Feedforward neural networks: Backpropagation/Gradient Descent

Stefanos Kollias

Machine Learning

Outline

- 1. Recap from previous lectures
- 2. Multi-layer perceptron
- 3. Generalized delta rule (Backpropagation)
- 4. Practical considerations of MLP
- 5. Worked examples

Outline

1. Recap from previous lectures

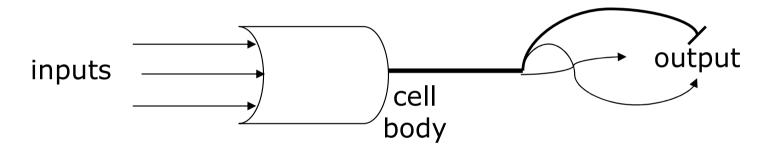
- 2. Multi-layer perceptron
- 3. Generalized delta rule (Backpropagation)
- 4. Practical considerations of MLP
- 5. Worked examples

Recap from first lecture

- Unit: neuron or node, basic information processing structure in neural networks
- **Connection:** a conduit through which information flows between members of a network.
- Activation: how actively a neuron sends an action potential (firing rate)
- **Connection weight:** the strength or weakness of a connection
- Activation a mathematical formula that "squashes" the COMBINED function: INPUT into the activation value range, usually between 0 and 1
- How to estimate a <u>Step 1</u>: Estimate the combine input unit's output:
 <u>Step 2</u>: Squash it

Recap: McCulloch-Pitt Neuron

In analogy to a biological neuron, we can think of a virtual neuron that crudely mimics the biological neuron and performs analogous computation.

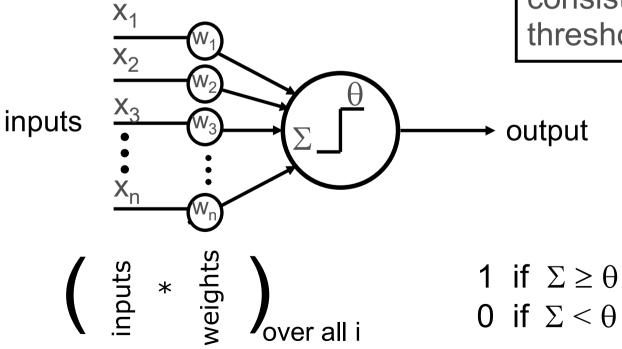


Just like biological neurons, this artificial neuron neuron will have:

- Inputs (like biological dendrites) carry signal to cell body.
- A body (like the soma), sums over inputs to compute output, and
- outputs (like synapses on the axon) transmit the output downstream

Recap: MCP properties

- Inputs x are binary: 0,1
- Each input has an assigned weight w
- Weighted inputs are summed Σ in the cell body.
- Neuron fires if sum exceeds (or equals) activation threshold θ .
- If the neuron fires, the output =1
- Otherwise, the output=0

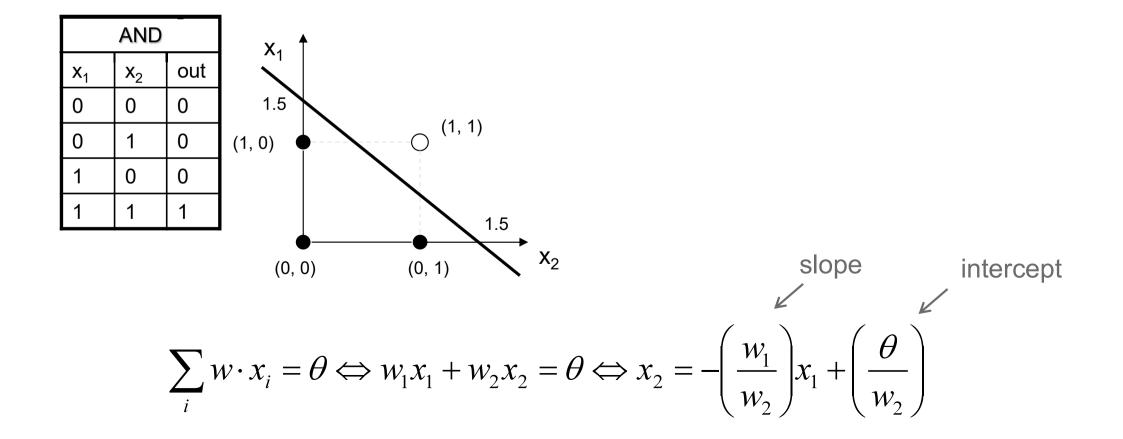


The "computation" consists of "adders" and a threshold.

