clearly, if K is PDS, then −K is NDS, but the converse does not hold in general.

The following gives a standard example of an NDS kernel.

Example 6.15 (Squared distance — NDS kernel) The squared distance (x, x′) 7→ ‖x′ −
x‖2 in RN defines an NDS kernel. Indeed, let c ∈ Rm×1 with

∑m
i=1 ci = 0. Then,

120 Chapter 6 Kernel Methods

for any {x1, . . . , xm} ⊆ X, we can write

m∑

i,j=1

cicj ||xi − xj ||2 =

m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2 − 2xi · xj)

=

m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2)− 2

m∑

i=1

cixi ·
m∑

j=1

cjxj

=

m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2)− 2
∥∥

m∑

i=1

cixi
∥∥2

≤
m∑

i,j=1

cicj(‖xi‖2 + ‖xj‖2)

=
(m∑

j=1

cj

)(m∑

i=1

ci(‖xi‖2
)

+
(m∑

i=1

ci

)(m∑

j=1

cj‖xj‖2
)

= 0.

The next theorems show connections between NDS and PDS kernels. These

results provide another series of tools for designing PDS kernels.

Theorem 6.16 Let K ′ be defined for any x0 by

K ′(x, x′) = K(x, x0) +K(x′, x0)−K(x, x′)−K(x0, x0)

for all x, x′ ∈ X. Then K is NDS iff K ′ is PDS.

Proof: Assume thatK ′ is PDS and defineK such that for any x0 we haveK(x, x′) =

K(x, x0)+K(x0, x
′)−K(x0, x0)−K ′(x, x′). Then for any c ∈ Rm such that c>1 = 0

and any set of points (x1, . . . , xm) ∈ Xm we have

m∑

i,j=1

cicjK(xi, xj) =
(m∑

i=1

ciK(xi, x0)
)(m∑

j=1

cj

)
+
(m∑

i=1

ci

)(m∑

j=1

cjK(x0, xj)
)

−
(m∑

i=1

ci

)2

K(x0, x0)−
m∑

i,j=1

cicjK
′(xi, xj) = −

m∑

i,j=1

cicjK
′(xi, xj) ≤ 0 .

which proves K is NDS.

Now, assume K is NDS and define K ′ for any x0 as above. Then, for any c ∈ Rm,

we can define c0 = −c>1 and the following holds by the NDS property for any points

(x1, . . . , xm) ∈ Xm as well as x0 defined previously:
∑m
i,j=0 cicjK(xi, xj) ≤ 0. This

implies that

(m∑

i=0

ciK(xi, x0)
)(m∑

j=0

cj

)
+
(m∑

i=0

ci

)(m∑

j=0

cjK(x0, xj)
)

−
(m∑

i=0

ci

)2

K(x0, x0)−
m∑

i,j=0

cicjK
′(xi, xj) = −

m∑

i,j=0

cicjK
′(xi, xj) ≤ 0 ,

6.5 Sequence kernels 121

which implies 2
∑m
i,j=1 cicjK

′(xi, xj) ≥ −2c0
∑m
i=0 ciK

′(xi, x0) + c20K
′(x0, x0) = 0.

The equality holds since ∀x ∈ X,K ′(x, x0) = 0. �

This theorem is useful in showing other connections, such the following theorems,

which are left as exercises (see exercises 6.17 and 6.18).

Theorem 6.17 Let K : X × X → R be a symmetric kernel. Then, K is NDS iff

exp(−tK) is a PDS kernel for all t > 0.

The theorem provides another proof that Gaussian kernels are PDS: as seen earlier

(Example 6.15), the squared distance (x, x′) 7→ ‖x − x′‖2 in RN is NDS, thus

(x, x′) 7→ exp(−t||x− x′||2) is PDS for all t > 0.

Theorem 6.18 Let K : X × X → R be an NDS kernel such that for all x, x′ ∈
X,K(x, x′) = 0 iff x = x′. Then, there exists a Hilbert space H and a mapping

Φ: X→ H such that for all x, x′ ∈ X,

K(x, x′) = ‖Φ(x)− Φ(x′)‖2.

Thus, under the hypothesis of the theorem,
√
K defines a metric.

This theorem can be used to show that the kernel (x, x′) 7→ exp(−|x− x′|p) in R
is not PDS for p > 2. Otherwise, for any t > 0, {x1, . . . , xm} ⊆ X and c ∈ Rm×1,

we would have:
m∑

i,j=1

cicje
−t|xi−xj |p =

m∑

i,j=1

cicje
−|t1/pxi−t1/pxj |p ≥ 0.

This would imply that (x, x′) 7→ |x − x′|p is NDS for p > 2, which can be proven

(via theorem 6.18) not to be valid.

6.5 Sequence kernels

The examples given in the previous sections, including the commonly used poly-

nomial or Gaussian kernels, were all for PDS kernels over vector spaces. In many

learning tasks found in practice, the input space X is not a vector space. The

examples to classify in practice could be protein sequences, images, graphs, parse

trees, finite automata, or other discrete structures which may not be directly given

as vectors. PDS kernels provide a method for extending algorithms such as SVMs

originally designed for a vectorial space to the classification of such objects. But,

how can we define PDS kernels for these structures?

This section will focus on the specific case of sequence kernels, that is, kernels

for sequences or strings. PDS kernels can be defined for other discrete structures

in somewhat similar ways. Sequence kernels are particularly relevant to learning

algorithms applied to computational biology or natural language processing, which

are both important applications.

122 Chapter 6 Kernel Methods

How can we define PDS kernels for sequences, which are similarity measures for

sequences? One idea consists of declaring two sequences, e.g., two documents or

two biosequences, as similar when they share common substrings or subsequences.

One example could be the kernel between two sequences defined by the sum of the

product of the counts of their common substrings. But which substrings should

be used in that definition? Most likely, we would need some flexibility in the

definition of the matching substrings. For computational biology applications, for

example, the match could be imperfect. Thus, we may need to consider some

number of mismatches, possibly gaps, or wildcards. More generally, we might need

to allow various substitutions and might wish to assign different weights to common

substrings to emphasize some matching substrings and deemphasize others.

As can be seen from this discussion, there are many different possibilities and

we need a general framework for defining such kernels. In the following, we will

introduce a general framework for sequence kernels, rational kernels, which will

include all the kernels considered in this discussion. We will also describe a general

and efficient algorithm for their computation and will illustrate them with some

examples.

The definition of these kernels relies on that of weighted transducers. Thus, we

start with the definition of these devices as well as some relevant algorithms.

6.5.1 Weighted transducers
Sequence kernels can be effectively represented and computed using weighted trans-

ducers. In the following definition, let Σ denote a finite input alphabet, ∆ a finite

output alphabet, and ε the empty string or null label, whose concatenation with

any string leaves it unchanged.

