
Neural Networks

• What is a neural network?

• Predicting with a neural network

• Training neural networks

• Practical concerns

2

This lecture

• What is a neural network?

• Predicting with a neural network

• Training neural networks
– Backpropagation

• Practical concerns

3

Training a neural network

• Given
– A network architecture (layout of neurons, their connectivity and

activations)
– A dataset of labeled examples

• S = {(xi, yi)}

• The goal: Learn the weights of the neural network

• Remember: For a fixed architecture, a neural network is a
function parameterized by its weights
– Prediction: 𝑦 = 𝑁𝑁(𝒙,𝒘)

4

Recall: Learning as loss minimization

We have a classifier NN that is completely defined by its weights
Learn the weights by minimizing a loss 𝐿

5

Perhaps with a regularizer
min
𝒘

%
"

𝐿(𝑁𝑁 𝒙", 𝒘 , 𝑦")

Recall: Learning as loss minimization

We have a classifier NN that is completely defined by its weights
Learn the weights by minimizing a loss 𝐿

6

Perhaps with a regularizer
min
𝒘

%
"

𝐿(𝑁𝑁 𝒙", 𝒘 , 𝑦")

So far, we saw that this strategy worked for:
1. Logistic Regression
2. Support Vector Machines
3. Perceptron
4. LMS regression

All of these are linear models

Same idea for non-linear models too!

Each
minimizes a
different loss
function

Back to our running example

7

output

Given an input x, how is the output predicted

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Back to our running example

8

output

Given an input x, how is the output predicted

Suppose the true label for this example is a number 𝑦!

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Back to our running example

9

output

Given an input x, how is the output predicted

Suppose the true label for this example is a number 𝑦!

We can write the square loss for this example as:

𝐿 =
1
2
𝑦– 𝑦) *

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Learning as loss minimization

We have a classifier NN that is completely defined by its weights
Learn the weights by minimizing a loss 𝐿

10

Perhaps with a regularizer
min
𝒘

%
"

𝐿 𝑁𝑁 𝑥", 𝑤 , 𝑦"

How do we solve the
optimization problem?

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

11

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

12

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

13

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

14

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

15

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

16

𝛾!: learning rate,
many tweaks possible

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

17

𝛾!: learning rate,
many tweaks possible

The objective is not convex.
Initialization can be important

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ+

1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset
Compute the gradient of the loss 𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!))

3. Return w

18

𝛾!: learning rate,
many tweaks possible

The objective is not convex.
Initialization can be important

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

Have we solved everything?

The derivative of the loss function?

If the neural network is a differentiable function, we can
find the gradient

– Or maybe its sub-gradient
– This is decided by the activation functions and the loss function

It was easy for SVMs and logistic regression
– Only one layer

But how do we find the sub-gradient of a more complex
function?

– Eg: A ~150 layer neural network for image classification!

19
We need an efficient algorithm: Backpropagation

𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

The derivative of the loss function?

If the neural network is a differentiable function, we can
find the gradient

– Or maybe its sub-gradient
– This is decided by the activation functions and the loss function

It was easy for SVMs and logistic regression
– Only one layer

But how do we find the sub-gradient of a more complex
function?

– Eg: A ~150 layer neural network for image classification!

20
We need an efficient algorithm: Backpropagation

𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

The derivative of the loss function?

If the neural network is a differentiable function, we can
find the gradient

– Or maybe its sub-gradient
– This is decided by the activation functions and the loss function

It was easy for SVMs and logistic regression
– Only one layer

But how do we find the sub-gradient of a more complex
function?

– Eg: A ~150 layer neural network for image classification!

21
We need an efficient algorithm: Backpropagation

𝛻𝐿(𝑁𝑁 𝒙!, 𝒘 , 𝑦!)

Checkpoint

22

Where are we

If we have a neural network (structure, activations and
weights), we can make a prediction for an input

If we had the true label of the input, then we can define
the loss for that example

If we can take the derivative of the loss with respect to
each of the weights, we can take a gradient step in SGD

Questions?

