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Recap from first lecture 
neuron or node, basic information processing structure in 
neural networks 

Unit: 

Connection: a conduit through which information flows between 
members of a network. 

Activation: 

Connection weight: 

Activation 
function: 

How to estimate a 
 

how actively a neuron sends an action potential (firing 
rate) 

the strength or weakness of a connection 

INPUT into the activation value range, usually between 
0 and 1 

Step 1: Estimate the combine input 
Step 2: Squash it 



Recap: McCulloch-Pitt Neuron 
In analogy to a biological neuron, we can think of a virtual 
neuron that crudely mimics the biological neuron and performs 
analogous computation. 

Just like biological neurons, this artificial neuron neuron will have: 
 Inputs (like biological dendrites) carry signal to cell body. 

inputs 

 A body (like the soma), sums over inputs to compute output, and 

 
cell 

body 

 outputs (like synapses on the axon) transmit the output downstream. 

output 
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over all i 

 Weighted inputs are summed  in the cell body. 

Recap: MCP properties 

 
consists of "adders" and a  
threshold.  

 Each input has an assigned weight w. 
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 Inputs x are binary: 0,1.  

1  if     
0  if   <  

output 

 Otherwise, the output=0. 
 If the neuron fires, the output =1. 

 

 Neuron fires if sum exceeds (or equals) activation threshold .  



Recap: Linear separable problems 
We can now plot the decision boundary of AND logic gate 
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Recap: Linear separable problems 
We can now plot the decision boundary of OR logic gate 
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Recap: Non-linearly separable problems: 
 

XOR 

x1 x2 out 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

x1 

Geometric representation 

x2 

Solution: needs two lines to separate the data into two classes 



the activation function 
Need two straight lines to separate the different 

outputs/decisions: 

x1 
XOR

x1 x2 out 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

x2 

1 

1 = ?, 2 = ? 

 ? 

 ? OUT 

x1 

x2 
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Find w1, w2, 1 and 2 
that satisfies the XOR 
gate  



problem 
Recall that it is not possible to find weights that enable Single Layer 

Perceptrons to deal with non-linearly separable problems like XOR  

XOR 
x1 x2 out 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

The proposed solution was to use a more complex network that is able 
to generate more complex decision boundaries. That network is the 
Multi-Layer Perceptron. 

x1 

x2 
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Multi-Layer Perceptron (MLP) 

   

    

X1 X2 X3 Xi 

O1 Oj 

Y1 Y2 Yk 

Output layer, k 

Hidden layer, j 

Input layer, i 



Generalized Delta Rule 

 

where 

Main problem: How to adjust the weights in the hidden layer, so they reduce the 
error in the output layer, when there is no specified target response in the hidden 
layer? 

Solution: Alter the non-linear Perceptron (discrete threshold) activation function to 
make it differentiable and hence, help derive Generalized DR for MLP training. 

+1 

-1 

Threshold function 

+1 

-1 

Sigmoid function 



Sigmoid Function Properties 

Approximates the threshold function 
Smoothly differentiable everywhere 
Positive slope 
 

   Derivative of sigmoidal function is: 
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Derivation of backpropagation rule 

k: output layer 
j: hidden layer 
i: input layer 
 
wkj: weight from 
hidden to output layer 
 
wji: weight from input 
to hidden layer 
 
a: output 
t: target output 
net: combined input 



Calculus review 

Chain rule: 1. 

2. 

3. 



Gradient descent on error 

Total error in the network 

Adjust network weights to reduce 
overall error 

via chain rule 



Derivative of the error w.r.t. activation 

Using  



Derivative of activation w.r.t. net input 

Notice: 

Rewriting in terms of the activation function 



Derivative of net input w.r.t. weight 



Weight change rule for a hidden to 
output weight 

Substituting everything back 



Weight change rule for an input to 
hidden weight 

via chain rule 



Backpropagation rule 

So, the weight change from the input layer unit i to hidden layer unit j is:  

where 

The weight change from the hidden layer unit j to the output layer unit k is: 

where 



Graphical Representation of GDR 

Ideal weight 
Weight, wi 

Total Error 

Local minimum 

Global minimum 



Training a two-layer feed forward 
network  

1. Take the set of training patterns you wish the network to learn 

2. Set up the network with N input units fully connected to M hidden non-
linear hidden units via connections with weights wij, which in turn are 
fully connected to P output units via connections with weights wjk 

3. Generate random initial weights, e.g. from range [-wt, +wt] 

4. Select appropriate error function E(wjk) and learning rate  

5. Apply the weight update equation wjk=- E(wjk)/ wjk to each weight 
wjk for each training pattern p. 

6. Do the same to all hidden layers. 

7. Repeat step 5-  
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Practical Considerations 
1. Do we need to pre-process the training data? If so, how? 
2. How do we choose the initial weights from which we start 

the training? 
3. How do we choose an appropriate learning rate ? 
4. Should we change the weights after each training pattern, 

or after the whole set? 
5. Are some activation/transfer functions better than others? 
6. How do we avoid local minima in the error function? 
7. How do we know when we should stop the training? 
8. How many hidden units do we need? 
9. Should we have different learning rates for the different 

layers? 



