Neural Networks

- What is a neural network?
- Predicting with a neural network
- Training neural networks
- Practical concerns

This lecture

- What is a neural network?
- Predicting with a neural network
- Training neural networks
- Backpropagation
- Practical concerns

Training a neural network

- Given
- A network architecture (layout of neurons, their connectivity and activations)
- A dataset of labeled examples
- $\mathrm{S}=\left\{\left(\mathbf{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)\right\}$
- The goal: Learn the weights of the neural network
- Remember: For a fixed architecture, a neural network is a function parameterized by its weights
- Prediction: $y=N N(\boldsymbol{x}, \boldsymbol{w})$

Recall: Learning as loss minimization

We have a classifier $N N$ that is completely defined by its weights Learn the weights by minimizing a loss L

Recall: Learning as loss minimization

We have a classifier NN that is completely defined by its weights Learn the weights by minimizing a loss L

So far, we saw that this strategy worked for:

1. Logistic Regression Each
2. Support Vector Machines minimizes a
3. Perceptron
different loss
4. LMS regression
function

All of these are linear models
Same idea for non-linear models too!

Back to our running example

Given an input \mathbf{x}, how is the output predicted

Back to our running example

Given an input \mathbf{x}, how is the output predicted

Back to our running example

Given an input \mathbf{x}, how is the output predicted

Learning as loss minimization

We have a classifier NN that is completely defined by its weights Learn the weights by minimizing a loss L

> How do we solve the optimization problem?

Stochastic gradient descent

$$
\min _{\boldsymbol{w}} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Return w

Stochastic gradient descent

$$
\min _{w} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Shuffle the training set
4. Return w

Stochastic gradient descent

$$
\min _{w} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Shuffle the training set
4. For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:
5. Return w

Stochastic gradient descent

$$
\min _{w} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Shuffle the training set
4. For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathrm{S}$:

- Treat this example as the entire dataset

Compute the gradient of the loss $\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$
3. Return w

Stochastic gradient descent

$$
\min _{w} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Shuffle the training set
4. For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathrm{S}$:

- Treat this example as the entire dataset

Compute the gradient of the loss $\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$

- Update: $\left.\boldsymbol{w} \leftarrow \boldsymbol{w}-\gamma_{t} \nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)\right)$

3. Return w

Stochastic gradient descent

$$
\min _{\boldsymbol{w}} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Shuffle the training set
4. For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathrm{S}$:

- Treat this example as the entire dataset

Compute the gradient of the loss $\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$

- Update: $\left.\boldsymbol{w} \leftarrow \boldsymbol{w}-\gamma_{t} \nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)\right)$

3. Return w

Stochastic gradient descent

$$
\min _{\boldsymbol{w}} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Shuffle the training set
4. For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:

- Treat this example as the entire dataset

Compute the gradient of the loss $\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$

- Update: $\left.\boldsymbol{w} \leftarrow \boldsymbol{w}-\gamma_{t} \nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)\right)$

```
\(\gamma_{t}\) : learning rate, many tweaks possible
```

3. Return w

Stochastic gradient descent

$\min _{\boldsymbol{w}} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:
3. Shuffle the training set
4. For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in \mathrm{S}$:

- Treat this example as the entire dataset

Compute the gradient of the loss $\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$

- Update: $\left.\boldsymbol{w} \leftarrow \boldsymbol{w}-\gamma_{t} \nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)\right)$

3. Return w Have we solved everything?

The derivative of the loss function?

$\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$
If the neural network is a differentiable function, we can find the gradient

- Or maybe its sub-gradient
- This is decided by the activation functions and the loss function

It was easy for SVMs and logistic regression

- Only one layer

The derivative of the loss function?

$\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$
If the neural network is a differentiable function, we can find the gradient

- Or maybe its sub-gradient
- This is decided by the activation functions and the loss function

It was easy for SVMs and logistic regression

- Only one layer

But how do we find the sub-gradient of a more complex function?

- Eg: A ~150 layer neural network for image classification!

The derivative of the loss function?

$\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$
If the neural network is a differentiable function, we can find the gradient

- Or maybe its sub-gradient
- This is decided by the activation functions and the loss function

It was easy for SVMs and logistic regression

- Only one layer

But how do we find the sub-gradient of a more complex function?

- Eg: A ~150 layer neural network for image classification!