Checkpoint

23

Where are we

If we have a neural network (structure, activations and
weights), we can make a prediction for an input

If we had the true label of the input, then we can define
the loss for that example

If we can take the derivative of the loss with respect to
each of the weights, we can take a gradient step in SGD

Questions?

Checkpoint

24

Where are we

If we have a neural network (structure, activations and
weights), we can make a prediction for an input

If we had the true label of the input, then we can define
the loss for that example

If we can take the derivative of the loss with respect to
each of the weights, we can take a gradient step in SGD

Questions?

Checkpoint

25

Where are we

If we have a neural network (structure, activations and
weights), we can make a prediction for an input

If we had the true label of the input, then we can define
the loss for that example

If we can take the derivative of the loss with respect to
each of the weights, we can take a gradient step in SGD

Questions?

Checkpoint

26

Where are we

If we have a neural network (structure, activations and
weights), we can make a prediction for an input

If we had the true label of the input, then we can define
the loss for that example

If we can take the derivative of the loss with respect to
each of the weights, we can take a gradient step in SGD

Let’s look at some simple expressions

27

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
𝜕𝑦

= 1

Let’s look at some simple expressions

28

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
𝜕𝑦

= 1

Let’s look at some simple expressions

29

𝑓 𝑥, 𝑦 = 𝑥𝑦

𝜕𝑓
𝜕𝑥 = 𝑦

𝜕𝑓
𝜕𝑦

= 𝑥

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
𝜕𝑦

= 1

Let’s look at some simple expressions

30

𝑓 𝑥, 𝑦 = 𝑥𝑦

𝜕𝑓
𝜕𝑥 = 𝑦

𝜕𝑓
𝜕𝑦

= 𝑥

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
𝜕𝑦

= 1

𝑓 𝑥, 𝑦 = max 𝑥, 𝑦

𝜕𝑓
𝜕𝑥 = 1 if 𝑥 ≥ 𝑦 , 0 otherwise

𝜕𝑓
𝜕𝑥

= 1 if 𝑦 ≥ 𝑥 , 0 otherwise

Let’s look at some simple expressions

31

𝑓 𝑥, 𝑦 = 𝑥𝑦

𝜕𝑓
𝜕𝑥 = 𝑦

𝜕𝑓
𝜕𝑦

= 𝑥

𝑓 𝑥, 𝑦 = 𝑥 + 𝑦

𝜕𝑓
𝜕𝑥 = 1

𝜕𝑓
𝜕𝑦

= 1

𝑓 𝑥, 𝑦 = max 𝑥, 𝑦

𝜕𝑓
𝜕𝑥 = 1 if 𝑥 ≥ 𝑦 , 0 otherwise

𝜕𝑓
𝜕𝑥

= 1 if 𝑦 ≥ 𝑥 , 0 otherwise

Useful to keep in mind what these derivatives
represent In these (and all other) cases:

𝜕𝑓
𝜕𝑥

Represents the rate of change of the function
𝑓 with respect to a small change in 𝑥

More complicated cases?

32

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

This is still simple enough to manually take derivatives, but let us work through this in
a slightly different way.

More complicated cases?

33

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

This is still simple enough to manually take derivatives, but let us work through this in
a slightly different way.

Break down the function in terms of simple forms

𝑔 = 𝑦# + 𝑧
𝑓 = 𝑥𝑔

More complicated cases?

34

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

This is still simple enough to manually take derivatives, but let us work through this in
a slightly different way.

Break down the function in terms of simple forms

𝑔 = 𝑦# + 𝑧
𝑓 = 𝑥𝑔

Each of these is a simple form. We know how to compute $%
$&
, $%
$'
, $(
$)

, $(
$%

More complicated cases?

35

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

This is still simple enough to manually take derivatives, but let us work through this in
a slightly different way.

