
         The Infinite Case: Rademacher Complexity and VC-dimension
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Rationale: PAC provides no bounds for the infinite hypothesis class
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Is it still possible to learn if |H| is infinite?

Είναι άραγε τόσο δύσκολο, ακόμα και για πολύ απλούς  ταξινομητές όπως οι 
axis-aligned rectangles (που όμως έχει άπειρο |H|), να βρούμε ένα άνω φράγμα 
για το σφάλμα της γενίκευσης;

ΟΧΙ: έχουμε φράγματα για το σφάλμα της γενίκευσης και στην περίπτωση της 
απειρομελούς κλάσης υποθέσεων:

φράγμα Rademacher <= Growth <= VC-dimension (shattering dimension)



Setup

Nothing new . . .

• Samples S =((x1,y1), . . . ,(xm,ym))

• Labels yi = {−1,+1}
• Hypothesis h : X → {−1,+1}
• Training error: R̂(h)= 1

m

�m
i 1 [h(xi) �= yi ]
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An alternative derivation of training error
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Correlation between predictions and labels
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Minimizing training error is thus equivalent to maximizing correlation

argmax
h

1

m

m�
i

yih(xi) (5)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

σi =

�
+1 with prob .5

−1 with prob .5
(6)
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This gives us Rademacher correlation—what’s the best that a random
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Notation: �p [f ]≡
�

x p(x)f (x)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables
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This gives us Rademacher correlation—what’s the best that a random
classifier could do?
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Note: Empirical Rademacher complexity is with respect to a sample.
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Rademacher Extrema

• What are the maximum values of Rademacher correlation?
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Rademacher Extrema

• What are the maximum values of Rademacher correlation?

|H |= 1

h(xi)�σ
�

1
m

�m
i σi

�
= 0

|H|= 2m

m
m = 1

• Rademacher correlation is larger for more complicated hypothesis space.

• What if you’re right for stupid reasons?
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Generalizing Rademacher Complexity

We can generalize Rademacher complexity to consider all sets of a
particular size.

�m (H)=�S∼Dm

��̂S (H)
�

(8)
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S =(z1, . . . ,zm) were zi ∼D for some distribution D
over Z . Define � [f ]≡�z∼D [f (z)] and �̂S [f ]≡ 1

m

�m
i=1 f (zi). With

probability greater than 1−δ for all f ∈ F:

� [f ]≤ �̂s [f ]+2�m (F)+�


�

ln 1
δ

m


 (8)
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f is a surrogate for the accuracy of a hypothesis (mathematically convenient)
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Aside: McDiarmid’s Inequality

If we have a function:

|f (x1, . . . ,xi , . . .xm)− f (x1, . . . ,x �i , . . . ,xm)|≤ ci (9)

then:

Pr [f (x1, . . . ,xm)≥� [f (X1, . . . ,Xm)]+ε]≤ exp

� −2ε2
�m

i c2
i

�
(10)
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Proof in Mohri (appendix D.7, p.442)  (requires Martingale, constructing
Vk =� [V |x1 . . .xk ]−� [V |x1 . . .xk−1]).
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Aside: McDiarmid’s Inequality
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McDiarmid’s inequality is used in several of the proofs in this book. It can be understood 
in terms of stability: if changing any of its argument affects f only in a limited way, then,
its deviations from its mean can be exponentially bounded. 

Εξαιτίας των δύο ανισοτήτων έχουμε το Ο(). Βλέμε θεώρημα 3.3 σε Mohri.

giorgos
Typewriter
�



Aside: McDiarmid’s Inequality

If we have a function:

|f (x1, . . . ,xi , . . .xm)− f (x1, . . . ,x �i , . . . ,xm)|≤ ci (9)

then:

Pr [f (x1, . . . ,xm)≥� [f (X1, . . . ,Xm)]+ε]≤ exp

� −2ε2
�m

i c2
i

�
(10)

Vk =� [V |x1 . . .xk ]−� [V |x1 . . .xk−1]).
What function do we care about for Rademacher complexity? Let’s define

Φ(S)= sup
f

�
� [f ]− �̂S [f ]
�
= sup

f

�
� [f ]− 1

m

�
i

f (zi)

�
(11)
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Step 1: Bounding divergence from true Expectation

Lemma

Moving to Expectation With probability at least 1−δ,

Φ(S)≤�s [Φ(S)]+

�
ln 1
δ

2m

Since f (z1)∈ [0,1], changing any zi to z�i in the training set will change
1
m

�
i f (zi) by at most 1

m , so we can apply McDiarmid’s inequality with

ε=

�
ln 1
δ

2m and ci =
1
m .

