
Neural Networks

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns
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This lecture

• What is a neural network?

• Predicting with a neural network

• Training neural networks
– Backpropagation

• Practical concerns
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Training a neural network

• Given
– A network architecture (layout of neurons, their connectivity and 

activations)
– A dataset of labeled examples

• S = {(xi, yi)}

• The goal: Learn the weights of the neural network

• Remember: For a fixed architecture, a neural network is a 
function parameterized by its weights
– Prediction: 𝑦 = 𝑁𝑁(𝒙,𝒘)
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Recall: Learning as loss minimization

We have a classifier NN that is completely defined by its weights
Learn the weights by minimizing a loss 𝐿
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Perhaps with a regularizer
min
𝒘

%
"

𝐿(𝑁𝑁 𝒙", 𝒘 , 𝑦")
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Perhaps with a regularizer
min
𝒘

%
"

𝐿(𝑁𝑁 𝒙", 𝒘 , 𝑦")

So far, we saw that this strategy worked for:
1. Logistic Regression
2. Support Vector Machines
3. Perceptron 
4. LMS regression

All of these are linear models

Same idea for non-linear models too!

Each 
minimizes a 
different loss 
function



Back to our running example
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output

Given an input x, how is the output predicted

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)
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Suppose the true label for this example is a number 𝑦!
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Back to our running example
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output

Given an input x, how is the output predicted

Suppose the true label for this example is a number 𝑦!

We can write the square loss for this example as:

𝐿 =
1
2
𝑦– 𝑦) *

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)
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Learning as loss minimization

We have a classifier NN that is completely defined by its weights
Learn the weights by minimizing a loss 𝐿
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Perhaps with a regularizer
min
𝒘

%
"

𝐿 𝑁𝑁 𝑥", 𝑤 , 𝑦"

How do we solve the 
optimization problem?



Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset 
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w
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𝒘
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𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)
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𝛾!: learning rate, 
many tweaks possible

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)
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𝛾!: learning rate, 
many tweaks possible

The objective is not convex. 
Initialization can be important
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𝛾!: learning rate, 
many tweaks possible

The objective is not convex. 
Initialization can be important

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Have we solved everything?



The derivative of the loss function?

If the neural network is a differentiable function, we can 
find the gradient

– Or maybe its sub-gradient
– This is decided by the activation functions and the loss function

It was easy for SVMs and logistic regression
– Only one layer

But how do we find the sub-gradient of a more complex 
function?

– Eg: A ~150 layer neural network for image classification! 

19
We need an efficient algorithm: Backpropagation

𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)
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Checkpoint

22

Where are we

If we have a neural network (structure, activations and 
weights), we can make a prediction for an input

If we had the true label of the input, then we can define 
the loss for that example

If we can take the derivative of the loss with respect to 
each of the weights, we can take a gradient step in SGD

Questions?
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Let’s look at some simple expressions
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𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
𝜕𝑦

= 1
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𝑓 𝑥, 𝑦 = 𝑥𝑦

𝜕𝑓
𝜕𝑥 = 𝑦

𝜕𝑓
𝜕𝑦

= 𝑥

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
𝜕𝑦

= 1

𝑓 𝑥, 𝑦 = max 𝑥, 𝑦

𝜕𝑓
𝜕𝑥 = 1 if 𝑥 ≥ 𝑦 , 0 otherwise

𝜕𝑓
𝜕𝑥

= 1 if 𝑦 ≥ 𝑥 , 0 otherwise



Let’s look at some simple expressions
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𝑓 𝑥, 𝑦 = 𝑥𝑦

𝜕𝑓
𝜕𝑥 = 𝑦

𝜕𝑓
𝜕𝑦

= 𝑥

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
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𝑓 𝑥, 𝑦 = max 𝑥, 𝑦

𝜕𝑓
𝜕𝑥 = 1 if 𝑥 ≥ 𝑦 , 0 otherwise

𝜕𝑓
𝜕𝑥

= 1 if 𝑦 ≥ 𝑥 , 0 otherwise

Useful to keep in mind what these derivatives 
represent In these (and all other) cases:

𝜕𝑓
𝜕𝑥

Represents the rate of change of the function 
𝑓 with respect to a small change in 𝑥



More complicated cases?
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𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

This is still simple enough to manually take derivatives, but let us work through this in 
a slightly different way.
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Key idea: Build up derivatives of compound expressions by breaking it down into 
simpler pieces, and applying the chain rule

𝜕𝑓
𝜕𝑦

=
𝜕𝑓
𝜕𝑔

⋅
𝜕𝑔
𝜕𝑦

= 𝑥 ⋅ 2𝑦 = 2𝑥𝑦



In terms of “computation graphs”
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𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)



In terms of “computation graphs”
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𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The forward pass: 
Computes function 
values for specific 
inputs 

3

2 1

5

15



In terms of “computation graphs”

39

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward 
pass: Computes 
derivatives of each 
intermediate node

3

2 1

5

15



In terms of “computation graphs”

40

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward 
pass: Computes 
derivatives of each 
intermediate node

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5
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In terms of “computation graphs”

43

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward 
pass: Computes 
derivatives of each 
intermediate node

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑦 = 3×2×2 = 12

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑧 = 3×1 = 3



In terms of “computation graphs”

44

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑦 = 3×2×2 = 12

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑧 = 3×1 = 3



The abstraction

• Each node in the graph knows two things:
1. How to compute the value of a function with respect to its 

inputs (forward)

2. How to compute the partial derivative of its output with 
respect to each of its inputs (backward)

• These can be defined independently of what happens in 
the rest of the graph

• We can build up complicated functions using simple 
nodes, and compute values and partial derivatives of 
these as well
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In terms of “computation graphs”

46

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑦 = 3×2×2 = 12

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑧 = 3×1 = 3

Meaning of the partial 
derivatives: How 
sensitive is the value of f 
to the value of each 
variable



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱
Represents [𝑥*, 𝑥+, 𝑥#]



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝐖, =
𝑤*+, 𝑤++, 𝑤#+,

𝑤*#, 𝑤+#, 𝑤##,



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝐖,

𝒛 = 𝜎 𝐖,𝐱



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝐖,

𝒛 = 𝜎 𝐖,𝐱

Each element of 𝐳 is 𝑧!, 
and is generated by the 
sigmoid activation to 
each element of 𝐖,𝐱.



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝑦

𝐖,

𝐰- = 𝑤*+- , 𝑤++- , 𝑤#+-

𝒛 = 𝜎 𝐖,𝐱



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝑦

𝐖,

𝐰-

𝑦 = 𝐰-𝐳

𝒛 = 𝜎 𝐖,𝐱



A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. 
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array 
of numbers) or tensors (an n-dimensional array of numbers).
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𝐱

𝐳

𝑦

𝐖,

𝐰-

𝑦 = 𝐰-𝐳

𝒛 = 𝜎 𝐖,𝐱

No activation because the 
output is defined to be linear



Reminder: Chain rule for derivatives

– If 𝑦 is a function of 𝐳 and 𝐳 is a function of 𝐱
• Then 𝑦 is a function of 𝐱, as well

– Question:  how to find TUT𝐱
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𝐱

𝐳

𝑦

𝜕𝑦
𝜕𝐱

=
𝜕𝑦
𝜕𝐳
⋅
𝜕𝐳
𝜕𝐱



Reminder: Chain rule for derivatives

– If 𝑦 = a function of 𝑧$ + a function of 𝑧&, and the 𝑧"’s are 
functions of 𝑥
• Then 𝑦 is a function of 𝑥, as well

– Question:  how to find TUTV
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𝐱

z+

𝑦

z#
𝜕𝑦
𝜕𝑥 =

𝜕𝑦
𝜕𝑧$

⋅
𝜕𝑧$
𝜕𝑥 +

𝜕𝑦
𝜕𝑧&

⋅
𝜕2
𝜕𝑥



Reminder: Chain rule for derivatives

– If 𝑦 = sum of functions of 𝑥
• Then 𝑦 is a function of 𝑥, as well

– Question:  how to find TUTV
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𝐱

z+

𝑦

z#

𝜕𝑦
𝜕𝑥

=%
"X$

Y
𝜕𝑦
𝜕𝑧"

⋅
𝜕𝑧"
𝜕𝑥

z.⋯



Backpropagation

58

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)



Backpropagation
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We want to compute 
34
35!"