Break down the function in terms of simple forms

𝑔 = 𝑦# + 𝑧
𝑓 = 𝑥𝑔

Each of these is a simple form. We know how to compute $%
$&
, $%
$'
, $(
$)

, $(
$%

Key idea: Build up derivatives of compound expressions by breaking it down into
simpler pieces, and applying the chain rule

More complicated cases?

36

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

This is still simple enough to manually take derivatives, but let us work through this in
a slightly different way.

Break down the function in terms of simple forms

𝑔 = 𝑦# + 𝑧
𝑓 = 𝑥𝑔

Each of these is a simple form. We know how to compute $%
$&
, $%
$'
, $(
$)

, $(
$%

Key idea: Build up derivatives of compound expressions by breaking it down into
simpler pieces, and applying the chain rule

𝜕𝑓
𝜕𝑦

=
𝜕𝑓
𝜕𝑔

⋅
𝜕𝑔
𝜕𝑦

= 𝑥 ⋅ 2𝑦 = 2𝑥𝑦

In terms of “computation graphs”

37

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)

In terms of “computation graphs”

38

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The forward pass:
Computes function
values for specific
inputs

3

2 1

5

15

In terms of “computation graphs”

39

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward
pass: Computes
derivatives of each
intermediate node

3

2 1

5

15

In terms of “computation graphs”

40

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward
pass: Computes
derivatives of each
intermediate node

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

In terms of “computation graphs”

41

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward
pass: Computes
derivatives of each
intermediate node

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

In terms of “computation graphs”

42

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward
pass: Computes
derivatives of each
intermediate node

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑦 = 3×2×2 = 12

In terms of “computation graphs”

43

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)
The backward
pass: Computes
derivatives of each
intermediate node

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑦 = 3×2×2 = 12

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑧 = 3×1 = 3

In terms of “computation graphs”

44

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑦 = 3×2×2 = 12

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑧 = 3×1 = 3

The abstraction

• Each node in the graph knows two things:
1. How to compute the value of a function with respect to its

inputs (forward)

2. How to compute the partial derivative of its output with
respect to each of its inputs (backward)

• These can be defined independently of what happens in
the rest of the graph

• We can build up complicated functions using simple
nodes, and compute values and partial derivatives of
these as well

45

In terms of “computation graphs”

46

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 𝑦# + 𝑧

𝑥

𝑦 𝑧

𝑔

𝑓

Computes 𝑦# + 𝑧

Computes 𝑥𝑔 = 𝑥(𝑦# + 𝑧)

3

2 1

5

15

𝜕𝑓
𝜕𝑥 = 𝑔 = 5

𝜕𝑓
𝜕𝑔 = 𝑥 = 3

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑦 = 3×2×2 = 12

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑔 ⋅

𝜕𝑔
𝜕𝑧 = 3×1 = 3

Meaning of the partial
derivatives: How
sensitive is the value of f
to the value of each
variable

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

47

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

48

𝐱
Represents [𝑥*, 𝑥+, 𝑥#]

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

49

𝐱

𝐳

𝐖, =
𝑤*+, 𝑤++, 𝑤#+,

𝑤*#, 𝑤+#, 𝑤##,

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

50

𝐱

𝐳

𝐖,

𝒛 = 𝜎 𝐖,𝐱

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

51

𝐱

𝐳

𝐖,

𝒛 = 𝜎 𝐖,𝐱

Each element of 𝐳 is 𝑧!,
and is generated by the
sigmoid activation to
each element of 𝐖,𝐱.

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

52

𝐱

𝐳

𝑦

𝐖,

𝐰- = 𝑤*+- , 𝑤++- , 𝑤#+-

𝒛 = 𝜎 𝐖,𝐱

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

53

𝐱

𝐳

𝑦

𝐖,

𝐰-

𝑦 = 𝐰-𝐳

𝒛 = 𝜎 𝐖,𝐱

A notational convenience

Commonly nodes in the networks represent not only single numbers (e.g.
features, outputs) but also entire vectors (an array of numbers), matrices (a 2d array
of numbers) or tensors (an n-dimensional array of numbers).

