
16 Kernel Methods

In the previous chapter we described the SVM paradigm for learning halfspaces

in high dimensional feature spaces. This enables us to enrich the expressive

power of halfspaces by first mapping the data into a high dimensional feature

space, and then learning a linear predictor in that space. This is similar to the

AdaBoost algorithm, which learns a composition of a halfspace over base hy-

potheses. While this approach greatly extends the expressiveness of halfspace

predictors, it raises both sample complexity and computational complexity chal-

lenges. In the previous chapter we tackled the sample complexity issue using

the concept of margin. In this chapter we tackle the computational complexity

challenge using the method of kernels.

We start the chapter by describing the idea of embedding the data into a high

dimensional feature space. We then introduce the idea of kernels. A kernel is a

type of a similarity measure between instances. The special property of kernel

similarities is that they can be viewed as inner products in some Hilbert space

(or Euclidean space of some high dimension) to which the instance space is vir-

tually embedded. We introduce the “kernel trick” that enables computationally

efficient implementation of learning, without explicitly handling the high dimen-

sional representation of the domain instances. Kernel based learning algorithms,

and in particular kernel-SVM, are very useful and popular machine learning

tools. Their success may be attributed both to being flexible for accommodating

domain specific prior knowledge and to having a well developed set of efficient

implementation algorithms.

16.1 Embeddings into Feature Spaces

The expressive power of halfspaces is rather restricted – for example, the follow-

ing training set is not separable by a halfspace.

Let the domain be the real line; consider the domain points {−10,−9,−8, . . . , 0,

1, . . . , 9, 10} where the labels are +1 for all x such that |x| > 2 and −1 otherwise.

To make the class of halfspaces more expressive, we can first map the original

instance space into another space (possibly of a higher dimension) and then

learn a halfspace in that space. For example, consider the example mentioned

previously. Instead of learning a halfspace in the original representation let us

Understanding Machine Learning, c© 2014 by Shai Shalev-Shwartz and Shai Ben-David

Published 2014 by Cambridge University Press.

Personal use only. Not for distribution. Do not post.

Please link to http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning

216 Kernel Methods

first define a mapping ψ : R→ R2 as follows:

ψ(x) = (x, x2).

We use the term feature space to denote the range of ψ. After applying ψ the

data can be easily explained using the halfspace h(x) = sign(〈w, ψ(x)〉 − b),

where w = (0, 1) and b = 5.

The basic paradigm is as follows:

1. Given some domain set X and a learning task, choose a mapping ψ : X → F ,

for some feature space F , that will usually be Rn for some n (however, the

range of such a mapping can be any Hilbert space, including such spaces of

infinite dimension, as we will show later).

2. Given a sequence of labeled examples, S = (x1, y1), . . . , (xm, ym), create the

image sequence Ŝ = (ψ(x1), y1), . . . , (ψ(xm), ym).

3. Train a linear predictor h over Ŝ.

4. Predict the label of a test point, x, to be h(ψ(x)).

Note that, for every probability distribution D over X × Y, we can readily

define its image probability distribution Dψ over F × Y by setting, for every

subset A ⊆ F × Y, Dψ(A) = D(ψ−1(A)).1 It follows that for every predictor h

over the feature space, LDψ (h) = LD(h ◦ψ), where h ◦ψ is the composition of h

onto ψ.

The success of this learning paradigm depends on choosing a good ψ for a

given learning task: that is, a ψ that will make the image of the data distribution

(close to being) linearly separable in the feature space, thus making the resulting

algorithm a good learner for a given task. Picking such an embedding requires

prior knowledge about that task. However, often some generic mappings that

enable us to enrich the class of halfspaces and extend its expressiveness are used.

One notable example is polynomial mappings, which are a generalization of the

ψ we have seen in the previous example.

Recall that the prediction of a standard halfspace classifier on an instance x

is based on the linear mapping x 7→ 〈w,x〉. We can generalize linear mappings

to a polynomial mapping, x 7→ p(x), where p is a multivariate polynomial of

degree k. For simplicity, consider first the case in which x is 1 dimensional.

