
DEEP LEARNING

➢ ImageNet Challenge & Breakthrough Deep Neural Networks
1. ImageNet (Dataset & Challenge)
2. AlexNet (first DNN winner of ImageNet)
3. VGGNet (Deeper DNN, runner up in ImageNet)

▪ Going Deeper: Is this the solution?

▪ ResNet: the solution

▪ References

ImageNet Dataset

- large annotated photographs’ dataset for computer vision research

- goal: resource for promoting research and development of

improved methods for computer vision [1]

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

- annual competition held between 2010 and 2017 [2]

- challenge tasks use subsets (approximately 1.2 million
images) of the ImageNet dataset for:

i) “image classification”: assigning a class label to each image
based on the main object in the photograph (among 1,000
object classes)

ii) “object detection”: localizing the objects within each
photograph

AlexNet: First Deep Neural Network Winner of ILSVRC 2012

- In 2012, AlexNet [3] significantly
outperformed all prior competitors (error
15.3%; prior competitors’ error was 25.7% and
28.2%)

- The runner up was not a deep learning
method (error 26.2%)

VGG: Runner-Up of ILSVRC 2014, Deeper than AlexNet

- was the runner-up at the ILSVRC 2014

- achieved error 7.3% (vs 15.3% of AlexNet)

- has 16 or 19 layers and is deeper than AlexNet (8 layers)

- however, VGG [4] consists of 138 million parameters
(AlexNet consists of 61 million parameters)

VGG & AlexNet Architectures

VGG/AlexNet: Conclusions

Should we make a Neural Network (NN) deeper and why?

more layers → more high-level features → better
understanding of data and better prediction

Neural Networks → make them deeper → problem solved?

If yes, how deep?

▪ ImageNet Challenge & Breakthrough Deep Neural Networks

➢ Going Deeper: Is this the solution?
i. Issues to consider
ii. Specific Problems:

- Vanishing Gradients
(definition, cause, significance, comparison
shallow & deep NN, solutions)
- Degradation
(definition, analogy, not overfitting)

▪ ResNet: the solution

▪ References

Depends on:

• The complexity of the task at hand

• Available computational capacity during training

• Available computational capacity during inference

If the task needs a lot of parameters:

• Can we train very deep networks efficiently using
current optimisation solvers?

• Is training a better model as simple as adding
more and more layers?

1. Vanishing Gradients

1) Vanishing Gradients: the problem

• During each iteration of standard neural network
training, all weights receive an update proportional to
the partial derivative (gradient) of the cost function with
respect to their current value

• If the gradient is very small then the weights will not
change effectively

• As a consequence, this may completely stop the neural
network from further training

• This is called the vanishing gradient problem.

Vanishing Gradients: the causes

The Vanishing Gradient Problem is met in Neural Networks:

• with certain activation functions
• trained with gradient based methods (e.g Back

Propagation [5])

It gets worse as the number of layers in the neural network
increases.

Vanishing Gradients: caused by activation function (1)

Vanishing gradient problem depends on the choice of
the activation function:
• many common activation functions (e.g., sigmoid [6],

tanh [7]) 'squash' their input into a very small output
range in a very non-linear fashion

• for example, sigmoid maps the real number line onto
a "small" range of [0, 1] → large regions of the input
space are mapped to an extremely small range

• in these regions of the input space, even a large
change in the input will produce a small change in
the output - the gradient is small.

Vanishing Gradients: caused by activation function (2)

Vanishing Gradients: caused by gradient descent training

Gradients of neural networks are usually computed using
backpropagation:

• backpropagation finds the derivatives of the network by
moving layer by layer from the final to the initial one

• using the chain rule, the derivatives of each layer are
multiplied down the network (from the final layer to the
initial) to compute the derivatives of the initial layers

• when n hidden layers use an activation like the sigmoid
function, n small derivatives are multiplied together

Vanishing Gradients: shallow vs deep networks

• thus, the gradient decreases exponentially as we
propagate down to the initial layers

• a small gradient means that weights & biases of initial
layers will not be updated effectively during training

• since initial layers are often crucial to recognise the
core elements of input data, this can lead to overall
network inaccuracy.

For shallow networks, with only a few layers that use
these activations, this isn’t a big problem. However, when
more layers are used, this can cause the gradient to be
too small for training to work effectively.

Vanishing Gradients: Solution 1: Use ReLU

Use activation functions which don't 'squash' the input
space into a small region.

A popular choice is Rectified Linear Unit (ReLU) [8] which
maps 𝑥 to 𝑚𝑎𝑥(0,𝑥).