54

𝐱

𝐳

𝑦

𝐖,

𝐰-

𝑦 = 𝐰-𝐳

𝒛 = 𝜎 𝐖,𝐱

No activation because the
output is defined to be linear

Reminder: Chain rule for derivatives

– If 𝑦 is a function of 𝐳 and 𝐳 is a function of 𝐱
• Then 𝑦 is a function of 𝐱, as well

– Question: how to find TUT𝐱

55

𝐱

𝐳

𝑦

𝜕𝑦
𝜕𝐱

=
𝜕𝑦
𝜕𝐳
⋅
𝜕𝐳
𝜕𝐱

Reminder: Chain rule for derivatives

– If 𝑦 = a function of 𝑧$ + a function of 𝑧&, and the 𝑧"’s are
functions of 𝑥
• Then 𝑦 is a function of 𝑥, as well

– Question: how to find TUTV

56

𝐱

z+

𝑦

z#
𝜕𝑦
𝜕𝑥 =

𝜕𝑦
𝜕𝑧$

⋅
𝜕𝑧$
𝜕𝑥 +

𝜕𝑦
𝜕𝑧&

⋅
𝜕2
𝜕𝑥

Reminder: Chain rule for derivatives

– If 𝑦 = sum of functions of 𝑥
• Then 𝑦 is a function of 𝑥, as well

– Question: how to find TUTV

57

𝐱

z+

𝑦

z#

𝜕𝑦
𝜕𝑥

=%
"X$

Y
𝜕𝑦
𝜕𝑧"

⋅
𝜕𝑧"
𝜕𝑥

z.⋯

Backpropagation

58

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Backpropagation

59

We want to compute
34
35!"

and 34
35!"

$

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Important: 𝐿 is a differentiable function of all the weights

Backpropagation

60

Applying the chain rule to compute the gradient
(And remembering partial computations along
the way to speed up things)

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

We want to compute
34
35!"

and 34
35!"

$

Important: 𝐿 is a differentiable function of all the weights

Output layer

61

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$#

Backpropagation example

Output layer

62

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$%

Backpropagation example

Output layer

63

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

Backpropagation example

Output layer

64

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

𝜕𝐿
𝜕𝑤#$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤#$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

𝜕𝑦
𝜕𝑤#$%

= 1

Backpropagation example

Output layer

65

𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$#

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example

Output layer

66

𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example

Output layer

67

𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example

Output layer

68

𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

𝜕𝑦
𝜕𝑤#$%

= 𝑧$

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

Backpropagation example

Output layer

69

𝜕𝐿
𝜕𝑤$$%

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤$$%

𝜕𝐿
𝜕𝑦 = 𝑦 − 𝑦∗

𝜕𝑦
𝜕𝑤#$%

= 𝑧$

output

𝐿 =
1
2 𝑦– 𝑦∗ $

y = 𝑤%&' + 𝑤&&' 𝑧& + 𝑤$&' 𝑧$

We have already computed this
partial derivative for the
previous case

Cache to speed up!

Backpropagation example

Hidden layer derivatives

70

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Backpropagation example

Hidden layer derivatives

71

We want
!"
!#!!"

output

𝐿 =
1
2
𝑦– 𝑦∗ &

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

z$ = 𝜎(𝑤#$' +𝑤$$' 𝑥$ +𝑤&$' 𝑥&)

Backpropagation example

Hidden layer derivatives

72

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

Backpropagation example 𝐿 =
1
2 𝑦– 𝑦∗ $

Hidden layer

73

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&
Backpropagation example

Hidden layer

74

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

=
𝜕𝐿
𝜕𝑦
(𝑤$$%

𝜕
𝜕𝑤&&'

𝑧$ +𝑤&$%
𝜕

𝜕𝑤&&'
𝑧&)

Backpropagation example

Hidden layer

75

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

=
𝜕𝐿
𝜕𝑦
(𝑤$$%

𝜕
𝜕𝑤&&'