We need an efficient algorithm: Backpropagation

Checkpoint where are we

Checkpoint where are we

If we have a neural network (structure, activations and weights), we can make a prediction for an input

Checkpoint where are we

If we have a neural network (structure, activations and weights), we can make a prediction for an input

If we had the true label of the input, then we can define the loss for that example

Checkpoint where are we

If we have a neural network (structure, activations and weights), we can make a prediction for an input

If we had the true label of the input, then we can define the loss for that example

If we can take the derivative of the loss with respect to each of the weights, we can take a gradient step in SGD

Checkpoint where are we

If we have a neural network (structure, activations and weights), we can make a prediction for an input

If we had the true label of the input, then we can define the loss for that example

If we can take the derivative of the loss with respect to each of the weights, we can take a gradient step in SGD

Let's look at some simple expressions

$$
\frac{\partial f}{\partial x}=1
$$

$f(x, y)=x+y$

$$
\frac{\partial f}{\partial y}=1
$$

Let's look at some simple expressions

$$
\frac{\partial f}{\partial x}=1
$$

$f(x, y)=x+y$

$$
\frac{\partial f}{\partial y}=1
$$

Let's look at some simple expressions

$$
\frac{\partial f}{\partial x}=1
$$

$f(x, y)=x+y$

$$
\frac{\partial f}{\partial y}=1
$$

$$
\frac{\partial f}{\partial x}=y
$$

$f(x, y)=x y$

$$
\frac{\partial f}{\partial y}=x
$$

Let's look at some simple expressions

$$
\frac{\partial f}{\partial x}=1
$$

$f(x, y)=x+y$

$$
\begin{aligned}
& \frac{\partial f}{\partial y}=1 \\
& \frac{\partial f}{\partial x}=y
\end{aligned}
$$

$f(x, y)=x y$

$$
\frac{\partial f}{\partial y}=x
$$

$$
\frac{\partial f}{\partial x}=1 \text { (if } x \geq y \text {), } 0 \text { otherwise }
$$

$$
f(x, y)=\max (x, y)
$$

$$
\frac{\partial f}{\partial x}=1 \text { (if } y \geq x \text {), } 0 \text { otherwise }
$$

Let's look at some simple expressions

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=1 \\
& f(x, y)=x+y \\
& \frac{\partial f}{\partial y}=1 \\
& \frac{\partial f}{\partial x}=y \\
& f(x, y)=x y \\
& \frac{\partial f}{\partial y}=x \\
& \left.\frac{\partial f}{\partial x}=1 \text { (if } x \geq y\right), 0 \text { otherwise } \\
& f(x, y)=\max (x, y) \\
& \frac{\partial f}{\partial x}=1 \text { (if } y \geq x \text {), } 0 \text { otherwise }
\end{aligned}
$$

More complicated cases?

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

This is still simple enough to manually take derivatives, but let us work through this in a slightly different way.

More complicated cases?

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

This is still simple enough to manually take derivatives, but let us work through this in a slightly different way.

Break down the function in terms of simple forms

$$
\begin{gathered}
g=y^{2}+z \\
f=x g
\end{gathered}
$$

More complicated cases?

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

This is still simple enough to manually take derivatives, but let us work through this in a slightly different way.

Break down the function in terms of simple forms

$$
\begin{gathered}
g=y^{2}+z \\
f=x g
\end{gathered}
$$

Each of these is a simple form. We know how to compute $\frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial g}$

More complicated cases?

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

This is still simple enough to manually take derivatives, but let us work through this in a slightly different way.

Break down the function in terms of simple forms

$$
\begin{gathered}
g=y^{2}+z \\
f=x g
\end{gathered}
$$

Each of these is a simple form. We know how to compute $\frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial g}$
Key idea: Build up derivatives of compound expressions by breaking it down into simpler pieces, and applying the chain rule

More complicated cases?

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

This is still simple enough to manually take derivatives, but let us work through this in a slightly different way.

Break down the function in terms of simple forms

$$
\begin{gathered}
g=y^{2}+z \\
f=x g
\end{gathered}
$$

Each of these is a simple form. We know how to compute $\frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}, \frac{\partial f}{\partial x}, \frac{\partial f}{\partial g}$
Key idea: Build up derivatives of compound expressions by breaking it down into simpler pieces, and applying the chain rule

$$
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial g} \cdot \frac{\partial g}{\partial y}=x \cdot 2 y=2 x y
$$

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

The forward pass: Computes function values for specific inputs

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

The backward pass: Computes derivatives of each intermediate node

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

The backward pass: Computes derivatives of each intermediate node

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

The backward pass: Computes derivatives of each intermediate node

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

The backward pass: Computes derivatives of each

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

The backward pass: Computes derivatives of each

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

The abstraction

- Each node in the graph knows two things:

1. How to compute the value of a function with respect to its inputs (forward)
2. How to compute the partial derivative of its output with respect to each of its inputs (backward)

- These can be defined independently of what happens in the rest of the graph
- We can build up complicated functions using simple nodes, and compute values and partial derivatives of these as well

In terms of "computation graphs"

$$
f(x, y, z)=x\left(y^{2}+z\right)
$$

Meaning of the partial derivatives: How
sensitive is the value of f to the value of each variable

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

Represents $\left[x_{0}, x_{1}, x_{2}\right]$

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

$$
\mathbf{z}=\sigma\left(\mathbf{W}^{h} \mathbf{x}\right)
$$

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

$$
\mathbf{z}=\sigma\left(\mathbf{W}^{h} \mathbf{x}\right)
$$

Each element of \mathbf{z} is z_{i}, and is generated by the sigmoid activation to each element of $\mathbf{W}^{h} \mathbf{x}$.