Machine Learning: Jordan Boyd-Graber | Boulder Classification: Rademacher Complexity | 8 of 29



Step 2: Comparing two different empirical expectations

Define a ghost sample S�=(z�1, . . . ,z�m)∼D. How much can two samples
from the same distribution vary?

Lemma

Two Different Samples

�S [Φ(S)] =�S

�
sup

f
(� [f ]− �̂S [f ])

�
(12)

(13)
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The expectation is equal to the expectation of the empirical expectation of all
sets S�
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S and S� are distinct random variables, so we can move inside the
expectation
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The expectation of a max over some function is at least the max of that
expectation over that function

Machine Learning: Jordan Boyd-Graber | Boulder Classification: Rademacher Complexity | 9 of 29



Step 3: Adding in Rademacher Variables

From S,S� we’ll create T ,T � by swapping elements between S and S� with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

�̂S� [f ]− �̂S [f ]∼ �̂T � [f ]− �̂T [f ] (15)
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Let’s introduce σi :

�̂T � [f ]− �̂T [f ] =
1

m

�
f (zi)− f (z�i ) with prob .5

f (z�i )− f (zi) with prob .5
(16)

=
1

m

�
i

σi(f (z�i )− f (zi)) (17)
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Thus:
�S,S�
�
supf∈F
�
�̂S� [f ]− �̂S [f ]
��

=�S,S�,σ
�
supf∈F
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iσi(f (z�i )− f (zi))
��

.
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Step 4: Making These Rademacher Complexities

Before, we had �S,S�,σ
�
supf∈F
�

iσi(f (z�i )− f (zi))
�
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Before, we had �S,S�,σ
�
supf∈F
�

iσi(f (z�i )− f (zi))
�

≤�S,S�,σ


sup f∈F
�

i

σi f (z�i )+ sup f∈F
�

i

(−σi)f (zi)


 (18)

(19)

Taking the sup jointly must be less than or equal the individual sup.
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Linearity
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=�m (F)+�m (F) (20)

Definition
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Putting the Pieces Together

With probability ≥ 1−δ:

Φ(S)≤�S [Φ(S)]+

�
ln 1
δ

2m
(21)

Step 1
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Definition of Φ
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Putting the Pieces Together

With probability ≥ 1−δ:

� [f ]− �̂S [ ]≤�S [Φ(S)]+

�
ln 1
δ

2m
(21)

Drop the sup, still true
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Putting the Pieces Together

With probability ≥ 1−δ:
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Putting the Pieces Together

With probability ≥ 1−δ:

� [f ]− �̂S [ ]≤ 2�m (F)+

�
ln 1
δ

2m
(21)

Step 4
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Putting the Pieces Together

With probability ≥ 1−δ:

� [f ]− �̂S [ ]≤ 2�m (F)+

�
ln 1
δ

2m
(21)

Recall that �̂S (F)≡�σ
�
supf

1
m

�
iσi f (zi)
�
, so we apply McDiarmid’s

inequality again (because f ∈ [0,1]):

� (F)≤� (F)+

�
ln 1
δ

2m
(22)
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What about hypothesis classes?

Define:

Z ≡X ×{−1,+1} (24)

fh(x ,y)≡1 [h(x) �= y] (25)

FH ≡{fh : h ∈H} (26)
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fh(x ,y)≡1 [h(x) �= y] (25)

FH ≡{fh : h ∈H} (26)

We can use this to create expressions for generalization and empirical error:

R(h)=�(x ,y)∼D [1 [h(x) �= y ]] =� [fh] (27)

R̂(h)=
1

m

�
i

1 [h(xi) �= y ] = �̂S [fh] (28)
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Z ≡X ×{−1,+1} (24)

fh(x ,y)≡1 [h(x) �= y] (25)