𝑧$ +𝑤&$%
𝜕

𝜕𝑤&&'
𝑧&)

𝑧& is not a function of 𝑤$$(

0

Backpropagation example

Hidden layer

76

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

y = 𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

Backpropagation example

Hidden layer

77

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)
Backpropagation example

Hidden layer

78

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

Backpropagation example

Hidden layer

79

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕𝑦
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦

𝜕
𝜕𝑤&&'

(𝑤#$% +𝑤$$% 𝑧$ +𝑤&$% 𝑧&)

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

Backpropagation example

Hidden layer

80

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

Backpropagation example

(From previous slide)

Hidden layer

81

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

Each of these partial derivatives is easy

Backpropagation example

Hidden layer

82

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

Each of these partial derivatives is easy

Backpropagation example

Hidden layer

83

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

𝜕𝑧&
𝜕𝑠

= 𝑧&(1 − 𝑧&)
Why? Because 𝑧# 𝑠
is the logistic
function we have
already seen

Each of these partial derivatives is easy

Backpropagation example

Hidden layer

84

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

𝜕𝑧&
𝜕𝑠

= 𝑧&(1 − 𝑧&)
Why? Because 𝑧# 𝑠
is the logistic
function we have
already seen𝜕𝑠

𝜕𝑤&&'
= 𝑥&

Each of these partial derivatives is easy

Backpropagation example

Hidden layer

85

𝜕𝐿
𝜕𝑤&&'

=
𝜕𝐿
𝜕𝑦
𝑤&$%

𝜕𝑧&
𝜕𝑠

𝜕𝑠
𝜕𝑤&&'

𝑧& = 𝜎(𝑤#&' +𝑤$&' 𝑥$ +𝑤&&' 𝑥&)

Call this s

𝜕𝐿
𝜕𝑦

= 𝑦 − 𝑦∗

𝜕𝑧&
𝜕𝑠

= 𝑧&(1 − 𝑧&)
Why? Because 𝑧# 𝑠
is the logistic
function we have
already seen𝜕𝑠

𝜕𝑤&&'
= 𝑥&

More important: We have already
computed many of these partial
derivatives because we are proceeding
from top to bottom (i.e. backwards)

Backpropagation example

Each of these partial derivatives is easy

The Backpropagation Algorithm

The same algorithm works for multiple layers, and more
complicated architectures

Repeated application of the chain rule for partial derivatives
– First perform forward pass from inputs to the output
– Compute loss

– From the loss, proceed backwards to compute partial
derivatives using the chain rule

– Cache partial derivatives as you compute them
• Will be used for lower layers

86

Mechanizing learning

• Backpropagation gives you the gradient that will be used for
gradient descent
– SGD gives us a generic learning algorithm
– Backpropagation is a generic method for computing partial derivatives

• A recursive algorithm that proceeds from the top of the
network to the bottom

• Modern neural network libraries implement automatic
differentiation using backpropagation
– Allows easy exploration of network architectures
– Don’t have to keep deriving the gradients by hand each time

87

Stochastic gradient descent

Given a training set S = 𝐱𝑖, 𝑦𝑖 , 𝐱 ∈ ℜ"
1. Initialize parameters w
2. For epoch = 1 … T:

1. Shuffle the training set
2. For each training example 𝐱𝑖, 𝑦𝑖 ∈ S:

• Treat this example as the entire dataset

• Compute the gradient of the loss 𝛻𝐿 𝑁𝑁 𝒙! , 𝒘 , 𝑦! using
backpropagation

• Update: 𝒘 ← 𝒘− 𝛾"𝛻𝐿(𝑁𝑁 𝒙! , 𝒘 , 𝑦!))

3. Return w

88

𝛾!: learning rate,
many tweaks possible

The objective is not convex.
Initialization can be important

min
𝒘

,
!

𝐿(𝑁𝑁 𝑥! , 𝑤 , 𝑦!)