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

$$
\begin{aligned}
& y=\mathbf{w}^{o} \mathbf{z} \\
& \mathbf{z}=\sigma\left(\mathbf{W}^{h} \mathbf{x}\right)
\end{aligned}
$$

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g. features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array of numbers) or tensors (an n-dimensional array of numbers).

$$
y=\mathbf{w}^{o} \mathbf{z}
$$

No activation because the output is defined to be linear

$$
\mathbf{z}=\sigma\left(\mathbf{W}^{h} \mathbf{x}\right)
$$

Reminder: Chain rule for derivatives

- If y is a function of \mathbf{z} and \mathbf{z} is a function of \mathbf{x}
- Then y is a function of \mathbf{x}, as well
- Question: how to find $\frac{\partial y}{\partial \mathbf{x}}$

$$
\frac{\partial y}{\partial \mathbf{x}}=\frac{\partial y}{\partial \mathbf{z}} \cdot \frac{\partial \mathbf{z}}{\partial \mathbf{x}}
$$

Reminder: Chain rule for derivatives

- If $y=$ a function of $z_{1}+$ a function of z_{2}, and the $z_{i}{ }^{\prime}$ s are functions of x
- Then y is a function of x, as well
- Question: how to find $\frac{\partial y}{\partial x}$

$$
\frac{\partial y}{\partial x}=\frac{\partial y}{\partial z_{1}} \cdot \frac{\partial z_{1}}{\partial x}+\frac{\partial y}{\partial z_{2}} \cdot \frac{\partial 2}{\partial x}
$$

Reminder: Chain rule for derivatives

- If $y=$ sum of functions of x
- Then y is a function of x, as well
- Question: how to find $\frac{\partial y}{\partial x}$

$$
\frac{\partial y}{\partial x}=\sum_{i=1}^{n} \frac{\partial y}{\partial z_{i}} \cdot \frac{\partial z_{i}}{\partial x}
$$

Backpropagation

Backpropagation

Important: L is a differentiable function of all the weights

Backpropagation

Important: L is a differentiable function of all the weights

Backpropagation example

Output layer

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

Backpropagation example

Output layer

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

$$
\frac{\partial L}{\partial w_{01}^{o}}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{01}^{o}}
$$

Backpropagation example

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

Output layer

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{01}^{o}}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{01}^{o}} \\
& \frac{\partial L}{\partial y}=y-y^{*}
\end{aligned}
$$

Backpropagation example

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

Output layer

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

Backpropagation example

Output layer

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

Backpropagation example

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

Output layer

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

$$
\frac{\partial L}{\partial w_{11}^{o}}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{11}^{o}}
$$

Backpropagation example

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

Output layer

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial w_{11}^{o}}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{11}^{o}} \\
& \frac{\partial L}{\partial y}=y-y^{*}
\end{aligned}
$$

Backpropagation example

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

Output layer

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

$$
\frac{\partial L}{\partial w_{11}^{o}}=\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{11}^{o}}=y-y^{*} \quad \frac{\partial y}{\partial w_{01}^{o}}=z_{1}
$$

Backpropagation example

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

Output layer

$$
\text { output } \quad \mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

We have already computed this partial derivative for the previous case

Cache to speed up!

Backpropagation example

Hidden layer derivatives

Backpropagation example

Hidden layer derivatives

Backpropagation example

Hidden layer derivatives

$$
L=\frac{1}{2}\left(y-y^{*}\right)^{2}
$$

Hidden layer

$$
\mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

$$
\begin{aligned}
\frac{\partial L}{\partial w_{22}^{h}} & =\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{22}^{h}} \\
& =\frac{\partial L}{\partial y} \frac{\partial}{\partial w_{22}^{h}}\left(w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}\right)
\end{aligned}
$$

Backpropagation example

Hidden layer

$$
\mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

Backpropagation example

Hidden layer

$$
\mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

Backpropagation example

Hidden layer

$$
\mathrm{y}=w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}
$$

$$
\begin{aligned}
\frac{\partial L}{\partial w_{22}^{h}} & =\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{22}^{h}} \\
& =\frac{\partial L}{\partial y} \frac{\partial}{\partial w_{22}^{h}}\left(w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}\right) \\
& =\frac{\partial L}{\partial y} w_{21}^{o} \frac{\partial z_{2}}{\partial w_{22}^{h}}
\end{aligned}
$$