FH ≡{fh : h ∈H} (26)

We can use this to create expressions for generalization and empirical error:

R(h)=�(x ,y)∼D [1 [h(x) �= y ]] =� [fh] (27)

R̂(h)=
1

m

�
i

1 [h(xi) �= y ] = �̂S [fh] (28)

We can plug this into our theorem!
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Generalization bounds

• We started with expectations

� [f ]≤ �̂S [f ]+2�̂S (F)+�


�

ln 1
δ

m


 (29)

• We also had our definition of the generalization and empirical error:

R(h)=�(x ,y)∼D [1 [h(x) �= y ]] =� [fh] R̂(h)=
1

m

�
i

1 [h(xi) �= y ] = �̂S [fh]
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Generalization bounds

ˆS (H) (30)
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Generalization bounds

• We started with expectations

� [f ]≤ �̂S [f ]+2�̂S (F)+�


�

ln 1
δ

m


 (29)

• We also had our definition of the generalization and empirical error:

R(h)=�(x ,y)∼D [1 [h(x) �= y ]] =� [fh] R̂(h)=
1

m

�
i

1 [h(xi) �= y ] = �̂S [fh]

• Combined with the previous result:

�̂S (FH)=
1

2
�̂S (H) (30)

• All together:

R(h)≤ R̂(h)+� (H)+�


�

log 1
δ

m


 (31)
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Wrapup

• Interaction of data, complexity, and accuracy

• Still very theoretical

• Next up: How to evaluate generalizability of specific hypothesis classes
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Recap

• Rademacher complexity provides nice guarantees

R(h)≤ R̂(h)+� (H)+�


�

log 1
δ

2m


 (32)

• But in practice hard to compute for real hypothesis classes

• Is there a relationship with simpler combinatorial measures?
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Growth Function

Define the growth function ΠH :�→� for a hypothesis set H as:

∀m ∈�,ΠH(m)≡ max
{x1,...,xm}∈X
��{(h(x1), . . . ,h(xm) : h ∈H}�� (33)
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Growth Function

Define the growth function ΠH :�→� for a hypothesis set H as:

∀m ∈�,ΠH(m)≡ max
{x1,...,xm}∈X
��{(h(x1), . . . ,h(xm) : h ∈H}�� (33)

i.e., the number of ways m points can be classified using H.
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Rademacher Complexity vs. Growth Function

If G is a function taking values in {−1,+1}, then

(34)�m (G)≤
�

2 lnΠ

m
G(m)

Uses Masart’s lemma (Theorem 3.7) 
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Not very convenient since it requires computing ,ΠH(m) ∀m



Vapnik-Chervonenkis Dimension

VC(H)≡max
�
m :ΠH(m)= 2m� (35)
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Vapnik-Chervonenkis Dimension

(35)
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VC(H) ≡ max 
�
m : ΠH (m) = 2m�

The size of the largest set that can be fully shattered (θρυμματιστεί) by H.

Entropy Properties of a Decision Rule Class with ML abilities - Alexey Chervonenkis lecture

https://www.youtube.com/watch?v=yhcTe8GPpWU


VC Dimension for Hypotheses

• Need upper and lower bounds

• Lower bound: example

• Upper bound: Prove that no set of d +1 points can be shattered by H
(harder)
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Intervals

What is the VC dimension of [a,b] intervals on the real line.
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Intervals

What is the VC dimension of [a,b] intervals on the real line.

• Two points can be perfectly classified, so VC dimension ≥ 2
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Intervals

What is the VC dimension of [a,b] intervals on the real line.

• Two points can be perfectly classified, so VC dimension ≥ 2

• What about three points?
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Intervals

What is the VC dimension of [a,b] intervals on the real line.

• Two points can be perfectly classified, so VC dimension ≥ 2

• What about three points?

• No set of three points can be shattered
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Intervals

What is the VC dimension of [a,b] intervals on the real line.

• Two points can be perfectly classified, so VC dimension ≥ 2

• What about three points?