In that case, p(x) =
∑k
j=0 wjx

j , where w ∈ Rk+1 is the vector of coefficients

of the polynomial we need to learn. We can rewrite p(x) = 〈w, ψ(x)〉 where

ψ : R → Rk+1 is the mapping x 7→ (1, x, x2, x3, . . . , xk). It follows that

learning a k degree polynomial over R can be done by learning a linear mapping

in the (k + 1) dimensional feature space.

More generally, a degree k multivariate polynomial from Rn to R can be writ-

ten as

p(x) =
∑

J∈[n]r:r≤k

wJ

r∏
i=1

xJi . (16.1)

1 This is defined for every A such that ψ−1(A) is measurable with respect to D.

16.2 The Kernel Trick 217

As before, we can rewrite p(x) = 〈w, ψ(x)〉 where now ψ : Rn → Rd is such

that for every J ∈ [n]r, r ≤ k, the coordinate of ψ(x) associated with J is the

monomial
∏r
i=1 xJi .

Naturally, polynomial-based classifiers yield much richer hypothesis classes

than halfspaces. We have seen at the beginning of this chapter an example in

which the training set, in its original domain (X = R), cannot be separable

by a halfspace, but after the embedding x 7→ (x, x2) it is perfectly separable.

So, while the classifier is always linear in the feature space, it can have highly

nonlinear behavior on the original space from which instances were sampled.

In general, we can choose any feature mapping ψ that maps the original in-

stances into some Hilbert space.2 The Euclidean space Rd is a Hilbert space for

any finite d. But there are also infinite dimensional Hilbert spaces (as we shall

see later on in this chapter).

The bottom line of this discussion is that we can enrich the class of halfspaces

by first applying a nonlinear mapping, ψ, that maps the instance space into some

feature space, and then learning a halfspace in that feature space. However, if

the range of ψ is a high dimensional space we face two problems. First, the VC-

dimension of halfspaces in Rn is n + 1, and therefore, if the range of ψ is very

large, we need many more samples in order to learn a halfspace in the range

of ψ. Second, from the computational point of view, performing calculations in

the high dimensional space might be too costly. In fact, even the representation

of the vector w in the feature space can be unrealistic. The first issue can be

tackled using the paradigm of large margin (or low norm predictors), as we

already discussed in the previous chapter in the context of the SVM algorithm.

In the following section we address the computational issue.

16.2 The Kernel Trick

We have seen that embedding the input space into some high dimensional feature

space makes halfspace learning more expressive. However, the computational

complexity of such learning may still pose a serious hurdle – computing linear

separators over very high dimensional data may be computationally expensive.

The common solution to this concern is kernel based learning. The term “kernels”

is used in this context to describe inner products in the feature space. Given

an embedding ψ of some domain space X into some Hilbert space, we define

the kernel function K(x,x′) = 〈ψ(x), ψ(x′)〉. One can think of K as specifying

similarity between instances and of the embedding ψ as mapping the domain set

2 A Hilbert space is a vector space with an inner product, which is also complete. A space is
complete if all Cauchy sequences in the space converge.

In our case, the norm ‖w‖ is defined by the inner product
√
〈w,w〉. The reason we require

the range of ψ to be in a Hilbert space is that projections in a Hilbert space are well
defined. In particular, if M is a linear subspace of a Hilbert space, then every x in the

Hilbert space can be written as a sum x = u + v where u ∈M and 〈v,w〉 = 0 for all

w ∈M . We use this fact in the proof of the representer theorem given in the next section.

218 Kernel Methods

X into a space where these similarities are realized as inner products. It turns

out that many learning algorithms for halfspaces can be carried out just on the

basis of the values of the kernel function over pairs of domain points. The main

advantage of such algorithms is that they implement linear separators in high

dimensional feature spaces without having to specify points in that space or

expressing the embedding ψ explicitly. The remainder of this section is devoted

to constructing such algorithms.