Definition 6.19 A weighted transducer T is a 7-tuple T = (Σ,∆, Q, I, F,E, ρ) where

Σ is a finite input alphabet, ∆ a finite output alphabet, Q is a finite set of states,

I ⊆ Q the set of initial states, F ⊆ Q the set of final states, E a finite multiset of

transitions elements of Q× (Σ ∪ {ε})× (∆ ∪ {ε})× R×Q, and ρ : F → R a final

weight function mapping F to R. The size of transducer T is the sum of its number

of states and transitions and is denoted by |T |.7

Thus, weighted transducers are finite automata in which each transition is labeled

with both an input and an output label and carries some real-valued weight. Fig-

ure 6.4 shows an example of a weighted finite-state transducer. In this figure, the

input and output labels of a transition are separated by a colon delimiter, and the

weight is indicated after the slash separator. The initial states are represented by

7 A multiset in the definition of the transitions is used to allow for the presence of several transitions
from a state p to a state q with the same input and output label, and even the same weight, which
may occur as a result of various operations.

6.5 Sequence kernels 123

2/8 b:b/2

0

b:b/2

3/2

b:a/3

1

a:b/3

a:a/2

b:a/4

a:a/1

Figure 6.4
Example of weighted transducer.

a bold circle and final states by double circles. The final weight ρ[q] at a final state

q is displayed after the slash.

The input label of a path π is a string element of Σ∗ obtained by concatenating

input labels along π. Similarly, the output label of a path π is obtained by con-

catenating output labels along π. A path from an initial state to a final state is

an accepting path. The weight of an accepting path is obtained by multiplying the

weights of its constituent transitions and the weight of the final state of the path.

A weighted transducer defines a mapping from Σ∗×∆∗ to R. The weight associ-

ated by a weighted transducer T to a pair of strings (x, y) ∈ Σ∗×∆∗ is denoted by

T (x, y) and is obtained by summing the weights of all accepting paths with input

label x and output label y. For example, the transducer of figure 6.4 associates to

the pair (aab, baa) the weight 3 × 1 × 4 × 2 + 3 × 2 × 3 × 2, since there is a path

with input label aab and output label baa and weight 3 × 1 × 4 × 2, and another

one with weight 3× 2× 3× 2.

The sum of the weights of all accepting paths of an acyclic transducer, that is

a transducer T with no cycle, can be computed in linear time, that is O(|T |),
using a general shortest-distance or forward-backward algorithm. These are simple

algorithms, but a detailed description would require too much of a digression from

the main topic of this chapter.

Composition An important operation for weighted transducers is composition,

which can be used to combine two or more weighted transducers to form more

complex weighted transducers. As we shall see, this operation is useful for the

creation and computation of sequence kernels. Its definition follows that of compo-

sition of relations. Given two weighted transducers T1 = (Σ,∆, Q1, I1, F1, E1, ρ1)

and T2 = (∆,Ω, Q2, I2, F2, E2, ρ2), the result of the composition of T1 and T2 is a

124 Chapter 6 Kernel Methods

weighted transducer denoted by T1 ◦ T2 and defined for all x ∈ Σ∗ and y ∈ Ω∗ by

(T1 ◦ T2)(x, y) =
∑

z∈∆∗

T1(x, z) · T2(z, y), (6.19)

where the sum runs over all strings z over the alphabet ∆. Thus, composition is

similar to matrix multiplication with infinite matrices.

There exists a general and efficient algorithm to compute the composition of two

weighted transducers. In the absence of εs on the input side of T1 or the output

side of T2, the states of T1 ◦ T2 = (Σ,∆, Q, I, F,E, ρ) can be identified with pairs

made of a state of T1 and a state of T2, Q ⊆ Q1 × Q2. Initial states are those

obtained by pairing initial states of the original transducers, I = I1 × I2, and

similarly final states are defined by F = Q ∩ (F1 × F2). The final weight at a state

(q1, q2) ∈ F1 × F2 is ρ(q) = ρ1(q1)ρ2(q2), that is the product of the final weights at

q1 and q2. Transitions are obtained by matching a transition of T1 with one of T2

from appropriate transitions of T1 and T2:

E =
⊎

(q1,a,b,w1,q2)∈E1

(q′1,b,c,w2,q
′
2)∈E2

{(
(q1, q

′
1), a, c, w1 ⊗ w2, (q2, q

′
2)

)}
.

Here,] denotes the standard join operation of multisets as in {1, 2}] {1, 3} =

{1, 1, 2, 3}, to preserve the multiplicity of the transitions.

In the worst case, all transitions of T1 leaving a state q1 match all those of T2

leaving state q′1, thus the space and time complexity of composition is quadratic:

O(|T1||T2|). In practice, such cases are rare and composition is very efficient. Fig-

ure 6.5 illustrates the algorithm in a particular case.

As illustrated by figure 6.6, when T1 admits output ε labels or T2 input ε labels,

the algorithm just described may create redundant ε-paths, which would lead to

an incorrect result. The weight of the matching paths of the original transducers

would be counted p times, where p is the number of redundant paths in the result

of composition. To avoid with this problem, all but one ε-path must be filtered out

of the composite transducer. Figure 6.6 indicates in boldface one possible choice for

that path, which in this case is the shortest. Remarkably, that filtering mechanism

itself can be encoded as a finite-state transducer F (figure 6.6b).

To apply that filter, we need to first augment T1 and T2 with auxiliary symbols

that make the semantics of ε explicit: let T̃1 (T̃2) be the weighted transducer

obtained from T1 (respectively T2) by replacing the output (respectively input) ε

labels with ε2 (respectively ε1) as illustrated by figure 6.6. Thus, matching with the

symbol ε1 corresponds to remaining at the same state of T1 and taking a transition

of T2 with input ε. ε2 can be described in a symmetric way. The filter transducer

F disallows a matching (ε2, ε2) immediately after (ε1, ε1) since this can be done

6.5 Sequence kernels 125

0

1

b:b/0.1

b:a/0.2

2

a:b/0.3
3/0.6

a:b/0.4

b:a/0.5

(a) (b)

(0, 0) (1, 1)
a:b/.01

(0, 1)

a:a/.04

(2, 1)

b:a/.06 (3, 1)

b:a/.08

a:a/.02

a:a/0.1

(3, 2)

a:b/.18

(3, 3)a:b/.24

(c)

Figure 6.5
(a) Weighted transducer T1. (b) Weighted transducer T2. (c) Result of composition of T1 and
T2, T1 ◦ T2. Some states might be constructed during the execution of the algorithm that are
not co-accessible, that is, they do not admit a path to a final state, e.g., (3, 2). Such states and
the related transitions (in red) can be removed by a trimming (or connection) algorithm in linear
time.

instead via (ε2, ε1). By symmetry, it also disallows a matching (ε1, ε1) immediately

after (ε2, ε2). In the same way, a matching (ε1, ε1) immediately followed by (ε2, ε1)

is not permitted by the filter F since a path via the matchings (ε2, ε1)(ε1, ε1) is

possible. Similarly, (ε2, ε2)(ε2, ε1) is ruled out. It is not hard to verify that the filter

transducer F is precisely a finite automaton over pairs accepting the complement

of the language

L = σ∗((ε1, ε1)(ε2, ε2) + (ε2, ε2)(ε1, ε1) + (ε1, ε1)(ε2, ε1) + (ε2, ε2)(ε2, ε1))σ∗,

where σ = {(ε1, ε1), (ε2, ε2), (ε2, ε1), x}. Thus, the filter F guarantees that exactly

one ε-path is allowed in the composition of each ε sequences. To obtain the correct

result of composition, it suffices then to use the ε-free composition algorithm already

described and compute

T̃1 ◦ F ◦ T̃2. (6.20)

126 Chapter 6 Kernel Methods

0 1

a:d
2

!:e
3

d:a

T1 T2

T̃1 T̃2

Redundant ε-Paths Problem

!"! #"! $"! %"%

!"% !"& %"!