• No set of three points can be shattered

• Thus, VC dimension of intervals is 2
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Hyperplanes
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Axis-aligned-rectangles
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Sine Functions

• Consider hypothesis that classifies points on a line as either being above
or below a sine wave

{t→ sin(ωx) :ω ∈�} (36)

• Can you shatter three points?
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Sine Functions
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Sine Functions

• Consider hypothesis that classifies points on a line as either being above
or below a sine wave

{t→ sin(ωx) :ω ∈�} (36)

• Can you shatter four points?
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Sine Functions

• Consider hypothesis that classifies points on a line as either being above
or below a sine wave

{t→ sin(ωx) :ω ∈�} (36)

• How many points can you shatter?
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Sine Functions

• Consider hypothesis that classifies points on a line as either being above
or below a sine wave

{t→ sin(ωx) :ω ∈�} (36)

• Thus, VC dim of sine on line is∞
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
so we can prove generalization bounds.
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
so we can prove generalization bounds.

Theorem

Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
∀m ∈�

ΠH(m)≤
d�

i=0

�
m

i

�
≡Φd(m) (37)
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
so we can prove generalization bounds.

Theorem

Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
∀m ∈�

ΠH(m)≤
d�

i=0

�
m

i

�
≡Φd(m) (37)

This is good because the sum when multiplied out becomes

(m
i )=

m·(m−1)...
i! =� (md). When we plug this into the learning error limits:

log(ΠH(2m)) = log(� (md))=� (d logm).
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Sauer’s Lemma

Definition. VC dimension
dVC(F ) = max{|s| : s ⊆ X , f shatters s}

Here, we say that a family of binary functions F shatters a set S ∈ X if F|S = 2|S|.

Theorem 2.1. Sauer’s Lemma: If F ⊆ {±1}X and dV C = d, then ΠF (n) ≤ �d
i=0 (n

i ). And for n ≥ d,
ΠF (n) ≤

�
en
d

�d

That means: if dV C(F ) is ∞, we always get exponential growth function; however, if dV C(F ) = d is finite,
the growth function increases exponentially up to d and polynomially for n > d.

Proof. Fix (x1, . . . , xn) ∈ X , and consider a table containing the values of functions in the class F|xn
1

restricted to the sample. For instance, consider the following example:

x1 x2 x3 x4 x5

f1 - + - + +
f2 + - - + +
f3 + + + - +
f4 - + + - -
f5 - - - + -

Each row is one possible evaluation of the functions in F on the fixed sample, and the cardinality of F|xn
1

equals to the number of rows. We transform the table by ”shifting” columns.

Definition. shifting column i: for each row, replace a “+” in column i with a “-” unless it would produce
a row that is already in the table.

After applying the shifting operation in order from x1 to x5, we get the table(F ∗
|xn

1
):

x1 x2 x3 x4 x5

f1 - + - - -
f2 - - - + +
f3 - - - - +
f4 - - - - -
f5 - - - + -

Observations:

(1) Size of the table unchanged, because the rows in F ∗
|xn

1
are still distinct;

(2) The table F ∗
|xn

1
exhibits ”closed below” property, i.e., for each row containing a “+”, replacing that

“+” with a “-” produces another row in the table.

(3) dV C(F ∗
|xn

1
) ≤ dV C(F|xn

1
). To see this, consider the application of the shifting operation to a single

column, and notice that if F ∗ (after shifting) shatters a subset of columns, then so does F (before
shifting).

Therefore,

(3) and (2) ⇒ F ∗ can not have more than d ”+”’s in a row. Hence, #row of F ∗ ≤�d
i=0 (n

i );

Sauer’s Lemma

Definition. Growth Function:

ΠF (n) = max{|F|s | : s ⊆ X , |s| = n}

(1) ⇒ |F|xn
1
| ≤�d

i=1 (ni )



Wait a minute . . .

Is this combinatorial expression really � (md)?
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Generalization Bounds

Combining our previous generalization results with Sauer’s lemma, we have
that for a hypothesis class H with VC dimension d , for any δ> 0 with
probability at least 1−δ, for any h ∈H,

R(h)≤ R̂(h)+

�
2d log em

d

m
+

�
log 1

δ

2m
(43)
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Whew!

• Infinite hypothesis class is PAC-learnable iff it has finite VC dimension
• We’re now going to see if we can find an algorithm that has good VC

dimension

• And works well in practice . . . Support Vector Machines
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