In the previous chapter we saw that regularizing the norm of w yields a small

sample complexity even if the dimensionality of the feature space is high. Inter-

estingly, as we show later, regularizing the norm of w is also helpful in overcoming

the computational problem. To do so, first note that all versions of the SVM op-

timization problem we have derived in the previous chapter are instances of the

following general problem:

min
w

(f (〈w, ψ(x1)〉 , . . . , 〈w, ψ(xm)〉) +R(‖w‖)), (16.2)

where f : Rm → R is an arbitrary function and R : R+ → R is a monotoni-

cally nondecreasing function. For example, Soft-SVM for homogenous halfspaces

(Equation (15.6)) can be derived from Equation (16.2) by letting R(a) = λa2 and

f(a1, . . . , am) = 1
m

∑
i max{0, 1−yiai}. Similarly, Hard-SVM for nonhomogenous

halfspaces (Equation (15.2)) can be derived from Equation (16.2) by letting

R(a) = a2 and letting f(a1, . . . , am) be 0 if there exists b such that yi(ai+b) ≥ 1

for all i, and f(a1, . . . , am) =∞ otherwise.

The following theorem shows that there exists an optimal solution of Equa-

tion (16.2) that lies in the span of {ψ(x1), . . . , ψ(xm)}.

theorem 16.1 (Representer Theorem) Assume that ψ is a mapping from X to

a Hilbert space. Then, there exists a vector α ∈ Rm such that w =
∑m
i=1 αiψ(xi)

is an optimal solution of Equation (16.2).

Proof Let w? be an optimal solution of Equation (16.2). Because w? is an

element of a Hilbert space, we can rewrite w? as

w? =

m∑
i=1

αiψ(xi) + u,

where 〈u, ψ(xi)〉 = 0 for all i. Set w = w? − u. Clearly, ‖w?‖2 = ‖w‖2 + ‖u‖2,

thus ‖w‖ ≤ ‖w?‖. Since R is nondecreasing we obtain that R(‖w‖) ≤ R(‖w?‖).
Additionally, for all i we have that

〈w, ψ(xi)〉 = 〈w? − u, ψ(xi)〉 = 〈w?, ψ(xi)〉,

hence

f (〈w, ψ(x1)〉 , . . . , 〈w, ψ(xm)〉) = f (〈w?, ψ(x1)〉 , . . . , 〈w?, ψ(xm)〉) .

We have shown that the objective of Equation (16.2) at w cannot be larger

than the objective at w? and therefore w is also an optimal solution. Since

w =
∑m
i=1 αiψ(xi) we conclude our proof.

16.2 The Kernel Trick 219

On the basis of the representer theorem we can optimize Equation (16.2) with

respect to the coefficients α instead of the coefficients w as follows. Writing

w =
∑m
j=1 αjψ(xj) we have that for all i

〈w, ψ(xi)〉 =

〈∑
j

αjψ(xj), ψ(xi)

〉
=

m∑
j=1

αj〈ψ(xj), ψ(xi)〉.

Similarly,

‖w‖2 =

〈∑
j

αjψ(xj),
∑
j

αjψ(xj)

〉
=

m∑
i,j=1

αiαj〈ψ(xi), ψ(xj)〉.

Let K(x,x′) = 〈ψ(x), ψ(x′)〉 be a function that implements the kernel function

with respect to the embedding ψ. Instead of solving Equation (16.2) we can solve

the equivalent problem

min
α∈Rm

f

 m∑
j=1

αjK(xj ,x1), . . . ,

m∑
j=1

αjK(xj ,xm)

+R

√√√√ m∑
i,j=1

αiαjK(xj ,xi)

. (16.3)

To solve the optimization problem given in Equation (16.3), we do not need any

direct access to elements in the feature space. The only thing we should know is

how to calculate inner products in the feature space, or equivalently, to calculate

the kernel function. In fact, to solve Equation (16.3) we solely need to know the

value of the m × m matrix G s.t. Gi,j = K(xi,xj), which is often called the

Gram matrix.

In particular, specifying the preceding to the Soft-SVM problem given in Equa-

tion (15.6), we can rewrite the problem as

min
α∈Rm

(
λαTGα+

1

m

m∑
i=1

max
{

0, 1− yi(Gα)i
})

, (16.4)

where (Gα)i is the i’th element of the vector obtained by multiplying the Gram

matrix G by the vector α. Note that Equation (16.4) can be written as quadratic

programming and hence can be solved efficiently. In the next section we describe

an even simpler algorithm for solving Soft-SVM with kernels.