Recap: Linear separable problems

We can now plot the decision boundary of AND logic gate

AND w1=1, w2=1, θ=1.5

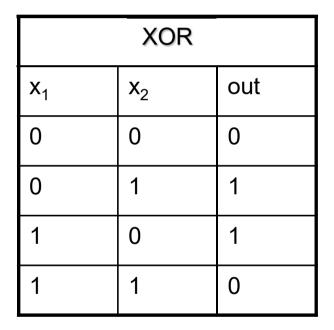


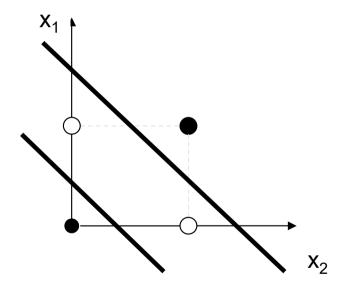
Recap: Linear separable problems

We can now plot the decision boundary of OR logic gate



Recap: Non-linearly separable problems: 'XOR' gate

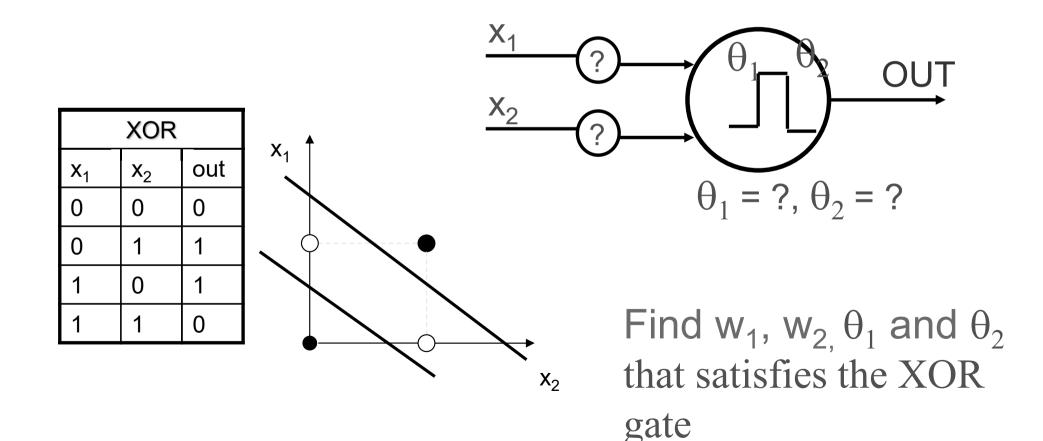




Solution: needs two lines to separate the data into two classes

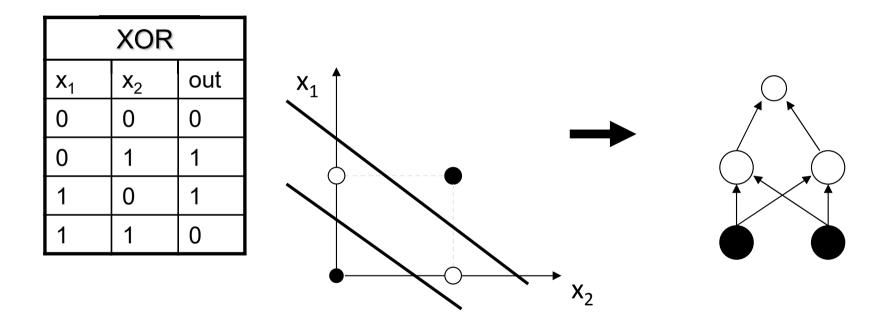
Recap: Solving the 'XOR' problem: Change the activation function