Pre-processing of training data 
Training data should be representative  

Not too many examples of one type at the expense of another.  
If one class of pattern is easy to learn, having large numbers of patterns 
from that class in the training set will only slow down the over-all 
learning process. 

 
Rescale input data if continuous 

Shift zero of the scale so that the mean value of each input is near zero  
Normalise so std of values for each input are roughly the same 

 
On-line training 

shuffle the order of the training data each epoch. 
 



Choosing the Initial Weight Values 
Never start all weights start from the same values 

Learning rule will change weights the same way, so all the hidden units 
will end up doing the same thing and the network will never learn 
properly. 

We generally start off all the weights with small random 
values.  

Take values from a flat distribution around zero [ smwt, +smwt], or  
From a Gaussian distribution around zero with standard deviation 
smwt. 

When choosing a value for smwt make it as large as you can 
without saturating any of the sigmoids. 
Train network from a number of different random initial 
weight sets to make sure performance is independent of 
initial weight values 
 



Choosing the Learning Rate 
Choosing a good value for the learning rate  is constrained by 
two opposing facts: 
1. If  is too small, it will take too long to get anywhere near the 

minimum of the error function. 
2. If  is too large, the weight updates will over-shoot the error minimum 

and the weights will oscillate, or even diverge. 
 

Finding the optimal value is very problem and network 
dependent, so one cannot formulate reliable general 
prescriptions.  

 
Try a range of different values (e.g.  = 0.1, 0.01, 1.0, 0.0001) 
and use the results as a guide. 

 



Batch Training vs. On-line Training 
Batch Training: update the weights after all training patterns 
have been presented. 
 
On-line Training (or Sequential Training): update all the 
weights immediately after processing each training pattern.  

Individual weight changes can be rather erratic.  
A much lower learning rate  will be necessary than for batch learning.  
Each weight has npatterns updates per epoch, rather than just one => 
learning is much quicker  
Particularly if there is a lot of redundancy in the training data, i.e. 
many training patterns containing similar information. 

 



Choosing the Transfer Function 
A differentiable transfer/activation function is important for 
the gradient descent algorithm to work.  
 
The logistic function ranges from 0 to 1. There is some 
evidence that an anti-symmetric transfer function, i.e. one 
that satisfies f( x) = f(x), enables the gradient descent 
algorithm to learn faster. 
 
When outputs are continuous real values, then sigmoidal 
transfer functions no longer makes sense. Thus, a simple 
linear transfer function f(x) = x is appropriate. 

 



Local Minima 
Cost functions can quite easily have more than one minimum: 
 
 

If we start off in the vicinity of the local minimum, we may end 
up at the local minimum rather than the global minimum.  
Starting with a range of different initial weight sets increases 
our chances of finding the global minimum.  



When  to Stop Training 
The Sigmoid(x) function reach its extreme values of 0 and 1 
when x = ± .  
Network achieves its binary targets when at least some of its 
weights reach ± .  
Given finite gradient descent step sizes, our networks will 
never reach their binary targets. 
Even if we off-set the targets (to 0.1 and 0.9 say) we will 
generally require an infinite number of increasingly small 
gradient descent steps to achieve those targets. 
Clearly, if the training algorithm can never actually reach the 
minimum, we have to stop the training process when it is 

 
Stop the training when the sum squared error function becomes less 
than a particular small value (0.2 say). 

 



How Many Hidden Units?  
Best number of hidden units depends on  

Number of training patterns 
Numbers of input and output units 
Amount of noise in the training data 
Complexity of the function or classification to be learned 
Type of hidden unit activation function 
Training algorithm 
 

Too few hidden units will generally leave high training and 
generalisation errors due to under-fitting.  
Too many hidden units will result in low training errors, but 
will make the training unnecessarily slow, and will result in 
poor generalisation unless some other technique (such as 
regularisation) is used to prevent over-fitting. 
A sensible strategy is to try a range of numbers of hidden 
units and see which works best. 

 



Different Learning Rates for 
Different Layers? 