Vanishing Gradients: Solution 2: Use Batch Normalisation (1)
Problem: when a large input space is mapped to a small one, causing the
derivatives to disappear.

sigmoid activation function; 𝑥 = 𝑤𝑢+𝑏 for a neuron anywhere in the hidden
layers of a NN; 𝑢: layer’s input; 𝑤: weights matrix; 𝑏 : bias vector

𝑥 = very big/small → gradient = 0

Vanishing Gradients: Solution 2: Use Batch Normalisation (2)

Batch Normalisation: Step 1: normalise the input by
subtracting its mean and dividing by its standard deviation
(ensures zero mean and unit variance)

𝑥 doesn’t reach outer edges of sigmoid

Vanishing Gradients: Solution 2: Use Batch Normalisation (4)

Batch Normalisation [9]: Step 2: the normalized output of Step
1 is multiplied by a “standard deviation” parameter (gamma;
𝛾) and a “mean” parameter (beta; 𝛽) is added to the product

- these two parameters are optimised during network training

- Batch Normalisation increases stability of a Neural Network
& speeds up training

Vanishing Gradients: Solution 2: Use Batch Normalisation (5)

Algorithm:

M o d e r n D i g i t a l I m a g e P r o c e s s i n g : R e s i d u a l N e t w o r k (R e s N e t) f o r I m a g e R e c o g n i t i o n

What is Artificial Intelligence?

Intelligence

1. Vanishing gradients

2. Degradation problem [10]

Degradation problem: Definition (1)

Image Classification Problem
Consider a network having 𝑛 layers. This network produces
some error/accuracy.

Now consider a deeper network with 𝑚 layers (𝑚>𝑛).

Degradation problem: Definition (2)

When we train this network, we expect it to perform at least as
well as the shallower network. Why?
Replace the first 𝑛 layers of the deep network with the
trained 𝑛 layers of the shallower network. Now replace the
remaining 𝑛−𝑚 layers in the deeper network with an identity
mapping (these layers simply output what is fed into them).

Degradation problem: Definition (3)

Thus, our deeper model can easily learn the shallower model’s
representation.
If there exists a more complex representation of data, we
expect the deep model to learn this.

Degradation problem: Definition – In Practice

Degradation problem: Definition – Overfitting?

- task is to predict if an image shows a balloon or not
- train a model using a dataset containing many blue colored
balloons (and other irrelevant objects)
- test the model on the original dataset: it gives 99% accuracy!
- test the model on a new (“unseen”) dataset containing
yellow colored balloons: it gives 20% accuracy!

Our model doesn’t generalise well from our training data to
unseen data. This is known as overfitting.

A model that has learned the noise instead of the
signal is considered “overfit” because it fits the
training dataset but has poor fit with new datasets.

Degradation problem: Definition – Overfitting? No

Residual Learning

Residual Learning [10]

H(x) is the true mapping
function we want to learn

New representation F(x)

If F(x) = 0 → identity mapping; if that is a solution
the network will be able to find it

Residual Block (1)

co
n

v
la

ye
r

b
at

ch
 n

o
rm

co
n

v
la

ye
r

b
at

ch
 n

o
rmReLU

X (identity)

ReLU
X Y

Residual Block (2)

- with this approach, the network will decide how deep it
needs to be

- the identity connections introduce no new parameter to the

network architecture, hence it will not add any computational

burden

- this method allows us to design deeper networks in order to deal

with much complicated problems and tasks

ResNet-34: Plain vs With Skip Connections vs VGG (4)

No Degradation for ResNet on ImageNet

Results on ImageNet

1. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image
Database. IEEE Computer Vision and Pattern Recognition (CVPR), 2009

2. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M.
Bernstein, A. C. Berg and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 2015

3. A. Krizhevsky, I. Sutskever, and G. E Hinton. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems (NIPS), 2012

4. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. International Conference on Learning Representations (ICLR), 2015.

5. https://www.deeplearningbook.org/contents/mlp.html#pf25

6. https://en.wikipedia.org/wiki/Sigmoid_function#cite_note-:0-1

7. https://en.wikipedia.org/wiki/Activation_function

8. https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

9. S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. International Conference on Machine Learning (ICML), 2015.

10. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. IEEE Computer
Vision and Pattern Recognition (CVPR), 2016.

https://www.deeplearningbook.org/contents/mlp.html#pf25
https://en.wikipedia.org/wiki/Sigmoid_function#cite_note-:0-1
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)