Once we learn the coefficients α we can calculate the prediction on a new

instance by

〈w, ψ(x)〉 =

m∑
j=1

αj〈ψ(xj), ψ(x)〉 =

m∑
j=1

αjK(xj ,x).

The advantage of working with kernels rather than directly optimizing w in

the feature space is that in some situations the dimension of the feature space

220 Kernel Methods

is extremely large while implementing the kernel function is very simple. A few

examples are given in the following.

Example 16.1 (Polynomial Kernels) The k degree polynomial kernel is defined

to be

K(x,x′) = (1 + 〈x,x′〉)k.

Now we will show that this is indeed a kernel function. That is, we will show

that there exists a mapping ψ from the original space to some higher dimensional

space for which K(x,x′) = 〈ψ(x), ψ(x′)〉. For simplicity, denote x0 = x′0 = 1.

Then, we have

K(x,x′) = (1 + 〈x,x′〉)k = (1 + 〈x,x′〉) · · · · · (1 + 〈x,x′〉)

=

 n∑
j=0

xjx
′
j

 · · · · ·
 n∑
j=0

xjx
′
j

=

∑
J∈{0,1,...,n}k

k∏
i=1

xJix
′
Ji

=
∑

J∈{0,1,...,n}k

k∏
i=1

xJi

k∏
i=1

x′Ji .

Now, if we define ψ : Rn → R(n+1)k such that for J ∈ {0, 1, . . . , n}k there is an

element of ψ(x) that equals
∏k
i=1 xJi , we obtain that

K(x,x′) = 〈ψ(x), ψ(x′)〉.

Since ψ contains all the monomials up to degree k, a halfspace over the range

of ψ corresponds to a polynomial predictor of degree k over the original space.

Hence, learning a halfspace with a k degree polynomial kernel enables us to learn

polynomial predictors of degree k over the original space.

Note that here the complexity of implementing K is O(n) while the dimension

of the feature space is on the order of nk.

Example 16.2 (Gaussian Kernel) Let the original instance space be R and

consider the mapping ψ where for each nonnegative integer n ≥ 0 there exists

an element ψ(x)n that equals 1√
n!
e−

x2

2 xn. Then,

〈ψ(x), ψ(x′)〉 =

∞∑
n=0

(
1√
n!
e−

x2

2 xn
) (

1√
n!
e−

(x′)2

2 (x′)n
)

= e−
x2+(x′)2

2

∞∑
n=0

(
(xx′)n

n!

)
= e−

‖x−x′‖2
2 .

Here the feature space is of infinite dimension while evaluating the kernel is very

16.2 The Kernel Trick 221

simple. More generally, given a scalar σ > 0, the Gaussian kernel is defined to

be

K(x,x′) = e−
‖x−x′‖2

2σ .

Intuitively, the Gaussian kernel sets the inner product in the feature space

between x,x′ to be close to zero if the instances are far away from each other

(in the original domain) and close to 1 if they are close. σ is a parameter that

controls the scale determining what we mean by “close.” It is easy to verify that

K implements an inner product in a space in which for any n and any monomial

of order k there exists an element of ψ(x) that equals 1√
n!
e−
‖x‖2

2
∏n
i=1 xJi .

Hence, we can learn any polynomial predictor over the original space by using a

Gaussian kernel.

Recall that the VC-dimension of the class of all polynomial predictors is infi-

nite (see Exercise 12). There is no contradiction, because the sample complexity

required to learn with Gaussian kernels depends on the margin in the feature

space, which will be large if we are lucky, but can in general be arbitrarily small.

The Gaussian kernel is also called the RBF kernel, for “Radial Basis Func-

tions.”