Need two straight lines to separate the different outputs/decisions:



Recap: Another solution to the 'XOR' problem

Recall that it is not possible to find weights that enable Single Layer Perceptrons to deal with non-linearly separable problems like XOR

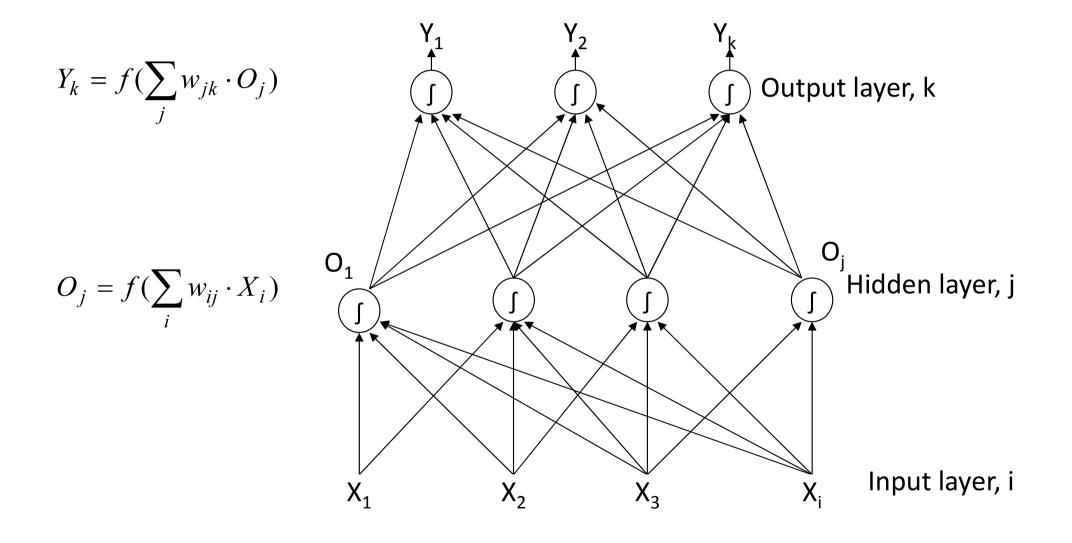


The proposed solution was to use a more complex network that is able to generate more complex decision boundaries. That network is the **Multi-Layer Perceptron**.

Outline

- 1. Recap from previous lectures
- 2. Multi-layer perceptron
- 3. Generalized delta rule (Backpropagation)
- 4. Practical considerations of MLP
- 5. Worked examples

Multi-Layer Perceptron (MLP)



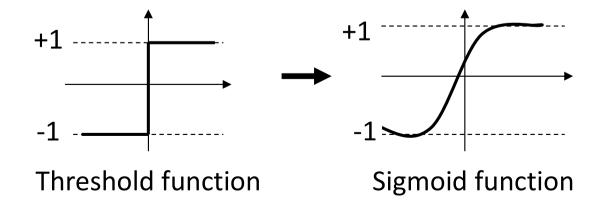
Generalized Delta Rule

Recall the PLR/Delta rule: Adjust neuron weights to reduce error at neuron's output:

$$w = w_{old} + \eta \delta x$$
 where $\delta = y_{t \arg et} - y$

Main problem: How to adjust the weights in the hidden layer, so they reduce the error in the output layer, when there is no specified target response in the hidden layer?

Solution: Alter the non-linear Perceptron (discrete threshold) activation function to make it differentiable and hence, help derive Generalized DR for MLP training.