!"% ! "& %"!

! "! ! "! ! "! ! "!

!"!

!"! #"! $"! %"%

!"! !"! !"! !"!

,!-

,#-

,$-

,%-

A

B

A'

B'

).) '.' '.(

(.' (.(

*.' *.(

+.*

!"% !"&

#"!

$"!

#"!

$"!

!"&

!"&

%"!

#"&

,/"/- ,!!"!!-

,!!"!!-

,!!"!!-

,!#"!#-,!#"!#-

,!#"!#- ,!#"!#-

,/"/-

,!#"!!$

/"/

!#"! !!"!

!#"!

/"/

!!"!

/"/

!#"!

!:!!:!

a:a

!:!!:!

b:!

!:!!:!

c:!

!:!!:!

d:d

!:!!:! !2:!

a:d

!2:!

!1: e

!2:!

d:a

!2:!

T̃1 T̃2

a:a b:! c:! d:d a:d !:e d:aT1 T2

x:x

!2:! !1:!

!2:!

x:x

!1:!

x:x

!2:!
F

T = T̃1 F T̃2.

(MM, Pereira, and Riley, 1996; Pereira and Riley, 1997)

(a) (b)

Figure 6.6
Redundant ε-paths in composition. All transition and final weights are equal to one. (a) A
straightforward generalization of the ε-free case would generate all the paths from (1, 1) to (3, 2)
when composing T1 and T2 and produce an incorrect results in non-idempotent semirings. (b)
Filter transducer F . The shorthand x is used to represent an element of Σ.

Indeed, the two compositions in T̃1 ◦ F ◦ T̃2 no longer involve εs. Since the size

of the filter transducer F is constant, the complexity of general composition is the

same as that of ε-free composition, that is O(|T1||T2|). In practice, the augmented

transducers T̃1 and T̃2 are not explicitly constructed, instead the presence of the

auxiliary symbols is simulated. Further filter optimizations help limit the number

of non-coaccessible states created, for example, by examining more carefully the

case of states with only outgoing non-ε-transitions or only outgoing ε-transitions.

6.5.2 Rational kernels
The following establishes a general framework for the definition of sequence kernels.

Definition 6.20 (Rational kernels) A kernel K : Σ∗ × Σ∗ → R is said to be rational

if it coincides with the mapping defined by some weighted transducer U : ∀x, y ∈
Σ∗,K(x, y) = U(x, y).

6.5 Sequence kernels 127

Note that we could have instead adopted a more general definition: instead of us-

ing weighted transducers, we could have used more powerful sequence mappings

such as algebraic transductions, which are the functional counterparts of context-

free languages, or even more powerful ones. However, an essential need for kernels

is an efficient computation, and more complex definitions would lead to substan-

tially more costly computational complexities for kernel computation. For rational

kernels, there exists a general and efficient computation algorithm.

Computation We will assume that the transducer U defining a rational kernel K

does not admit any ε-cycle with non-zero weight, otherwise the kernel value is

infinite for all pairs. For any sequence x, let Tx denote a weighted transducer with

just one accepting path whose input and output labels are both x and its weight

equal to one. Tx can be straightforwardly constructed from x in linear time O(|x|).
Then, for any x, y ∈ Σ∗, U(x, y) can be computed by the following two steps:

1. Compute V = Tx◦U◦Ty using the composition algorithm in time O(|U ||Tx||Ty|).
2. Compute the sum of the weights of all accepting paths of V using a general

shortest-distance algorithm in time O(|V |).
By definition of composition, V is a weighted transducer whose accepting paths are

precisely those accepting paths of U that have input label x and output label y.

The second step computes the sum of the weights of these paths, that is, exactly

U(x, y). Since U admits no ε-cycle, V is acyclic, and this step can be performed in

linear time. The overall complexity of the algorithm for computing U(x, y) is then

in O(|U ||Tx||Ty|). Since U is fixed for a rational kernel K and |Tx| = O(|x|) for any

x, this shows that the kernel values can be obtained in quadratic time O(|x||y|).
For some specific weighted transducers U , the computation can be more efficient,

for example in O(|x|+ |y|) (see exercise 6.20).

PDS rational kernels For any transducer T , let T−1 denote the inverse of T , that is

the transducer obtained from T by swapping the input and output labels of every

transition. For all x, y, we have T−1(x, y) = T (y, x). The following theorem gives a

general method for constructing a PDS rational kernel from an arbitrary weighted

transducer.

Theorem 6.21 For any weighted transducer T = (Σ,∆, Q, I, F,E, ρ), the function

K = T ◦ T−1 is a PDS rational kernel.

Proof: By definition of composition and the inverse operation, for all x, y ∈ Σ∗,

K(x, y) =
∑

z∈∆∗

T (x, z)T (y, z).

128 Chapter 6 Kernel Methods

0

a:ε/1
b:ε/1

1
a:a/1

b:b/1
2/1

a:a/1

b:b/1

a:ε/1
b:ε/1

0

a:ε/1
b:ε/1

1
a:a/1

b:b/1

a:ε/λ
b:ε/λ

2/1
a:a/1

b:b/1

a:ε/1
b:ε/1

(a) (b)

Figure 6.7
(a) Transducer Tbigram defining the bigram kernel Tbigram◦T−1

bigram for Σ = {a, b}. (b) Transducer

Tgappy bigram defining the gappy bigram kernel Tgappy bigram ◦ T−1
gappy bigram with gap penalty

λ ∈ (0, 1).

K is the pointwise limit of the kernel sequence (Kn)n≥0 defined by:

∀n ∈ N,∀x, y ∈ Σ∗, Kn(x, y) =
∑

|z|≤n
T (x, z)T (y, z),

where the sum runs over all sequences in ∆∗ of length at most n. Kn is PDS

since its corresponding kernel matrix Kn for any sample (x1, . . . , xm) is SPSD.

This can be see form the fact that Kn can be written as Kn = AA> with A =

(Kn(xi, zj))i∈[m],j∈[N], where z1, . . . , zN is some arbitrary enumeration of the set of

strings in Σ∗ with length at most n. Thus, K is PDS as the pointwise limit of the

sequence of PDS kernels (Kn)n∈N. �

The sequence kernels commonly used in computational biology, natural language

processing, computer vision, and other applications are all special instances of ra-

tional kernels of the form T ◦ T−1. All of these kernels can be computed efficiently

using the same general algorithm for the computational of rational kernels presented

in the previous paragraph. Since the transducer U = T ◦ T−1 defining such PDS

rational kernels has a specific form, there are different options for the computation

of the composition Tx ◦ U ◦ Ty:

• compute U = T ◦ T−1 first, then V = Tx ◦ U ◦ Ty;

• compute V1 = Tx ◦ T and V2 = Ty ◦ T first, then V = V1 ◦ V −1
2 ;

• compute first V1 = Tx ◦ T , then V2 = V1 ◦ T−1, then V = V2 ◦ Ty, or the similar

series of operations with x and y permuted.

All of these methods lead to the same result after computation of the sum of the

weights of all accepting paths, and they all have the same worst-case complexity.