16.2.1 Kernels as a Way to Express Prior Knowledge

As we discussed previously, a feature mapping, ψ, may be viewed as expanding

the class of linear classifiers to a richer class (corresponding to linear classifiers

over the feature space). However, as discussed in the book so far, the suitability

of any hypothesis class to a given learning task depends on the nature of that

task. One can therefore think of an embedding ψ as a way to express and utilize

prior knowledge about the problem at hand. For example, if we believe that

positive examples can be distinguished by some ellipse, we can define ψ to be all

the monomials up to order 2, or use a degree 2 polynomial kernel.

As a more realistic example, consider the task of learning to find a sequence of

characters (“signature”) in a file that indicates whether it contains a virus or not.

Formally, let Xd be the set of all strings of length at most d over some alphabet

set Σ. The hypothesis class that one wishes to learn is H = {hv : v ∈ Xd}, where,

for a string x ∈ Xd, hv(x) is 1 iff v is a substring of x (and hv(x) = −1 otherwise).

Let us show how using an appropriate embedding this class can be realized by

linear classifiers over the resulting feature space. Consider a mapping ψ to a space

Rs where s = |Xd|, so that each coordinate of ψ(x) corresponds to some string v

and indicates whether v is a substring of x (that is, for every x ∈ Xd, ψ(x) is a

vector in {0, 1}|Xd|). Note that the dimension of this feature space is exponential

in d. It is not hard to see that every member of the class H can be realized by

composing a linear classifier over ψ(x), and, moreover, by such a halfspace whose

norm is 1 and that attains a margin of 1 (see Exercise 1). Furthermore, for every

x ∈ X , ‖ψ(x)‖ = O(d). So, overall, it is learnable using SVM with a sample

222 Kernel Methods

complexity that is polynomial in d. However, the dimension of the feature space

is exponential in d so a direct implementation of SVM over the feature space is

problematic. Luckily, it is easy to calculate the inner product in the feature space

(i.e., the kernel function) without explicitly mapping instances into the feature

space. Indeed, K(x, x′) is simply the number of common substrings of x and x′,

which can be easily calculated in time polynomial in d.

This example also demonstrates how feature mapping enables us to use halfspaces

for nonvectorial domains.

16.2.2 Characterizing Kernel Functions*

As we have discussed in the previous section, we can think of the specification of

the kernel matrix as a way to express prior knowledge. Consider a given similarity

function of the form K : X ×X → R. Is it a valid kernel function? That is, does

it represent an inner product between ψ(x) and ψ(x′) for some feature mapping

ψ? The following lemma gives a sufficient and necessary condition.

lemma 16.2 A symmetric function K : X × X → R implements an inner

product in some Hilbert space if and only if it is positive semidefinite; namely,

for all x1, . . . ,xm, the Gram matrix, Gi,j = K(xi,xj), is a positive semidefinite

matrix.

Proof It is trivial to see that if K implements an inner product in some Hilbert

space then the Gram matrix is positive semidefinite. For the other direction,

define the space of functions over X as RX = {f : X → R}. For each x ∈ X
let ψ(x) be the function x 7→ K(·,x). Define a vector space by taking all linear

combinations of elements of the form K(·,x). Define an inner product on this

vector space to be〈∑
i

αiK(·,xi),
∑
j

βjK(·,x′j)

〉
=
∑
i,j

αiβjK(xi,x
′
j).

This is a valid inner product since it is symmetric (because K is symmetric), it is

linear (immediate), and it is positive definite (it is easy to see that K(x,x) ≥ 0

with equality only for ψ(x) being the zero function). Clearly,

〈ψ(x), ψ(x′)〉 = 〈K(·,x),K(·,x′)〉 = K(x,x′),

which concludes our proof.

16.3 Implementing Soft-SVM with Kernels

Next, we turn to solving Soft-SVM with kernels. While we could have designed

an algorithm for solving Equation (16.4), there is an even simpler approach that

16.3 Implementing Soft-SVM with Kernels 223

directly tackles the Soft-SVM optimization problem in the feature space,

min
w

(
λ

2
‖w‖2 +

1

m

m∑
i=1

max{0, 1− y〈w, ψ(xi)〉}

)
, (16.5)

while only using kernel evaluations. The basic observation is that the vector w(t)

maintained by the SGD procedure we have described in Section 15.5 is always in

the linear span of {ψ(x1), . . . , ψ(xm)}. Therefore, rather than maintaining w(t)

we can maintain the corresponding coefficients α.