Sigmoid Function Properties

- Approximates the threshold function
- Smoothly differentiable everywhere
- Positive slope

$$y = f(a) = \frac{1}{1 + e^{-a}}$$

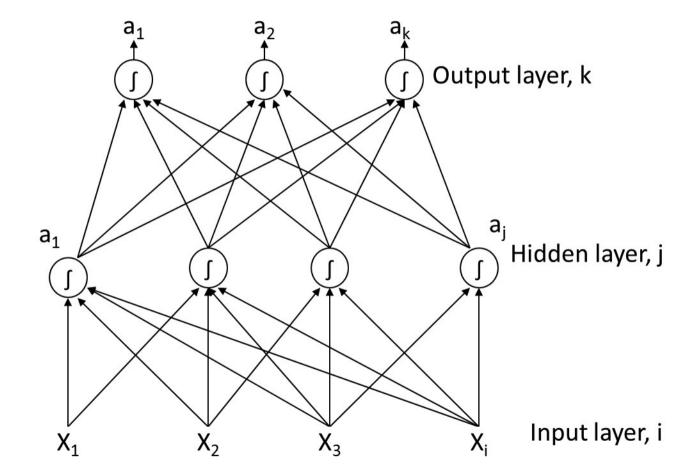
• Derivative of sigmoidal function is:

$$f'(a) = f(a) \cdot (1 - f(a))$$

Outline

- 1. Recap from previous lectures
- 2. Multi-layer perceptron
- 3. Generalized delta rule (Backpropagation)
- 4. Practical considerations of MLP
- 5. Worked examples

Derivation of backpropagation rule



k: output layer j: hidden layer i: input layer

w_{kj}: weight from hidden to output layer

w_{ji}: weight from input to hidden layer

a: outputt: target outputnet: combined input

Calculus review

1. Chain rule:
$$\frac{d(e^u)}{dx} = e^u \frac{du}{dx}$$

2.
$$\frac{d(g+h)}{dx} = \frac{dg}{dx} + \frac{dh}{dx}$$

3.
$$\frac{d(g^n)}{dx} = ng^{n-1}\frac{dg}{dx}$$

Gradient descent on error

$$E = \frac{1}{2} \sum_{k} (t_k - a_k)^2$$

Total error in the network

$$\Delta W \propto - rac{\partial E}{\partial W}$$

Adjust network weights to reduce overall error

$$\Delta w_{kj} \propto -\frac{\partial E}{\partial w_{kj}}$$

$$\Delta w_{kj} = -\varepsilon \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial net_k} \frac{\partial net_k}{\partial w_{kj}}$$

via chain rule

Derivative of the error w.r.t. activation

Using
$$\frac{d(g^n)}{dx} = ng^{n-1}\frac{dg}{dx}$$

$$\frac{\partial E}{\partial a_k} = \frac{\partial (\frac{1}{2}(t_k - a_k)^2)}{\partial a_k} = -(t_k - a_k)$$

Derivative of activation w.r.t. net input

$$\frac{\partial a_k}{\partial net_k} = \frac{\partial (1 + e^{-net_k})^{-1}}{\partial net_k} = \frac{e^{-net_k}}{(1 + e^{-net_k})^2}$$

Notice:

$$1 - \frac{1}{1 + e^{-net_k}} = \frac{e^{-net_k}}{1 + e^{-net_k}}$$

Rewriting in terms of the activation function

$$a_k(1-a_k)$$

Derivative of net input w.r.t. weight

$$\frac{\partial net_k}{\partial w_{kj}} = \frac{\partial (w_{kj}a_j)}{\partial w_{kj}} = a_j$$

Weight change rule for a hidden to output weight

• Substituting everything back

$$\Delta w_{kj} = \varepsilon \overbrace{(t_k - a_k)a_k(1 - a_k)}^{\delta_k} a_j$$

 $\Delta w_{kj} = \varepsilon \delta_k a_j$

Weight change rule for an input to hidden weight

$$\Delta w_{ji} \propto -\left[\sum_{k} \frac{\partial E}{\partial a_k} \frac{\partial a_k}{\partial net_k} \frac{\partial net_k}{\partial a_j}\right] \frac{\partial a_j}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$$

via chain rule

$$=\varepsilon [\underbrace{\sum_{k} (t_k - a_k) a_k (1 - a_k)}_{\delta_j} w_{kj}] a_j (1 - a_j) a_i$$
$$=\varepsilon [\underbrace{\sum_{k} \delta_k w_{kj}}_{kj}] a_j (1 - a_j) a_i$$

$$\Delta w_{ji} = \varepsilon \delta_j a_i$$

Backpropagation rule

So, the weight change from the input layer unit *i* to hidden layer unit *j* is:

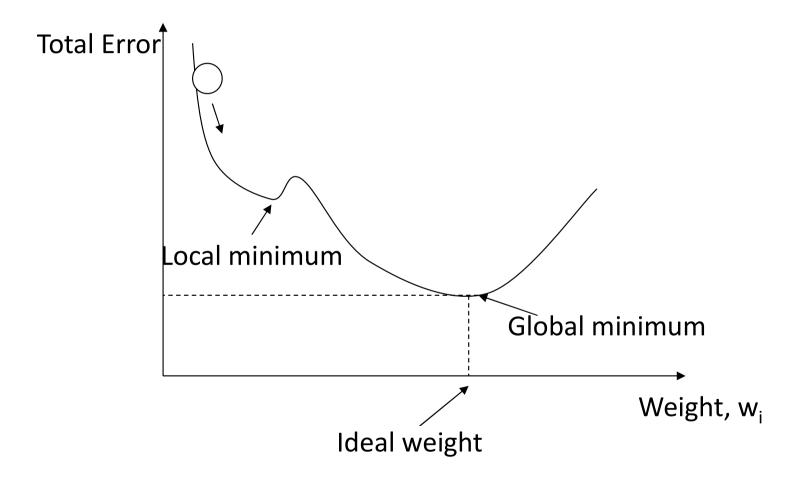
$$\Delta w_{ji} = arepsilon \delta_j a_i$$
 where

$$\varepsilon \overbrace{[\sum_k \delta_k w_{kj}]a_j(1-a_j)}^{\delta_j} a_i$$

The weight change from the hidden layer unit *j* to the output layer unit *k* is:

$$\Delta w_{kj} = \varepsilon \delta_k a_j$$
 where $\varepsilon \overbrace{(t_k - a_k)a_k(1 - a_k)}^{\delta_k} a_j$

Graphical Representation of GDR



Training a two-layer feed forward network

- 1. Take the set of training patterns you wish the network to learn
- 2. Set up the network with **N** input units fully connected to **M** hidden nonlinear hidden units via connections with weights w_{ij} , which in turn are fully connected to **P** output units via connections with weights w_{ik}
- 3. Generate random initial weights, e.g. from range [-wt, +wt]
- 4. Select appropriate error function $E(w_{jk})$ and learning rate η
- 5. Apply the weight update equation $\Delta w_{jk} = -\eta \partial E(w_{jk})/\partial w_{jk}$ to each weight w_{jk} for each training pattern p.
- 6. Do the same to all hidden layers.
- 7. Repeat step 5-6 until the network error function is 'small enough'

Outline

- 1. Recap from previous lectures
- 2. Multi-layer perceptron
- 3. Generalized delta rule (Backpropagation)
- 4. Practical considerations of MLP
- 5. Worked examples

Practical Considerations

- 1. Do we need to pre-process the training data? If so, how?
- 2. How do we choose the initial weights from which we start the training?
- 3. How do we choose an appropriate learning rate η ?
- 4. Should we change the weights after each training pattern, or after the whole set?
- 5. Are some activation/transfer functions better than others?
- 6. How do we avoid local minima in the error function?
- 7. How do we know when we should stop the training?
- 8. How many hidden units do we need?
- 9. Should we have different learning rates for the different layers?

Pre-processing of training data

- Training data should be representative
 - Not too many examples of one type at the expense of another.
 - If one class of pattern is easy to learn, having large numbers of patterns from that class in the training set will only slow down the over-all learning process.
- Rescale input data if continuous
 - Shift zero of the scale so that the mean value of each input is near zero
 - Normalise so std of values for each input are roughly the same
- On-line training
 - shuffle the order of the training data each epoch.