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

$$
\begin{aligned}
\frac{\partial L}{\partial w_{22}^{h}} & =\frac{\partial L}{\partial y} \frac{\partial y}{\partial w_{22}^{h}} \\
& =\frac{\partial L}{\partial y} \frac{\partial}{\partial w_{22}^{h}}\left(w_{01}^{o}+w_{11}^{o} z_{1}+w_{21}^{o} z_{2}\right) \\
& =\frac{\partial L}{\partial y} w_{21}^{o} \frac{\partial z_{2}}{\partial w_{22}^{h}}
\end{aligned}
$$

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

$$
\frac{\partial L}{\partial w_{22}^{h}}=\frac{\partial L}{\partial y} w_{21}^{o} \frac{\partial z_{2}}{\partial s} \frac{\partial s}{\partial w_{22}^{h}}
$$

Each of these partial derivatives is easy

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

$$
\frac{\partial L}{\partial w_{22}^{h}}=\frac{\partial L}{\partial y} w_{21}^{o} \frac{\partial z_{2}}{\partial s} \frac{\partial s}{\partial w_{22}^{h}}
$$

Each of these partial derivatives is easy

$$
\frac{\partial L}{\partial y}=y-y^{*}
$$

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

$$
\frac{\partial L}{\partial w_{22}^{h}}=\frac{\partial L}{\partial y} w_{21}^{o} \frac{\partial z_{2}}{\partial s} \frac{\partial s}{\partial w_{22}^{h}}
$$

Each of these partial derivatives is easy

$$
\begin{array}{ll}
\frac{\partial L}{\partial y}=y-y^{*} & \\
\frac{\partial z_{2}}{\partial s}=z_{2}\left(1-z_{2}\right) & \begin{array}{l}
\text { Why? Because } z_{2}(s) \\
\text { is the logistic } \\
\text { function we have } \\
\text { already seen }
\end{array}
\end{array}
$$

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

$$
\frac{\partial L}{\partial w_{22}^{h}}=\frac{\partial L}{\partial y} w_{21}^{o} \frac{\partial z_{2}}{\partial s} \frac{\partial s}{\partial w_{22}^{h}}
$$

Each of these partial derivatives is easy

$$
\begin{array}{rlrl}
\frac{\partial L}{\partial y} & =y-y^{*} & & \\
\frac{\partial z_{2}}{\partial s} & =z_{2}\left(1-z_{2}\right) & & \text { is the logistic } z_{2}(s) \\
\frac{\partial s}{\partial w_{22}^{h}} & =x_{2} & & \text { anction we have } \\
& &
\end{array}
$$

Hidden layer

$$
z_{2}=\sigma\left(w_{02}^{h}+w_{12}^{h} x_{1}+w_{22}^{h} x_{2}\right)
$$

Call this s

output

$$
\frac{\partial L}{\partial w_{22}^{h}}=\frac{\partial L}{\partial y} w_{21}^{o} \frac{\partial z_{2}}{\partial s} \frac{\partial s}{\partial w_{22}^{h}}
$$

Each of these partial derivatives is easy
More important: We have already computed many of these partial derivatives because we are proceeding

The Backpropagation Algorithm

The same algorithm works for multiple layers, and more complicated architectures

Repeated application of the chain rule for partial derivatives

- First perform forward pass from inputs to the output
- Compute loss
- From the loss, proceed backwards to compute partial derivatives using the chain rule
- Cache partial derivatives as you compute them
- Will be used for lower layers

Mechanizing learning

- Backpropagation gives you the gradient that will be used for gradient descent
- SGD gives us a generic learning algorithm
- Backpropagation is a generic method for computing partial derivatives
- A recursive algorithm that proceeds from the top of the network to the bottom
- Modern neural network libraries implement automatic differentiation using backpropagation
- Allows easy exploration of network architectures
- Don't have to keep deriving the gradients by hand each time

Stochastic gradient descent

$$
\min _{\boldsymbol{w}} \sum_{i} L\left(N N\left(x_{i}, w\right), y_{i}\right)
$$

Given a training set $S=\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}, \mathbf{x} \in \mathfrak{R}^{d}$

1. Initialize parameters w
2. For epoch = 1 ... T:

The objective is not convex. Initialization can be important

1. Shuffle the training set
2. For each training example $\left(\mathbf{x}_{i}, y_{i}\right) \in S$:

- Treat this example as the entire dataset
- Compute the gradient of the loss $\nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)$ using backpropagation
- Update: $\left.\boldsymbol{w} \leftarrow \boldsymbol{w}-\gamma_{t} \nabla L\left(N N\left(\boldsymbol{x}_{i}, \boldsymbol{w}\right), y_{i}\right)\right)$

```
\(\gamma_{t}\) : learning rate, many tweaks possible
```

3. Return w