Formally, let K be the kernel function, namely, for all x,x′, K(x,x′) =

〈ψ(x), ψ(x′)〉. We shall maintain two vectors in Rm, corresponding to two vectors

θ(t) and w(t) defined in the SGD procedure of Section 15.5. That is, β(t) will be

a vector such that

θ(t) =

m∑
j=1

β
(t)
j ψ(xj) (16.6)

and α(t) be such that

w(t) =

m∑
j=1

α
(t)
j ψ(xj). (16.7)

The vectors β and α are updated according to the following procedure.

SGD for Solving Soft-SVM with Kernels

Goal: Solve Equation (16.5)

parameter: T

Initialize: β(1) = 0

for t = 1, . . . , T

Let α(t) = 1
λ tβ

(t)

Choose i uniformly at random from [m]

For all j 6= i set β
(t+1)
j = β

(t)
j

If (yi
∑m
j=1 α

(t)
j K(xj ,xi) < 1)

Set β
(t+1)
i = β

(t)
i + yi

Else

Set β
(t+1)
i = β

(t)
i

Output: w̄ =
∑m
j=1 ᾱjψ(xj) where ᾱ = 1

T

∑T
t=1α

(t)

The following lemma shows that the preceding implementation is equivalent

to running the SGD procedure described in Section 15.5 on the feature space.

lemma 16.3 Let ŵ be the output of the SGD procedure described in Sec-

tion 15.5, when applied on the feature space, and let w̄ =
∑m
j=1 ᾱjψ(xj) be

the output of applying SGD with kernels. Then w̄ = ŵ.

Proof We will show that for every t Equation (16.6) holds, where θ(t) is the

result of running the SGD procedure described in Section 15.5 in the feature

224 Kernel Methods

space. By the definition of α(t) = 1
λ tβ

(t) and w(t) = 1
λ tθ

(t), this claim implies

that Equation (16.7) also holds, and the proof of our lemma will follow. To prove

that Equation (16.6) holds we use a simple inductive argument. For t = 1 the

claim trivially holds. Assume it holds for t ≥ 1. Then,

yi

〈
w(t), ψ(xi)

〉
= yi

〈∑
j

α
(t)
j ψ(xj), ψ(xi)

〉
= yi

m∑
j=1

α
(t)
j K(xj ,xi).

Hence, the condition in the two algorithms is equivalent and if we update θ we

have

θ(t+1) = θ(t) + yiψ(xi) =

m∑
j=1

β
(t)
j ψ(xj) + yiψ(xi) =

m∑
j=1

β
(t+1)
j ψ(xj),

which concludes our proof.

16.4 Summary

Mappings from the given domain to some higher dimensional space, on which a

halfspace predictor is used, can be highly powerful. We benefit from a rich and

complex hypothesis class, yet need to solve the problems of high sample and

computational complexities. In Chapter 10, we discussed the AdaBoost algo-

rithm, which faces these challenges by using a weak learner: Even though we’re

in a very high dimensional space, we have an “oracle” that bestows on us a

single good coordinate to work with on each iteration. In this chapter we intro-

duced a different approach, the kernel trick. The idea is that in order to find a

halfspace predictor in the high dimensional space, we do not need to know the

representation of instances in that space, but rather the values of inner products

between the mapped instances. Calculating inner products between instances in

the high dimensional space without using their representation in that space is

done using kernel functions. We have also shown how the SGD algorithm can be

implemented using kernels.

The ideas of feature mapping and the kernel trick allow us to use the framework

of halfspaces and linear predictors for nonvectorial data. We demonstrated how

kernels can be used to learn predictors over the domain of strings.

We presented the applicability of the kernel trick in SVM. However, the kernel

trick can be applied in many other algorithms. A few examples are given as

exercises.

This chapter ends the series of chapters on linear predictors and convex prob-

lems. The next two chapters deal with completely different types of hypothesis

classes.

16.5 Bibliographic Remarks 225

16.5 Bibliographic Remarks

In the context of SVM, the kernel-trick has been introduced in Boser et al. (1992).