Choosing the Initial Weight Values

- Never start all weights start from the same values
 - Learning rule will change weights the same way, so all the hidden units will end up doing the same thing and the network will never learn properly.
- We generally start off all the weights with small random values.
 - Take values from a flat distribution around zero [-smwt, +smwt], or
 - From a Gaussian distribution around zero with standard deviation smwt.
- When choosing a value for *smwt* make it as large as you can without saturating any of the sigmoids.
- Train network from a number of different random initial weight sets to make sure performance is independent of initial weight values

Choosing the Learning Rate

- Choosing a good value for the learning rate ε is constrained by two opposing facts:
 - 1. If ϵ is too small, it will take too long to get anywhere near the minimum of the error function.
 - 2. If ε is too large, the weight updates will over-shoot the error minimum and the weights will oscillate, or even diverge.
- Finding the optimal value is very problem and network dependent, so one cannot formulate reliable general prescriptions.
- Try a range of different values (e.g. ε = 0.1, 0.01, 1.0, 0.0001) and use the results as a guide.

Batch Training vs. On-line Training

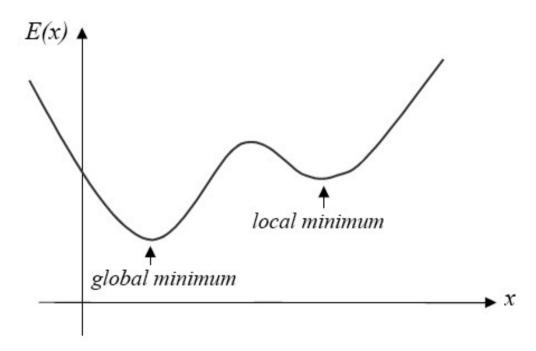
- **Batch Training:** update the weights after all training patterns have been presented.
- **On-line Training (or Sequential Training):** update all the weights immediately after processing each training pattern.
 - Individual weight changes can be rather erratic.
 - A much lower learning rate ε will be necessary than for batch learning.
 - Each weight has *npatterns* updates per epoch, rather than just one => learning is much quicker
 - Particularly if there is a lot of redundancy in the training data, i.e. many training patterns containing similar information.

Choosing the Transfer Function

- A differentiable transfer/activation function is important for the gradient descent algorithm to work.
- The logistic function ranges from 0 to 1. There is some evidence that an anti-symmetric transfer function, i.e. one that satisfies f(-x) = -f(x), enables the gradient descent algorithm to learn faster.
- When outputs are continuous real values, then sigmoidal transfer functions no longer makes sense. Thus, a simple linear transfer function f(x) = x is appropriate.

Local Minima

Cost functions can quite easily have more than one minimum:



- If we start off in the vicinity of the local minimum, we may end up at the local minimum rather than the global minimum.
- Starting with a range of different initial weight sets increases our chances of finding the global minimum.

When to Stop Training

- The Sigmoid(x) function reach its extreme values of 0 and 1 when x = ±∞.
- Network achieves its binary targets when at least some of its weights reach ±∞.
- Given finite gradient descent step sizes, our networks will never reach their binary targets.
- Even if we off-set the targets (to 0.1 and 0.9 say) we will generally require an infinite number of increasingly small gradient descent steps to achieve those targets.
- Clearly, if the training algorithm can never actually reach the minimum, we have to stop the training process when it is 'near enough'.
 - Stop the training when the sum squared error function becomes less than a particular small value (0.2 say).

How Many Hidden Units?

- Best number of hidden units depends on
 - Number of training patterns
 - Numbers of input and output units
 - Amount of noise in the training data
 - Complexity of the function or classification to be learned
 - Type of hidden unit activation function
 - Training algorithm
- Too few hidden units will generally leave high training and generalisation errors due to under-fitting.
- Too many hidden units will result in low training errors, but will make the training unnecessarily slow, and will result in poor generalisation unless some other technique (such as *regularisation*) is used to prevent over-fitting.
- A sensible strategy is to try a range of numbers of hidden units and see which works best.

Different Learning Rates for Different Layers?