# and 34
35!"

$

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Important: 𝐿 is a differentiable function of all the weights



Backpropagation

60

Applying the chain rule to compute the gradient
(And remembering partial computations along 
the way to speed up things)

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

We want to compute 
34
35!"

# and 34
35!"

$

Important: 𝐿 is a differentiable function of all the weights



Output layer
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output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$#

Backpropagation example



Output layer

62

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$%

Backpropagation example



Output layer

63

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

Backpropagation example



Output layer
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output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

𝜕𝑦
𝜕𝑤#$%

= 1

Backpropagation example



Output layer
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𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$#

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example



Output layer
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𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example



Output layer

67

𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example



Output layer
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𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

𝜕𝑦
𝜕𝑤#$%

= 𝑧$

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example



Output layer
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𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

𝜕𝑦
𝜕𝑤#$%

= 𝑧$

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

We have already computed this 
partial derivative for the 
previous case

Cache to speed up!

Backpropagation example



Hidden layer derivatives
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output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Backpropagation example



Hidden layer derivatives
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We want 
!"
!#!!"

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Backpropagation example



Hidden layer derivatives
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

Backpropagation example 𝐿 =
1
2 𝑦– 𝑦∗ $



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&
Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

=
𝜕𝐿
𝜕𝑦
(𝑤$$%

𝜕
𝜕𝑤&&'

𝑧$ +𝑤&$%
𝜕

𝜕𝑤&&'
𝑧&)

Backpropagation example



Hidden layer

75

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

=
𝜕𝐿
𝜕𝑦
(𝑤$$%

𝜕
𝜕𝑤&&'

𝑧$ +𝑤&$%
𝜕

𝜕𝑤&&'
𝑧&)

𝑧& is not a function of 𝑤$$(

0

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)
Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

Backpropagation example

(From previous slide)



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

Each of these partial derivatives is easy

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

Each of these partial derivatives is easy

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

𝜕𝑧&
𝜕𝑠

= 𝑧&(1 − 𝑧&)
Why? Because 𝑧# 𝑠
is the logistic 
function we have 
already seen

Each of these partial derivatives is easy

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

𝜕𝑧&
𝜕𝑠

= 𝑧&(1 − 𝑧&)
Why? Because 𝑧# 𝑠
is the logistic 
function we have 
already seen𝜕𝑠

𝜕𝑤&&'
= 𝑥&

Each of these partial derivatives is easy

Backpropagation example



Hidden layer
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𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

𝜕𝑧&
𝜕𝑠

= 𝑧&(1 − 𝑧&)
Why? Because 𝑧# 𝑠
is the logistic 
function we have 
already seen𝜕𝑠

𝜕𝑤&&'
= 𝑥&

More important: We have already 
computed many of these partial 
derivatives because we are proceeding 
from top to bottom (i.e. backwards)

Backpropagation example

Each of these partial derivatives is easy



The Backpropagation Algorithm

The same algorithm works for multiple layers, and more 
complicated architectures

Repeated application of the chain rule for partial derivatives
– First perform forward pass from inputs to the output
– Compute loss

– From the loss, proceed backwards to compute partial 
derivatives using the chain rule

– Cache partial derivatives as you compute them
• Will be used for lower layers
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Mechanizing learning

• Backpropagation gives you the gradient that will be used for 
gradient descent
– SGD gives us a generic learning algorithm 
– Backpropagation is a generic method for computing partial derivatives

• A recursive algorithm that proceeds from the top of the 
network to the bottom

• Modern neural network libraries implement automatic 
differentiation using backpropagation 
– Allows easy exploration of network architectures
– Don’t have to keep deriving the gradients by hand each time
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Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ"
1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset 

• Compute the gradient of the loss 𝛻𝐿 𝑁𝑁 𝒙! , 𝒘 , 𝑦! using 
backpropagation

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙! , 𝒘 , 𝑦!))

3. Return w
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𝛾!: learning rate, 
many tweaks possible

The objective is not convex. 
Initialization can be important

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)