However, in practice, due to the sparsity of intermediate compositions, there may

be substantial differences between their time and space computational costs. An

alternative method based on an n-way composition can further lead to significantly

more efficient computations.

6.5 Sequence kernels 129

Example 6.22 (Bigram and gappy bigram sequence kernels) Figure 6.7a shows a weighted

transducer Tbigram defining a common sequence kernel, the bigram sequence kernel ,

for the specific case of an alphabet reduced to Σ = {a, b}. The bigram kernel as-

sociates to any two sequences x and y the sum of the product of the counts of all

bigrams in x and y. For any sequence x ∈ Σ∗ and any bigram z ∈ {aa, ab, ba, bb},
Tbigram(x, z) is exactly the number of occurrences of the bigram z in x. Thus,

by definition of composition and the inverse operation, Tbigram ◦ T−1
bigram computes

exactly the bigram kernel.

Figure 6.7b shows a weighted transducer Tgappy bigram defining the so-called gappy

bigram kernel . The gappy bigram kernel associates to any two sequences x and y

the sum of the product of the counts of all gappy bigrams in x and y penalized

by the length of their gaps. Gappy bigrams are sequences of the form aua, aub,

bua, or bub, where u ∈ Σ∗ is called the gap. The count of a gappy bigram is

multiplied by λ|u| for some fixed λ ∈ (0, 1) so that gappy bigrams with longer gaps

contribute less to the definition of the similarity measure. While this definition

could appear to be somewhat complex, figure 6.7 shows that Tgappy bigram can be

straightforwardly derived from Tbigram. The graphical representation of rational

kernels helps understanding or modifying their definition.

Counting transducers The definition of most sequence kernels is based on the counts

of some common patterns appearing in the sequences. In the examples just exam-

ined, these were bigrams or gappy bigrams. There exists a simple and general

method for constructing a weighted transducer counting the number of occurrences

of patterns and using them to define PDS rational kernels. Let X be a finite au-

tomaton representing the set of patterns to count. In the case of bigram kernels

with Σ = {a, b}, X would be an automaton accepting exactly the set of strings

{aa, ab, ba, bb}. Then, the weighted transducer of figure 6.8 can be used to compute

exactly the number of occurrences of each pattern accepted by X.

Theorem 6.23 For any x ∈ Σ∗ and any sequence z accepted by X, Tcount(x, z) is the

number of occurrences of z in x.

Proof: Let x ∈ Σ∗ be an arbitrary sequence and let z be a sequence accepted by

X. Since all accepting paths of Tcount have weight one, Tcount(x, z) is equal to the

number of accepting paths in Tcount with input label x and output z.

Now, an accepting path π in Tcount with input x and output z can be decomposed

as π = π0 π01 π1, where π0 is a path through the loops of state 0 with input label

some prefix x0 of x and output label ε, π01 an accepting path from 0 to 1 with input

and output labels equal to z, and π1 a path through the self-loops of state 1 with

input label a suffix x1 of x and output ε. Thus, the number of such paths is exactly

130 Chapter 6 Kernel Methods

0

a:ε/1

b:ε/1

1/1
X:X/1

a:ε/1

b:ε/1

Figure 6.8
Counting transducer Tcount for Σ = {a, b}. The “transition” X : X/1 stands for the weighted
transducer created from the automaton X by adding to each transition an output label identical
to the existing label, and by making all transition and final weights equal to one.

the number of distinct ways in which we can write sequence x as x = x0zx1, which

is exactly the number of occurrences of z in x. �

The theorem provides a very general method for constructing PDS rational kernels

Tcount ◦ T−1
count that are based on counts of some patterns that can be defined via

a finite automaton, or equivalently a regular expression. Figure 6.8 shows the

transducer for the case of an input alphabet reduced to Σ = {a, b}. The general

case can be obtained straightforwardly by augmenting states 0 and 1 with other

self-loops using other symbols than a and b. In practice, a lazy evaluation can be

used to avoid the explicit creation of these transitions for all alphabet symbols and

instead creating them on-demand based on the symbols found in the input sequence

x. Finally, one can assign different weights to the patterns counted to emphasize

or deemphasize some, as in the case of gappy bigrams. This can be done simply

by changing the transitions weight or final weights of the automaton X used in the

definition of Tcount.

6.6 Approximate kernel feature maps

In the previous sections, we have seen the benefits that kernel methods can provide

by implicitly and efficiently mapping a learning problem from the input space X to

a richer feature space H. One potential drawback when using kernel methods, is

that the kernel function needs to be evaluated on all pairs of points in the training

set. If this set contains a very large number of instances, then the O(m2) cost

in memory and O(m2CK) cost in computation, where CK is the cost of a single

kernel function evaluation, may be prohibitive. Another consideration is the cost

of making predictions with a trained model. Evaluating the kernelized function

h(x) =
∑m
i=1 αiK(xi, x) + b requires O(m) storage and O(mCK) computation cost

(the exact amount of storage and number of operations depends on the number of

support vectors).

Note that if we use explicit feature vectors x ∈ RN , then the primal formulation of

the SVM problem can be used for training. The primal formulation incurs only an

O(Nm) storage cost and evaluation requires only O(N) storage and computation

6.6 Approximate kernel feature maps 131

Table 6.1
Examples of normalized shift-invariant kernels (defined over x,x′ ∈ RN) and their corresponding
densities (defined over ω ∈ RN).

G(x− x′) p(ω)

Gaussian exp
(
− ‖x−x′‖2

2

)
(2π)

−D
2 exp

(
− ‖ω‖

2

2

)
Laplacian exp

(
− ‖x− x′‖1

) ∏N
i=1

1
π(1+ω2

i)

Cauchy
∏N
i=1

2
1+(xi−x′i)

2 exp
(
− ‖ω‖1

)

time: h(x) = w ·x+b. However, these observations are only useful if N < m, which

is likely not the case when considering the explicit feature maps Φ(x) induced by

a kernel function. For example, given an input feature space of dimension N , the

dimension of the kernel feature map for a polynomial kernel of degree d is O(Nd). In

the case of Gaussian kernels the explicit feature map dimension is infinite. So clearly

using explicit kernel feature maps in general is not possible and again emphasizes

that using kernel functions to compute inner products implicitly is crucial.

In this section we show that a compromise is possible by constructing approximate

kernel feature maps. These are feature maps with a user-specified dimension D,

Ψ(x) ∈ RD, which guarantee Ψ(x) · Ψ(x′) ≈ K(x, x′) when using a sufficiently

large dimension D. To begin, we state a classical result from the field of harmonic

analysis.

Theorem 6.24 (Bochner’s theorem) A continuous kernel of the form K(x, x′) = G(x−
x′) defined over a locally compact set X is positive definite if and only if G is the

Fourier transform of a non-negative measure. That is,

G(x) =

∫

X

p(ω)eiω·xdω,

where p is a non-negative measure.

Kernels of the form K(x, x′) = G(x− x′) are called shift-invariant kernels. Note

that if the kernel is scaled such that G(0) = 1, then p is in fact a probability

distribution. Several examples of such kernels and their corresponding distributions

are displayed in table 6.1. The next proposition provides a simplified expression in

the case of real-valued kernels.

Proposition 6.25 Let K be a continuous real-valued shift-invariant kernel and let p

denote its corresponding non-negative measure as in theorem 6.24. Furthermore,

assume that for all x ∈ X we have K(x, x) = 1 so that p is a probability distribution.