- A network usually learns most efficiently if all its neurons are learning at roughly the same speed.
- A number of factors affect the choices:
 - Later network layers (nearer the outputs) have larger local gradients (*deltas*) than the earlier layers (nearer the inputs).
 - Activations of units with many connections feeding into or out of them change faster than units with fewer connections.
 - Activations required for linear units will be different for Sigmoidal units.
 - Empirical evidence showed better to have different learning rates η for the thresholds/biases.
- In practice, it is often quicker to just use the same rates η for all the weights and thresholds, rather than spending time trying to work out appropriate differences.
- <u>Solution</u>: use evolutionary strategies to determine good learning rates.

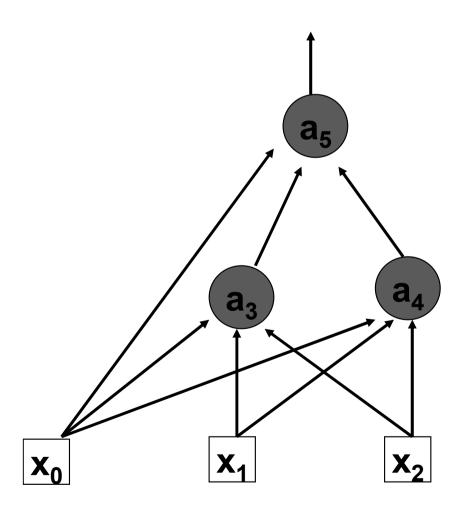
Outline

- 1. Recap from previous lectures
- 2. Multi-layer Perceptron
- 3. Generalized Delta Rule (a.k.a. Backpropagation algorithm)
- 4. Practical considerations of MLP

5. Worked examples

Example

- Three-layer feedforward neural network
- Layer 1: 3 units
- Layer 2: 2 units
- Layer 3: 1 unit
- Connectivity: all-to-all



...(2)

Input patterns: $x_1 = 1$, $x_2 = 0$ Bias input: $x_0 = 1$ Weights: $w_{13} = 3$, $w_{14} = 6$, $w_{03} = 1$, $w_{04} = -6$, $w_{23} = 4$, $w_{24} = 5$, $w_{05} = -3.93$, $w_{35} = 2$, $w_{45} = 4$

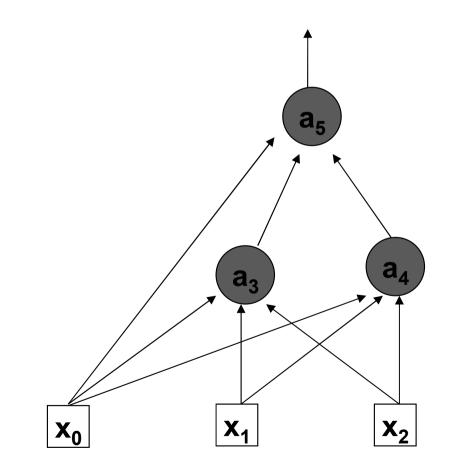
Unit output:

$$y_j = f(a_j) = \frac{1}{1 + e^{-a_j}}$$

Combined input:

$$a_j = \sum_i w_{ij} \cdot x_i$$

Target output: y_{target} = 1



...(3)

• For unit j = 3:

$$a_3 = 1*1 + 3*1 + 4*0 = 4$$

 $y_3 = f(a_3) = f(4) = 0.982$

• For unit j =4:

$$a_4 = 1^*(-6) + 1^*6 + 0^*5 = 0$$

 $y_4 = f(a_4) = f(0) = 0.5$

• For unit j=5

$$a_5 = 1^*(-3.93) + 0.982^*2 + 4^*0.5 = 0.04$$

 $y_3 = f(a_3) = f(0.04) = 0.51$

So, the error between the NETWORK OUTPUT and the TARGET OUTPUT is: $(y_{target} - y) = (1-0.51) = 0.49$

Weight Update Rule

Generally, weight change from any unit j to unit k by gradient descent (i.e. weight change by small increment in negative direction to the gradient) is now called **Generalized Delta Rule (GDR** or **Backpropagation**):

$$\Delta w = w - w_{old} = -\eta \frac{\partial E}{\partial w} = +\eta \delta x$$

