
DEEP LEARNING

➢ ImageNet Challenge & Breakthrough Deep Neural Networks
1. ImageNet (Dataset & Challenge)
2. AlexNet (first DNN winner of ImageNet)
3. VGGNet (Deeper DNN, runner up in ImageNet)

▪ Going Deeper: Is this the solution? 

▪ ResNet: the solution 

▪ References



ImageNet Dataset

- large annotated photographs’ dataset for computer vision research

- goal: resource for promoting research and development of   

improved methods for computer vision [1]



ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- annual competition held between 2010 and 2017 [2]

- challenge tasks use subsets (approximately 1.2 million 
images) of the ImageNet dataset for:

i) “image classification”: assigning a class label to each image 
based on the main object in the photograph (among 1,000 
object classes) 

ii) “object detection”: localizing the objects within each 
photograph



AlexNet: First Deep Neural Network Winner of ILSVRC 2012

- In 2012, AlexNet [3] significantly 
outperformed all prior competitors (error 
15.3%; prior competitors’ error was 25.7% and 
28.2%)

- The runner up was not a deep learning 
method (error 26.2%)



VGG: Runner-Up of ILSVRC 2014, Deeper than AlexNet

- was the runner-up at the ILSVRC 2014

- achieved error 7.3% (vs 15.3% of AlexNet)

- has 16 or 19 layers and is deeper than AlexNet (8 layers)

- however, VGG [4] consists of 138 million parameters 
(AlexNet consists of 61 million parameters)



VGG & AlexNet Architectures



VGG/AlexNet: Conclusions

Should we make a Neural Network (NN) deeper and why? 

more layers → more high-level features → better 
understanding of data and better prediction

Neural Networks → make them deeper → problem solved?

If yes, how deep?



▪ ImageNet Challenge & Breakthrough Deep Neural Networks

➢ Going Deeper: Is this the solution?   
i. Issues to consider
ii. Specific Problems:

- Vanishing Gradients 
(definition, cause, significance, comparison 
shallow & deep NN, solutions)
- Degradation
(definition, analogy, not overfitting)

▪ ResNet: the solution  

▪ References



Depends on:

• The complexity of the task at hand

• Available computational capacity during training

• Available computational capacity during inference 

If the task needs a lot of parameters: 

• Can we train very deep networks efficiently using 
current optimisation solvers?

• Is training a better model as simple as adding 
more and more layers?



1. Vanishing Gradients



1) Vanishing Gradients: the problem

• During each iteration of standard neural network 
training, all weights receive an update proportional to 
the partial derivative (gradient) of the cost function with 
respect to their current value

• If the gradient is very small then the weights will not 
change effectively

• As a consequence, this may completely stop the neural 
network from further training

• This is called the vanishing gradient problem. 



Vanishing Gradients: the causes

The Vanishing Gradient Problem is met in Neural Networks:

• with certain activation functions
• trained with gradient based methods (e.g Back 

Propagation [5])

It gets worse as the number of layers in the neural network 
increases.



Vanishing Gradients: caused by activation function (1)

Vanishing gradient problem depends on the choice of 
the activation function:
• many common activation functions (e.g., sigmoid [6], 

tanh [7]) 'squash' their input into a very small output 
range in a very non-linear fashion

• for example, sigmoid maps the real number line onto 
a "small" range of [0, 1] → large regions of the input 
space are mapped to an extremely small range 

• in these regions of the input space, even a large 
change in the input will produce a small change in 
the output - the gradient is small.



Vanishing Gradients: caused by activation function (2)



Vanishing Gradients: caused by gradient descent training 

Gradients of neural networks are usually computed using 
backpropagation:

• backpropagation finds the derivatives of the network by 
moving layer by layer from the final to the initial one

• using the chain rule, the derivatives of each layer are 
multiplied down the network (from the final layer to the 
initial) to compute the derivatives of the initial layers

• when n hidden layers use an activation like the sigmoid 
function, n small derivatives are multiplied together



Vanishing Gradients: shallow vs deep networks

• thus, the gradient decreases exponentially as we 
propagate down to the initial layers

• a small gradient means that weights & biases of initial 
layers will not be updated effectively during training

• since initial layers are often crucial to recognise the 
core elements of input data, this can lead to overall 
network inaccuracy.