Then, the following identity holds:

E
ω∼p

[[
cos(ω · x), sin(ω · x)

]>[
cos(ω · x′), sin(ω · x′)

]]
= K(x, x′) .

132 Chapter 6 Kernel Methods

Proof: First, since both K and p are real-valued, it suffices to consider only the

real portion of eix when invoking theorem 6.24. Thus, using Re[eix] = Re[cos(x) +

i sin(x)] = cos(x), we have

K(x, x′) = Re[K(x, x′)] =

∫

X

p(ω) cos(ω · (x− x′)) dω .

Next, by the standard trigonometric identity cos(a−b) = cos(a) cos(b)+sin(a) sin(b),

we have ∫

X

p(ω) cos(ω · (x− x′)) dω

=

∫

X

p(ω)
(

cos(ω · x) cos(ω · x′) + sin(ω · x) sin(ω · x′)
)
dω

= E
ω∼p

[[
cos(ω · x), sin(ω · x)

]>[
cos(ω · x′), sin(ω · x′)

]]
,

which completes the proof of the proposition. �

This proposition provides the motivation for a very simple method for generating

for any D ≥ 1, an approximate kernel map Ψ ∈ R2D, defined for all x ∈ X by

Ψ(x) =

√
1

D

[
cos(ω1 · x), sin(ω1 · x), . . . , cos(ωD · x), sin(ωD · x)

]>
, (6.21)

where ωis, i = 1, . . . , D, are sampled i.i.d. according to the measure p over X

corresponding to kernel K considered. Thus,

Ψ(x) ·Ψ(x′) =
1

D

D∑

i=1

[
cos(ωi · x), sin(ωi · x)

]>[
cos(ωi · x′), sin(ωi · x′)

]

is the empirical analog of the expectation computed in proposition 6.25. The follow-

ing theorem shows that this empirical estimate converges uniformly over all points

in a compact domain X as D grows.

Lemma 6.26 Let K be a continuously differentiable kernel function that satisfies the

conditions of proposition 6.25 and has associated measure p. Furthermore, assume

X is compact and let N denote its dimension, R denote the radius of the Euclidean

ball containing X, and σ2
p = Eω∼p[‖ω‖2] < ∞. Then, for Ψ ∈ RD as defined in

(6.21), the following holds for any 0 < r ≤ 2R and ε > 0:

P
[

sup
x,x′∈X

∣∣Ψ(x) ·Ψ(x′)−K(x, x′)
∣∣ ≥ ε

]
≤ 2N (2R, r) exp

(
− Dε2

8

)
+

4rσp
ε

.

Where the probability is with respect to the draws of ω ∼ p and N (R, r) denotes the

minimal number of balls of radius r needed to cover a ball of radius R.

Proof: Define Z = {z : z = x−x′, x, x′ ∈ X} and note that Z is contained in a ball

of radius at most 2R. Z is a closed set since X is closed and thus Z is a compact

set. For convenience, define B = N (2R, r) the number of balls of radius r needed

6.6 Approximate kernel feature maps 133

to cover Z and let zj , for j ∈ [B], denote the center of the covering balls. Thus, for

any z ∈ Z there exists a j such that z = zj + δ where |δ| < r.

Next, define S(z) = Ψ(x) · Ψ(x′) − K(x, x′), where z = x − x′. Since S is

continuously differentiable over the compact set Z, it is L-Lipschitz with L =

supz∈Z ‖∇S(z)‖. Note that if L < ε
2r and for all j ∈ [B] we have |S(zj)| < ε

2 ,

then the following inequality holds for all z = zj + δ ∈ Z:

|S(z)| = |S(zj + δ)| ≤ L|zj − (zj + δ)|+ |S(zj)| ≤ rL+
ε

2
< ε . (6.22)

The remainder of this proof bounds the probability of the events L ≥ ε
2r and

|S(zj)| ≥ ε
2 . Note, all following probabilities and expectations are with respect to

the random variables ω1, . . . , ωD.

To bound the probability of the first event, we use proposition 6.25 and the

linearity of expectation, which implies the key fact E[∇(Ψ(x) ·Ψ(x′))] = ∇K(x, x′).
We proceed with the following series of inequalities:

E[L2] = E
[

sup
z∈Z
‖∇S(z)‖2

]

= E
[

sup
x,x′∈X

‖∇(Ψ(x) ·Ψ(x′))−∇K(x, x′)‖2
]

≤ 2 E
[

sup
x,x′∈X

‖∇(Ψ(x) ·Ψ(x′))‖2
]

+ 2 sup
x,x′∈X

‖∇K(x, x′)‖2

= 2 E
[

sup
x,x′∈X

‖∇(Ψ(x) ·Ψ(x′))‖2
]

+ 2 sup
x,x′∈X

‖E[∇(Ψ(x) ·Ψ(x′))]‖2

≤ 4 E
[

sup
x,x′∈X

‖∇(Ψ(x) ·Ψ(x′))‖2
]
,

where the first inequality holds due to the the inequality ‖a+ b‖2 ≤ 2‖a‖2 + 2‖b‖2
(which follows from Jensen’s inequality) and the subadditivity of the supremum

function. The second inequality also holds by Jensen’s inequality (applied twice)

and again the subadditivity of supremum function. Furthermore, using a sum-

difference trigonometric identity and computing the gradient with respect to z =

x− x′, yield the following for any x, x′ ∈ X:

∇(Ψ(x) ·Ψ(x′)) = ∇
(

1

D

D∑

i=1

cos(ωi · x) cos(ωi · x′) + sin(ωi · x) sin(ωi · x′)
)

= ∇
(

1

D

D∑

i=1

cos(ωi · (x− x′))
)

=
1

D

D∑

i=1

ωi sin(ωi · (x− x′)) .

134 Chapter 6 Kernel Methods

Combining the two previous results gives

E[L2] ≤ 4 E
[

sup
x,x′∈X

∥∥∥∥
1

D

D∑

i=1

ωi sin(ωi · (x− x′))
∥∥∥∥

2]

≤ 4 E
ω1,...,ωN

[(1

D

D∑

i=1

‖ωi‖
)2
]

≤ 4 E
ω1,...,ωN

[
1

D

D∑

i=1

‖ωi‖2
]

= 4 E
ω

[
‖ω‖2

]
= 4σ2

p ,

which follows from the triangle inequality, | sin(·)| ≤ 1, Jensen’s inequality and the

fact that the ωis are drawn i.i.d. derive the final expression. Thus, we can bound

the probability of the first event via Markov’s inequality:

P
[
L ≥ ε

2r

]
≤
(4rσp

ε

)2

. (6.23)

To bound the probability of the second event, note that, by definition, S(z) is a

sum of D i.i.d. variables, each bounded in absolute value by 2
D (since, for all x

and x′, we have |K(x, x′)| ≤ 1 and |Ψ(x) ·Ψ(x′)| ≤ 1), and E[S(z)] = 0. Thus, by

Hoeffding’s inequality and the union bound, we can write

P
[
∃j ∈ [B] : |S(zj)| ≥

ε

2

]
≤

B∑

i=1

P
[
|S(zj)| ≥

ε

2

]
≤ 2B exp

(
− Dε2

8

)
. (6.24)

Finally, combining (6.22), (6.23), (6.24), and the definition of B we have

P
[

sup
z∈Z
|S(z)| ≥ ε

]
≤ 2N (2R, r) exp

(
− Dε2

8

)
+
(4rσp

ε

)2

,

which completes the lemma. �

A key factor in the bound of the lemma is the covering number N (2R, r), which

strongly depends on the dimension of the space N . In the following lemma, we make

this dependency explicit for one especially simple case, although similar arguments

hold for more general scenarios as well.