A network usually learns most efficiently if all its neurons are 
learning at roughly the same speed.  
A number of factors affect the choices: 

Later network layers (nearer the outputs) have larger local gradients 
(deltas) than the earlier layers (nearer the inputs). 
Activations of units with many connections feeding into or out of them 
change faster than units with fewer connections. 
Activations required for linear units will be different for Sigmoidal 
units. 
Empirical evidence showed better to have different learning rates  for 
the thresholds/biases. 

In practice, it is often quicker to just use the same rates  for 
all the weights and thresholds, rather than spending time 
trying to work out appropriate differences.  
Solution: use evolutionary strategies to determine good 
learning rates. 
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Example 

Three-layer feedforward 
neural network 
Layer 1: 3 units 
Layer 2: 2 units 
Layer 3: 1 unit 
Connectivity: all-to-all 

a3 
a4 

a5 

x1 x2 x0 



 
Input patterns: x1 =  1, x2 = 0 
Bias input: x0 = 1 
Weights: w13 = 3, w14 = 6, w03 = 

1, w04 = -6, w23 = 4, w24 = 5, 
w05 = -3.93, w35 = 2, w45 = 4  

Unit output: 
 
 
Combined input:  
 
 
Target output: ytarget = 1 

a3 
a4 

a5 

x1 x2 x0 



 
For unit j = 3: 

   a3 = 1*1 + 3*1 + 4*0 = 4 
   y3 = f(a3) = f(4) = 0.982 

For unit j =4: 

   a4 = 1*(-6) + 1*6 + 0*5 = 0 
   y4 = f(a4) = f(0) = 0.5 

For unit j=5 
   a5 = 1*(-3.93) + 0.982*2 + 4*0.5 = 0.04 
   y3 = f(a3) = f(0.04) = 0.51 

 

 
So, the error between the NETWORK OUTPUT and  the TARGET 
OUTPUT is: (ytarget  y) = (1-0.51) = 0.49 



Weight Update Rule 
Generally, weight change from any unit j to unit k by gradient descent (i.e. weight 

change by small increment in negative direction to the gradient) is now called 
Generalized Delta Rule (GDR or Backpropagation): 

So, the weight change from the input layer unit i to hidden layer unit j is:  

where 

The weight change from the hidden layer unit j to the output layer unit k is: 

where 



Backward pass 

w03= 3x0 = 0.1*0.0043*1=0.00043 

3=y3(1-y3)w35 5=0.982*(1-0.982)*2*(1-0.51)*0.51*(1-
0.51)=0.0043 

w04= 4x0 = 0.1*0.1225*1=0.01225 

4=y4(1-y4)w45 5=0.5*(1-0.5)*4*(1-0.51)*0.51*(1-
0.51)=0.1225 

w13= 3x1 = 0.1*0.0043*1 = 0.00043 

3=y3(1-y3)w35 5=0.982*(1-0.982)*2*(1-0.51)*0.51*(1-
0.51)=0.0043 

w14= 4x1=0.1*0.1225*1=0.01225 

4=y4(1-y4)w45 5=0.5*(1-0.5)*4*(1-0.51)*0.51*(1-
0.51)=0.1225 



 
w23= 3x2 = 0.1*0.0043*0 = 0 

3=y3(1-y3)w35 5=0.982*(1-0.982)*2*(1-0.51)*0.51*(1-
0.51)=0.0043 

w24= 4x2=0.1*0.1225*0=0 

4=y4(1-y4)w45 5=0.5*(1-0.5)*4*(1-0.51)*0.51*(1-
0.51)=0.1225 

w35= 5y3=0.1*0.1225*0.982=0.012 

5=(ytarget-y5)y5(1-y5)=(1-0.51)*0.51*(1-0.51)=0.1225 

w45= 5y4=0.1*0.1225*0.5=0.0061 

5=(ytarget-y5)y5(1-y5)=(1-0.51)*0.51*(1-0.51)=0.1225 

 
 



 

Similarly for all weights wij: 
i j wij j yi Updated 

wij 

0 3 1 0.0043 1.0 1.0004 
1 3 3 0.0043 1.0 3.0004 
2 3 4 0.0043 0.0 4.0000 
0 4 -6 0.1225 1.0 -5.9878 
1 4 6 0.1225 1.0 6.0123 
2 4 5 0.1225 0.0 5.0000 
0 5 -3.92 0.1225 1.0 -3.9078 
3 5 2 0.1225 0.9820 2.0120 
4 5 4 0.1225 0.5 4.0061 



Verification that it works! 
On the next forward pass: 
The new activations are: 
y3 = f(4.0008) = 0.9820 
y4 = f(0.0245) = 0.5061 
y5 = f(0.0955) = 0.5239  
 
Thus the new error 
 
(ytarget  y5) = (1-0.5239) = 0.476 
 
has been reduced by 0.014 
(from 0.490 to 0.476) 
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