For shallow networks, with only a few layers that use 
these activations, this isn’t a big problem. However, when 
more layers are used, this can cause the gradient to be 
too small for training to work effectively.



Vanishing Gradients: Solution 1: Use ReLU

Use activation functions which don't 'squash' the input 
space into a small region. 

A popular choice is Rectified Linear Unit (ReLU) [8] which 
maps 𝑥 to 𝑚𝑎𝑥(0,𝑥).



Vanishing Gradients: Solution 2: Use Batch Normalisation (1)
Problem: when a large input space is mapped to a small one, causing the 
derivatives to disappear. 

sigmoid activation function; 𝑥 = 𝑤𝑢+𝑏 for a neuron anywhere in the hidden 
layers of a NN;  𝑢: layer’s input;   𝑤: weights matrix;   𝑏 : bias vector

𝑥 = very big/small → gradient = 0



Vanishing Gradients: Solution 2: Use Batch Normalisation (2)

Batch Normalisation: Step 1: normalise the input by 
subtracting its mean and dividing by its standard deviation 
(ensures zero mean and unit variance)

𝑥 doesn’t reach outer edges of sigmoid



Vanishing Gradients: Solution 2: Use Batch Normalisation (4)

Batch Normalisation [9]: Step 2: the normalized output of Step 
1 is multiplied by a “standard deviation” parameter (gamma; 
𝛾) and a “mean” parameter (beta; 𝛽) is added to the product

- these two parameters are optimised during network training

- Batch Normalisation increases stability of a Neural Network 
& speeds up training



Vanishing Gradients: Solution 2: Use Batch Normalisation (5)

Algorithm:



M o d e r n  D i g i t a l  I m a g e  P r o c e s s i n g :  R e s i d u a l  N e t w o r k  ( R e s N e t )  f o r  I m a g e  R e c o g n i t i o n

What is Artificial Intelligence?

Intelligence

1. Vanishing gradients

2. Degradation problem [10]



Degradation problem: Definition (1)

Image Classification  Problem
Consider a network having 𝑛 layers. This network produces 
some error/accuracy. 

Now consider a deeper network with 𝑚 layers (𝑚>𝑛). 



Degradation problem: Definition (2)

When we train this network, we expect it to perform at least as 
well as the shallower network. Why? 
Replace the first 𝑛 layers of the deep network with the 
trained 𝑛 layers of the shallower network. Now replace the 
remaining 𝑛−𝑚 layers in the deeper network with an identity 
mapping (these layers simply output what is fed into them). 



Degradation problem: Definition (3)

Thus, our deeper model can easily learn the shallower model’s 
representation. 
If there exists a more complex representation of data, we 
expect the deep model to learn this.



Degradation problem: Definition – In Practice



Degradation problem: Definition – Overfitting?

- task is to predict if an image shows a balloon or not
- train a model using a dataset containing many blue colored
balloons (and other irrelevant objects)
- test the model on the original dataset: it gives 99% accuracy! 
- test the model on a new (“unseen”) dataset containing 
yellow colored balloons: it gives 20% accuracy!

Our model doesn’t generalise well from our training data to 
unseen data. This is known as overfitting.

A model that has learned the noise instead of the 
signal is considered “overfit” because it fits the 
training dataset but has poor fit with new datasets.



Degradation problem: Definition – Overfitting? No



Residual Learning

Residual Learning [10] 

H(x) is the true mapping 
function we want to learn

New representation F(x)

If F(x) = 0 → identity mapping; if that is a solution
the network will be able to find it



Residual Block (1)
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Residual Block (2)

- with this approach, the network will decide how deep it 
needs to be

- the identity connections introduce no new parameter to the 

network architecture, hence it will not add any computational 

burden

- this method allows us to design deeper networks in order to deal 

with much complicated problems and tasks



ResNet-34: Plain vs With Skip Connections vs VGG (4)



No Degradation for ResNet on ImageNet



Results on ImageNet
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