Lemma 6.27 Let X ⊂ RN be a compact and let R denote the radius of the smallest

enclosing ball. Then, the following inequality holds:

N (R, r) ≤
(3R

r

)N
.

Proof: First, by using the volume of balls in RN we already see that RN/(r/3)N =

(3R/r)N is a trivial upper bound on the number of balls of radius r/3 that can

be packed into a ball of radius R without intersecting. Now, consider a maximal

packing of at most (3R/r)N balls of radius r/3 into the ball of radius R. Every

6.7 Chapter notes 135

point in the ball of radius R is at distance at most r from the center of at least

one of the packing balls. If this were not true, we would be able to fit another

ball into the packing, thereby contradicting the assumption that it is a maximal

packing. Thus, if we grow the radius of the at most (3R/r)N balls to r, they will

then provide a (not necessarily minimal) cover of the ball of radius R. �

Finally, by combining the two previous lemmas, we can present an explicit finite

sample approximation bound.

Theorem 6.28 Let K be a continuously differentiable kernel function that satisfies the

conditions of proposition 6.25 and has associated measure p. Furthermore, assume

σ2
p = Eω∼p[‖ω‖2] <∞ and X ⊂ RN . Let R denote the radius of the Euclidean ball

containing X. Then, for Ψ ∈ RD as defined in (6.21) and any 0 < ε ≤ 32Rσp, the

following holds

P
[

sup
x,x′∈X

∣∣Ψ(x) ·Ψ(x′)−K(x, x′)
∣∣ ≥ ε

]
≤
(

48Rσp
ε

)2

exp

(
− Dε2

4(N + 2)

)
.

Proof: We use lemma 6.27 in conjunction with lemma 6.26 with the following choice

of r:

r =

[
2(6R)N exp(−Dε28)

(4σp
ε

)2

] 2
N+2

,

which results in the following expression

P
[

sup
z∈Z
|S(z)| ≥ ε

]
≤ 4

(
24Rσp
ε

) 2N
N+2

exp

(
− Dε2

4(N + 2)

)
.

Since 32Rσp/ε ≥ 1, the exponent 2N
N+2 can be replaced by 2, which completes the

proof. �

The previous theorem provides the guarantee that a good estimate of the kernel

function can be found, with high probability, by sampling a finite number of co-

ordinates D. In particular, for an absolute error of at most ε it suffices to sample

D = O
(
N
ε2 log

(
Rσp
ε

))
coordinates.

6.7 Chapter notes

The mathematical theory of PDS kernels in a general setting originated with the

fundamental work of Mercer [1909] who also proved the equivalence of a condition

similar to that of theorem 6.2 for continuous kernels with the PDS property. The

connection between PDS and NDS kernels, in particular theorems 6.18 and 6.17,

are due to Schoenberg [1938]. A systematic treatment of the theory of reproducing

kernel Hilbert spaces was presented in a long and elegant paper by Aronszajn [1950].

For an excellent mathematical presentation of PDS kernels and positive definite

136 Chapter 6 Kernel Methods

functions we refer the reader to Berg, Christensen, and Ressel [1984], which is also

the source of several of the exercises given in this chapter.

The fact that SVMs could be extended by using PDS kernels was pointed out

by Boser, Guyon, and Vapnik [1992]. The idea of kernel methods has been since

then widely adopted in machine learning and applied in a variety of different tasks

and settings. The following two books are in fact specifically devoted to the study

of kernel methods: Schölkopf and Smola [2002] and Shawe-Taylor and Cristianini

[2004]. The classical representer theorem is due to Kimeldorf and Wahba [1971].

A generalization to non-quadratic cost functions was stated by Wahba [1990]. The

general form presented in this chapter was given by Schölkopf, Herbrich, Smola,

and Williamson [2000].

Rational kernels were introduced by Cortes, Haffner, and Mohri [2004]. A general

class of kernels, convolution kernels, was earlier introduced by Haussler [1999]. The

convolution kernels for sequences described by Haussler [1999], as well as the pair-

HMM string kernels described by Watkins [1999], are special instances of rational

kernels. Rational kernels can be straightforwardly extended to define kernels for

finite automata and even weighted automata [Cortes et al., 2004]. Cortes, Mohri,

and Rostamizadeh [2008b] study the problem of learning rational kernels such as

those based on counting transducers.

The composition of weighted transducers and the filter transducers in the pres-

ence of ε-paths are described in Pereira and Riley [1997], Mohri, Pereira, and Riley

[2005], and Mohri [2009]. Composition can be further generalized to the N -way

composition of weighted transducers [Allauzen and Mohri, 2009]. N -way compo-

sition of three or more transducers can substantially speed up computation, in

particular for PDS rational kernels of the form T ◦T−1. A generic shortest-distance

algorithm which can be used with a large class of semirings and arbitrary queue

disciplines is described by Mohri [2002]. A specific instance of that algorithm can be

used to compute the sum of the weights of all paths as needed for the computation

of rational kernels after composition. For a study of the class of languages linearly

separable with rational kernels, see Cortes, Kontorovich, and Mohri [2007a].

The use of cosine-based approximate kernel feature maps was introduced by

Rahimi and Recht [2007], as were the corresponding uniform convergence bounds,

though their proofs were not complete. Sriperumbudur and Szabó [2015] gave an

improved approximation bound that reduces the dependence on the radius of the

data from O(R2) to only O(log(R)). Bochner’s theorem, which plays a central role

in deriving an approximate map, is a classical result of harmonic analysis (for ex-

ample, see Rudin [1990]). The general form of the theorem is due to Weil [1965],

while Solomon Bochner recognized its importance to harmonic analysis.

6.8 Exercises 137

6.8 Exercises

6.1 Let K : X× X→ R be a PDS kernel, and let α : X→ R be a positive function.

Show that the kernel K ′ defined for all x, y ∈ X by K ′(x, y) = K(x,y)
α(x)α(y) is a PDS

kernel.

6.2 Show that the following kernels K are PDS:

(a) K(x, y) = cos(x− y) over R× R.

(b) K(x, y) = cos(x2 − y2) over R× R.

(c) For all integers n > 0,K(x,y) =
∑N
i=1 cosn(x2

i − y2
i) over RN × RN .

(d) K(x, y) = (x+ y)−1 over (0,+∞) × (0,+∞).

(e) K(x,x′) = cos∠(x,x′) over Rn ×Rn, where ∠(x,x′) is the angle between x

and x′.

(f) ∀λ > 0, K(x, x′) = exp
(
− λ[sin(x′ − x)]2

)
over R× R.

(Hint : rewrite [sin(x′ − x)]2 as the square of the norm of the difference of

two vectors.)

(g) ∀σ > 0,K(x, y) = e−
‖x−y‖
σ over RN × RN .

