
Feedforward neural networks:
Backpropagation/Gradient Descent

Stefanos Kollias
Professor of Machine Learning

School of Computer Science
University of Lincoln

Machine Learning
8/12/2020

Outline
1. Recap from previous lectures
2. Multi-layer perceptron
3. Generalized delta rule (Backpropagation)
4. Practical considerations of MLP
5. Worked examples

Outline
1. Recap from previous lectures
2. Multi-layer perceptron
3. Generalized delta rule (Backpropagation)
4. Practical considerations of MLP
5. Worked examples

Recap from first lecture
neuron or node, basic information processing structure in
neural networks

Unit:

Connection: a conduit through which information flows between
members of a network.

Activation:

Connection weight:

Activation
function:

How to estimate a

how actively a neuron sends an action potential (firing
rate)

the strength or weakness of a connection

INPUT into the activation value range, usually between
0 and 1

Step 1: Estimate the combine input
Step 2: Squash it

Recap: McCulloch-Pitt Neuron
In analogy to a biological neuron, we can think of a virtual
neuron that crudely mimics the biological neuron and performs
analogous computation.

Just like biological neurons, this artificial neuron neuron will have:
 Inputs (like biological dendrites) carry signal to cell body.

inputs

 A body (like the soma), sums over inputs to compute output, and

cell

body

 outputs (like synapses on the axon) transmit the output downstream.

output

*

*

*
*
*

over all i

 Weighted inputs are summed in the cell body.

Recap: MCP properties

consists of "adders" and a
threshold.

 Each input has an assigned weight w.

w1

w2

w3

wn

w
ei

gh
ts

inputs

x1
x2
x3

xn

in
pu

ts

 Inputs x are binary: 0,1.

1 if
0 if <

output

 Otherwise, the output=0.
 If the neuron fires, the output =1.

 Neuron fires if sum exceeds (or equals) activation threshold .

Recap: Linear separable problems
We can now plot the decision boundary of AND logic gate

AND

x1 x2 out

0 0 0

0 1 0

1 0 0

1 1 1

x1

x2 (0, 0) (0, 1)

(1, 0)
(1, 1)

AND
w1=1, w2=1, =1.5

slope intercept

1.5

1.5

Recap: Linear separable problems
We can now plot the decision boundary of OR logic gate

x1

x2

(1, 1)

(0, 1) (0, 0)

(1, 0)

OR

x1 x2 out

0 0 0

0 1 1

1 0 1

1 1 1

OR
w1=1, w2=1, =0.5

slope intercept

0.5

0.5

Recap: Non-linearly separable problems:

XOR

x1 x2 out

0 0 0

0 1 1

1 0 1

1 1 0

x1

Geometric representation

x2

Solution: needs two lines to separate the data into two classes

the activation function
Need two straight lines to separate the different

outputs/decisions:

x1
XOR

x1 x2 out
0 0 0
0 1 1
1 0 1
1 1 0

x2

1

1 = ?, 2 = ?

 ?

 ? OUT

x1

x2
2

Find w1, w2, 1 and 2
that satisfies the XOR
gate

problem
Recall that it is not possible to find weights that enable Single Layer

Perceptrons to deal with non-linearly separable problems like XOR

XOR
x1 x2 out
0 0 0
0 1 1
1 0 1
1 1 0

The proposed solution was to use a more complex network that is able
to generate more complex decision boundaries. That network is the
Multi-Layer Perceptron.

x1

x2

Outline
1. Recap from previous lectures
2. Multi-layer perceptron
3. Generalized delta rule (Backpropagation)
4. Practical considerations of MLP
5. Worked examples

Multi-Layer Perceptron (MLP)

X1 X2 X3 Xi

O1 Oj

Y1 Y2 Yk

Output layer, k

Hidden layer, j

Input layer, i

Generalized Delta Rule

where

Main problem: How to adjust the weights in the hidden layer, so they reduce the
error in the output layer, when there is no specified target response in the hidden
layer?

Solution: Alter the non-linear Perceptron (discrete threshold) activation function to
make it differentiable and hence, help derive Generalized DR for MLP training.