See also Aizerman, Braverman & Rozonoer (1964). The observation that the

kernel-trick can be applied whenever an algorithm only relies on inner products

was first stated by Schölkopf, Smola & Müller (1998). The proof of the representer

theorem is given in (Schölkopf, Herbrich, Smola & Williamson 2000, Schölkopf,

Herbrich & Smola 2001). The conditions stated in Lemma 16.2 are simplification

of conditions due to Mercer. Many useful kernel functions have been introduced

in the literature for various applications. We refer the reader to Schölkopf &

Smola (2002).

16.6 Exercises

1. Consider the task of finding a sequence of characters in a file, as described

in Section 16.2.1. Show that every member of the class H can be realized by

composing a linear classifier over ψ(x), whose norm is 1 and that attains a

margin of 1.

2. Kernelized Perceptron: Show how to run the Perceptron algorithm while

only accessing the instances via the kernel function. Hint: The derivation is

similar to the derivation of implementing SGD with kernels.

3. Kernel Ridge Regression: The ridge regression problem, with a feature

mapping ψ, is the problem of finding a vector w that minimizes the function

f(w) = λ ‖w‖2 +
1

2m

m∑
i=1

(〈w, ψ(xi)〉 − yi)2, (16.8)

and then returning the predictor

h(x) = 〈w,x〉.

Show how to implement the ridge regression algorithm with kernels.

Hint: The representer theorem tells us that there exists a vector α ∈ Rm
such that

∑m
i=1 αiψ(xi) is a minimizer of Equation (16.8).

1. Let G be the Gram matrix with regard to S and K. That is, Gij =

K(xi,xj). Define g : Rm → R by

g(α) = λ ·αTGα+
1

2m

m∑
i=1

(〈α, G·,i〉 − yi)2, (16.9)

where G·,i is the i’th column of G. Show that if α∗ minimizes Equa-

tion (16.9) then w∗ =
∑m
i=1 α

∗
iψ(xi) is a minimizer of f .

2. Find a closed form expression for α∗.

4. Let N be any positive integer. For every x, x′ ∈ {1, . . . , N} define

K(x, x′) = min{x, x′}.

226 Kernel Methods

Prove that K is a valid kernel; namely, find a mapping ψ : {1, . . . , N} → H

where H is some Hilbert space, such that

∀x, x′ ∈ {1, . . . , N}, K(x, x′) = 〈ψ(x), ψ(x′)〉.

5. A supermarket manager would like to learn which of his customers have babies

on the basis of their shopping carts. Specifically, he sampled i.i.d. customers,

where for customer i, let xi ⊂ {1, . . . , d} denote the subset of items the

customer bought, and let yi ∈ {±1} be the label indicating whether this

customer has a baby. As prior knowledge, the manager knows that there are

k items such that the label is determined to be 1 iff the customer bought

at least one of these k items. Of course, the identity of these k items is not

known (otherwise, there was nothing to learn). In addition, according to the

store regulation, each customer can buy at most s items. Help the manager to

design a learning algorithm such that both its time complexity and its sample

complexity are polynomial in s, k, and 1/ε.

6. Let X be an instance set and let ψ be a feature mapping of X into some

Hilbert feature space V . Let K : X × X → R be a kernel function that

implements inner products in the feature space V .

Consider the binary classification algorithm that predicts the label of

an unseen instance according to the class with the closest average. Formally,

given a training sequence S = (x1, y1), . . . , (xm, ym), for every y ∈ {±1} we

define

cy =
1

my

∑
i:yi=y

ψ(xi).

where my = |{i : yi = y}|. We assume that m+ and m− are nonzero. Then,

the algorithm outputs the following decision rule:

h(x) =

{
1 ‖ψ(x)− c+‖ ≤ ‖ψ(x)− c−‖
0 otherwise.

1. Let w = c+ − c− and let b = 1
2 (‖c−‖2 − ‖c+‖2). Show that

h(x) = sign(〈w, ψ(x)〉+ b).

2. Show how to express h(x) on the basis of the kernel function, and without

accessing individual entries of ψ(x) or w.