(Hint : you could show that K is the normalized kernel of a kernel K ′

and show that K ′ is PDS using the following equality: ‖x − y‖ =
1

2Γ(1
2)

∫ +∞
0

1−e−t‖x−y‖2

t
3
2

dt valid for all x,y.)

(h) K(x, y) = min(x, y)− xy over [0, 1]× [0, 1].

(Hint : you could consider the two integrals
∫ 1

0
1t∈[0,x]1t∈[0,y]dt and∫ 1

0
1t∈[x,1]1t∈[y,1]dt.)

(i) K(x, x′) = 1√
1−(x·x′)

over x,x′ ∈ X = {x ∈ RN : ‖x‖2 < 1}.
(Hint : one approach is to find an explicit expression of a feature mapping Φ

by considering the Taylor expansion of the kernel function.)

(j) ∀σ > 0,K(x, y) = 1

1+
‖x−y‖2
σ2

over RN × RN .

(Hint : the function x 7→
∫ +∞

0
e−sxe−sds defined for all x ≥ 0 could be useful

for the proof.)

(k) ∀σ > 0,K(x, y) = exp

(∑N
i=1 min(|xi|,|yi|)

σ2

)
over RN × RN .

(Hint : the function (x0, y0) 7→
∫ +∞

0
1t∈[0,|x0|]1t∈[0,|y0|]dt defined over R × R

could be useful for the proof.)

138 Chapter 6 Kernel Methods

6.3 Graph kernel. Let G = (V,E) be an undirected graph with vertex set V and

edge set E. V could represent a set of documents or biosequences and E the

set of connections between them. Let w[e] ∈ R denote the weight assigned to

edge e ∈ E. The weight of a path is the product of the weights of its constituent

edges. Show that the kernel K over V×V where K(p, q) is the sum of the weights

of all paths of length two between p and q is PDS (Hint : you could introduce

the matrix W = (Wpq), where Wpq = 0 when there is no edge between p and q,

Wpq equal to the weight of the edge between p and q otherwise).

6.4 Symmetric difference kernel. Let X be a finite set. Show that the kernel K

defined over 2X, the set of subsets of X, by

∀A,B ∈ 2X,K(A,B) = exp
(
− 1

2
|A∆B|

)
,

where A∆B is the symmetric difference of A and B is PDS (Hint : you could

use the fact that K is the result of the normalization of a kernel function K ′).

6.5 Set kernel. Let X be a finite set. Let K0 be a PDS kernel over X, show that K ′

defined by

∀A,B ∈ 2X,K ′(A,B) =
∑

x∈A,x′∈B

K0(x, x′)

is a PDS kernel.

6.6 Show that the following kernels K are NDS:

(a) K(x, y) = [sin(x− y)]2 over R× R.

(b) K(x, y) = log(x+ y) over (0,+∞) × (0,+∞).

6.7 Define a difference kernel as K(x, x′) = |x − x′| for x, x′ ∈ R. Show that this

kernel is not positive definite symmetric (PDS).

6.8 Is the kernel K defined over Rn×Rn by K(x,y) = ‖x−y‖3/2 PDS? Is it NDS?

6.9 Let H be a Hilbert space with the corresponding dot product 〈·, ·〉. Show that

the kernel K defined over H ×H by K(x, y) = 1− 〈x, y〉 is negative definite.

6.10 For any p > 0, let Kp be the kernel defined over R+ × R+ by

Kp(x, y) = e−(x+y)p . (6.25)

Show that Kp is positive definite symmetric (PDS) iff p ≤ 1. (Hint : you can

use the fact that if K is NDS, then for any 0 < α ≤ 1, Kα is also NDS.)

6.8 Exercises 139

6.11 Explicit mappings.

(a) Denote a data set x1, . . . , xm and a kernel K(xi, xj) with a Gram matrix

K. Assuming K is positive semidefinite, then give a map Φ(·) such that

K(xi, xj) = 〈Φ(xi),Φ(xj)〉.
(b) Show the converse of the previous statement, i.e., if there exists a mapping

Φ(x) from input space to some Hilbert space, then the corresponding matrix

K is positive semidefinite.

6.12 Explicit polynomial kernel mapping. Let K be a polynomial kernel of degree

d, i.e., K : RN × RN → R, K(x,x′) = (x · x′ + c)d, with c > 0, Show that the

dimension of the feature space associated to K is
(
N + d

d

)
. (6.26)

Write K in terms of kernels ki : (x,x′) 7→ (x · x′)i, i ∈ {0, . . . , d}. What is the

weight assigned to each ki in that expression? How does it vary as a function

of c?

6.13 High-dimensional mapping. Let Φ: X→ H be a feature mapping such that the

dimension N of H is very large and let K : X×X→ R be a PDS kernel defined

by

K(x, x′) = E
i∼D

[
[Φ(x)]i[Φ(x′)]i

]
, (6.27)

where [Φ(x)]i is the ith component of Φ(x) (and similarly for Φ′(x)) and where

D is a distribution over the indices i. We shall assume that |[Φ(x)]i| ≤ R for all

x ∈ X and i ∈ [N]. Suppose that the only method available to compute K(x, x′)
involved direct computation of the inner product (6.27), which would require

O(N) time. Alternatively, an approximation can be computed based on random

selection of a subset I of the N components of Φ(x) and Φ(x′) according to D,

that is:

K ′(x, x′) =
1

n

∑

i∈I
D(i)[Φ(x)]i[Φ(x′)]i, (6.28)

where |I| = n.

(a) Fix x and x′ in X. Prove that

P
I∼Dn

[|K(x, x′)−K ′(x, x′)| > ε] ≤ 2e
−nε2
2r2 . (6.29)

(Hint : use McDiarmid’s inequality).

140 Chapter 6 Kernel Methods

(b) Let K and K′ be the kernel matrices associated to K and K ′. Show that

for any ε, δ > 0, for n > r2

ε2 log m(m+1)
δ , with probability at least 1 − δ,

|K′ij −Kij | ≤ ε for all i, j ∈ [m].

6.14 Classifier based kernel. Let S be a training sample of size m. Assume that S

has been generated according to some probability distribution D(x, y), where

(x, y) ∈ X× {−1,+1}.

(a) Define the Bayes classifier h∗ : X → {−1,+1}. Show that the kernel K∗

defined by K∗(x, x′) = h∗(x)h∗(x′) for any x, x′ ∈ X is positive definite

symmetric. What is the dimension of the natural feature space associated

to K∗?

(b) Give the expression of the solution obtained using SVMs with this kernel.

What is the number of support vectors? What is the value of the mar-

gin? What is the generalization error of the solution obtained? Under what

condition are the data linearly separable?

(c) Let h : X → R be an arbitrary real-valued function. Under what condition

on h is the kernel K defined by K(x, x′) = h(x)h(x′), x, x′ ∈ X, positive

definite symmetric?

6.15 Image classification kernel. For α ≥ 0, the kernel

Kα : (x,x′) 7→
N∑

k=1

min(|xk|α, |x′k|α) (6.30)

over RN × RN is used in image classification. Show that Kα is PDS for all

α ≥ 0. To do so, proceed as follows.

(a) Use the fact that (f, g) 7→
∫ +∞
t=0

f(t)g(t)dt is an inner product over the set

of measurable functions over [0,+∞) to show that (x, x′) 7→ min(x, x′) is a

PDS kernel. (Hint : associate an indicator function to x and another one to

x′.)