So, the weight change from the input layer unit *i* to hidden layer unit *j* is:

$$\Delta w_{ij} = \eta \cdot \delta_j \cdot x_i \quad \text{where} \quad \left\{ \delta_j = o_j (1 - o_j) \sum_k w_{jk} \cdot \delta_k \right\}$$

The weight change from the hidden layer unit *j* to the output layer unit *k* is:

$$\Delta w_{jk} = \eta \cdot \delta_k \cdot o_j$$
 where $\delta_k = (y_{target}, y_{target})$

$$\delta_k = (y_{t \arg et, k} - y_k) y_k (1 - y_k)$$

Backward pass

- $\Delta w_{03} = \eta \delta_3 x_0 = 0.1 * 0.0043 * 1 = 0.00043$
- $\delta_3 = y_3(1-y_3) w_{35} \delta_5 = 0.982^*(1-0.982)^*2^*(1-0.51)^*0.51^*(1-0.51) = 0.0043$
- $\Delta w_{04} = \eta \delta_4 x_0 = 0.1 * 0.1225 * 1 = 0.01225$
- $\delta_4 = y_4(1-y_4) w_{45} \delta_5 = 0.5^*(1-0.5)^* 4^*(1-0.51)^* 0.51^*(1-0.51) = 0.1225$
- $\Delta w_{13} = \eta \delta_3 x_1 = 0.1 * 0.0043 * 1 = 0.00043$
- $\delta_3 = y_3(1-y_3) w_{35} \delta_5 = 0.982*(1-0.982)*2*(1-0.51)*0.51*(1-0.51)=0.0043$
- $\Delta w_{14} = \eta \delta_4 x_1 = 0.1 * 0.1225 * 1 = 0.01225$
- $\delta_4 = y_4(1-y_4) w_{45} \delta_5 = 0.5^*(1-0.5)^* 4^*(1-0.51)^* 0.51^*(1-0.51) = 0.1225$

...(2)

- $\Delta w_{23} = \eta \delta_3 x_2 = 0.1 * 0.0043 * 0 = 0$
- $\delta_3 = y_3(1-y_3) w_{35} \delta_5 = 0.982*(1-0.982)*2*(1-0.51)*0.51*(1-0.51)=0.0043$
- $\Delta w_{24} = \eta \delta_4 x_2 = 0.1 * 0.1225 * 0 = 0$
- $\delta_4 = y_4(1-y_4) w_{45} \delta_5 = 0.5^*(1-0.5)^* 4^*(1-0.51)^* 0.51^*(1-0.51) = 0.1225$
- $\Delta w_{35} = \eta \delta_5 y_3 = 0.1 \times 0.1225 \times 0.982 = 0.012$
- $\delta_5 = (y_{target} y_5)y_5(1 y_5) = (1 0.51)*0.51*(1 0.51)=0.1225$
- $\Delta w_{45} = \eta \delta_5 y_4 = 0.1 * 0.1225 * 0.5 = 0.0061$
- $\delta_5 = (y_{target} y_5)y_5(1 y_5) = (1 0.51) * 0.51 * (1 0.51) = 0.1225$

...(3)

Similarly for all weights w_{ij}:

i	j	w _{ij}	δ _j	Уi	Updated w _{ij}
0	3	1	0.0043	1.0	1.0004
1	3	3	0.0043	1.0	3.0004
2	3	4	0.0043	0.0	4.0000
0	4	-6	0.1225	1.0	-5.9878
1	4	6	0.1225	1.0	6.0123
2	4	5	0.1225	0.0	5.0000
0	5	-3.92	0.1225	1.0	-3.9078
3	5	2	0.1225	0.9820	2.0120
4	5	4	0.1225	0.5	4.0061

Verification that it works!

On the next forward pass:

The new activations are: $y_3 = f(4.0008) = 0.9820$ $y_4 = f(0.0245) = 0.5061$ $y_5 = f(0.0955) = 0.5239$

Thus the **<u>new error</u>**

 $(y_{target} - y_5) = (1-0.5239) = 0.476$

has been reduced by **0.014** (from **0.490** to **0.476**)