(b) Use the result from (a) to first show that K1 is PDS and similarly that Kα

with other values of α is also PDS.

6.16 Fraud detection. To prevent fraud, a credit-card company decides to contact

Professor Villebanque and provides him with a random list of several thou-

sand fraudulent and non-fraudulent events. There are many different types of

events, e.g., transactions of various amounts, changes of address or card-holder

6.8 Exercises 141

information, or requests for a new card. Professor Villebanque decides to use

SVMs with an appropriate kernel to help predict fraudulent events accurately.

It is difficult for Professor Villebanque to define relevant features for such a

diverse set of events. However, the risk department of his company has created

a complicated method to estimate a probability P[U] for any event U . Thus,

Professor Villebanque decides to make use of that information and comes up

with the following kernel defined over all pairs of events (U, V):

K(U, V) = P[U ∧ V]− P[U] P[V]. (6.31)

Help Professor Villebanque show that his kernel is positive definite symmetric.

6.17 Relationship between NDS and PDS kernels. Prove the statement of theo-

rem 6.17. (Hint : Use the fact that if K is PDS then exp(K) is also PDS, along

with theorem 6.16.)

6.18 Metrics and Kernels. Let X be a non-empty set and K : X×X→ R be a negative

definite symmetric kernel such that K(x, x) = 0 for all x ∈ X.

(a) Show that there exists a Hilbert space H and a mapping Φ(x) from X to H
such that:

K(x, y) = ||Φ(x)− Φ(x′)||2 .
Assume that K(x, x′) = 0 ⇒ x = x′. Use theorem 6.16 to show that

√
K

defines a metric on X.

(b) Use this result to prove that the kernel K(x, y) = exp(−|x−x′|p), x, x′ ∈ R,

is not positive definite for p > 2.

(c) The kernel K(x, x′) = tanh(a(x · x′) + b) was shown to be equivalent to

a two-layer neural network when combined with SVMs. Show that K is

not positive definite if a < 0 or b < 0. What can you conclude about the

corresponding neural network when a < 0 or b < 0?

6.19 Sequence kernels. Let X = {a, c, g, t}. To classify DNA sequences using SVMs,

we wish to define a kernel between sequences defined over X. We are given a

finite set I ⊂ X∗ of non-coding regions (introns). For x ∈ X∗, denote by |x| the

length of x and by F (x) the set of factors of x, i.e., the set of subsequences of

x with contiguous symbols. For any two strings x, y ∈ X∗ define K(x, y) by

K(x, y) =
∑

z ∈(F (x)∩F (y))−I

ρ|z|, (6.32)

where ρ ≥ 1 is a real number.

142 Chapter 6 Kernel Methods

(a) Show that K is a rational kernel and that it is positive definite symmetric.

(b) Give the time and space complexity of the computation of K(x, y) with

respect to the size s of a minimal automaton representing X∗ − I.

(c) Long common factors between x and y of length greater than or equal to

n are likely to be important coding regions (exons). Modify the kernel K

to assign weight ρ
|z|
2 to z when |z| ≥ n, ρ

|z|
1 otherwise, where 1 ≤ ρ1 � ρ2.

Show that the resulting kernel is still positive definite symmetric.

6.20 n-gram kernel. Show that for all n ≥ 1, and any n-gram kernel Kn, Kn(x, y)

can be computed in linear time O(|x| + |y|), for all x, y ∈ Σ∗ assuming n and

the alphabet size are constants.

6.21 Mercer’s condition. Let X ⊂ RN be a compact set and K : X × X → R a

continuous kernel function. Prove that if K verifies Mercer’s condition (theo-

rem 6.2), then it is PDS. (Hint : assume that K is not PDS and consider a set

{x1, . . . , xm} ⊆ X and a column-vector c ∈ Rm×1 such that
∑m
i,j=1 cicjK(xi, xj)

< 0.)

6.22 Anomaly detection. For this problem, consider a Hilbert space H with associated

feature map Φ: X→ H and kernel K(x, x′) = Φ(x) · Φ(x′).

(a) First, let us consider finding the smallest enclosing sphere for a given sample

S = (x1, . . . , xm). Let c ∈ H denote the center of the sphere and let r > 0 be

its radius, then clearly the following optimization problem searches for the

smallest enclosing sphere:

min
r>0,c∈H

r2

subject to: ∀i ∈ [m], ‖Φ(xi)− c‖2 ≤ r2.

Show how to derive the equivalent dual optimization

max
α

m∑

i=1

αiK(xi, xi)−
m∑

i,j=1

αiαjK(xi, xj)

subject to: α ≥ 0 ∧
m∑

i=1

αi = 1 ,

6.8 Exercises 143

and prove that the optimal solution satisfies c =
∑
i αiΦ(xi). In other words

the location of the sphere only depends on points xi with non-zero coefficients

αi. These points are analogous to the support vectors of SVM.

(b) Consider the hypothesis class

H = {x 7→ r2 − ‖Φ(x)− c‖2 : ‖c‖ ≤ Λ, 0 < r ≤ R} .

A hypothesis h ∈ H can be used to detect anomalies in data, where h(x) ≥ 0

indicates a non-anomalous point and h(x) < 0 indicates an anomaly.

Show that if supx ‖Φ(x)‖ ≤M , then the solution to the optimization problem

in part (a) is found in the hypothesis set H with Λ ≤M and R ≤ 2M .

(c) Let D denote the distribution of non-outlier points define the associated

expected loss R(h) = Ex∼D[1h(x)<0] and empirical margin loss R̂S,ρ(h) =∑m
i=1

1
mΦρ(h(xi)) ≤

∑m
i=1

1
m1h(xi)<ρ. These losses measure errors caused

by false-positive predictions, i.e. errors caused by incorrectly labeling a point

anomalous.

i. Show that the empirical Rademacher complexity for the hypothesis class

H from part (b) can be upper bound as follows:

R̂S(H) ≤ R2 + Λ2

√
m

+ Λ
√

Tr[K] ,

where K is the kernel matrix constructed with the sample.

ii. Prove that with probability at least 1−δ, the following holds for all h ∈ H

and ρ ∈ (0, 1]:

R(h) ≤ R̂S,ρ(h) +
4

ρ

(R2 + Λ2

√
m

+ Λ
√

Tr[K]
)

+

√
log log2

2
ρ

m
+ 3

√
log 4

δ

2m
.

(d) Just as in the case of soft-margin SVM, we can also define a soft-margin

objective for the smallest enclosing sphere that allows us tune the sensitivity

to outliers in the training set by adjusting a regularization parameter C:

min
r>0,c∈H,ξ

r2 + C

m∑

i=1

ξi

subject to: ∀i ∈ [m], ‖Φ(xi)− c‖2 ≤ r2 + ξi ∧ ξi ≥ 0.

144 Chapter 6 Kernel Methods

Show that the equivalent dual formulation of this problem is

max
α

m∑

i=1

αiK(xi, xi)−
m∑

i,j=1

αiαjK(xi, xj)

subject to: 0 ≤ α ≤ C1 ∧
m∑

i=1

αi = 1 ,

and that at the optimum we have c =
∑m
i=1 αiΦ(xi).