+1

-1

Threshold function

+1

-1

Sigmoid function

Sigmoid Function Properties

Approximates the threshold function
Smoothly differentiable everywhere
Positive slope

 Derivative of sigmoidal function is:

Outline
1. Recap from previous lectures
2. Multi-layer perceptron
3. Generalized delta rule (Backpropagation)
4. Practical considerations of MLP
5. Worked examples

Derivation of backpropagation rule

k: output layer
j: hidden layer
i: input layer

wkj: weight from
hidden to output layer

wji: weight from input
to hidden layer

a: output
t: target output
net: combined input

Calculus review

Chain rule: 1.

2.

3.

Gradient descent on error

Total error in the network

Adjust network weights to reduce
overall error

via chain rule

Derivative of the error w.r.t. activation

Using

Derivative of activation w.r.t. net input

Notice:

Rewriting in terms of the activation function

Derivative of net input w.r.t. weight

Weight change rule for a hidden to
output weight

Substituting everything back

Weight change rule for an input to
hidden weight

via chain rule

Backpropagation rule

So, the weight change from the input layer unit i to hidden layer unit j is:

where

The weight change from the hidden layer unit j to the output layer unit k is:

where

Graphical Representation of GDR

Ideal weight
Weight, wi

Total Error

Local minimum

Global minimum

Training a two-layer feed forward
network

1. Take the set of training patterns you wish the network to learn

2. Set up the network with N input units fully connected to M hidden non-
linear hidden units via connections with weights wij, which in turn are
fully connected to P output units via connections with weights wjk

3. Generate random initial weights, e.g. from range [-wt, +wt]

4. Select appropriate error function E(wjk) and learning rate

5. Apply the weight update equation wjk=- E(wjk)/ wjk to each weight
wjk for each training pattern p.

6. Do the same to all hidden layers.

7. Repeat step 5-

Outline
1. Recap from previous lectures
2. Multi-layer perceptron
3. Generalized delta rule (Backpropagation)
4. Practical considerations of MLP
5. Worked examples

Practical Considerations
1. Do we need to pre-process the training data? If so, how?
2. How do we choose the initial weights from which we start

the training?
3. How do we choose an appropriate learning rate ?
4. Should we change the weights after each training pattern,

or after the whole set?
5. Are some activation/transfer functions better than others?
6. How do we avoid local minima in the error function?
7. How do we know when we should stop the training?
8. How many hidden units do we need?
9. Should we have different learning rates for the different

layers?

Pre-processing of training data
Training data should be representative

Not too many examples of one type at the expense of another.
If one class of pattern is easy to learn, having large numbers of patterns
from that class in the training set will only slow down the over-all
learning process.

Rescale input data if continuous

Shift zero of the scale so that the mean value of each input is near zero
Normalise so std of values for each input are roughly the same

On-line training

shuffle the order of the training data each epoch.

Choosing the Initial Weight Values
Never start all weights start from the same values

Learning rule will change weights the same way, so all the hidden units
will end up doing the same thing and the network will never learn
properly.

We generally start off all the weights with small random
values.

Take values from a flat distribution around zero [smwt, +smwt], or
From a Gaussian distribution around zero with standard deviation
smwt.

When choosing a value for smwt make it as large as you can
without saturating any of the sigmoids.
Train network from a number of different random initial
weight sets to make sure performance is independent of
initial weight values

Choosing the Learning Rate
Choosing a good value for the learning rate is constrained by
two opposing facts:
1. If is too small, it will take too long to get anywhere near the

minimum of the error function.
2. If is too large, the weight updates will over-shoot the error minimum

and the weights will oscillate, or even diverge.

Finding the optimal value is very problem and network
dependent, so one cannot formulate reliable general
prescriptions.

Try a range of different values (e.g. = 0.1, 0.01, 1.0, 0.0001)
and use the results as a guide.

Batch Training vs. On-line Training
Batch Training: update the weights after all training patterns
have been presented.

On-line Training (or Sequential Training): update all the
weights immediately after processing each training pattern.

Individual weight changes can be rather erratic.
A much lower learning rate will be necessary than for batch learning.
Each weight has npatterns updates per epoch, rather than just one =>
learning is much quicker
Particularly if there is a lot of redundancy in the training data, i.e.
many training patterns containing similar information.

Choosing the Transfer Function
A differentiable transfer/activation function is important for
the gradient descent algorithm to work.

The logistic function ranges from 0 to 1. There is some
evidence that an anti-symmetric transfer function, i.e. one
that satisfies f(x) = f(x), enables the gradient descent
algorithm to learn faster.

When outputs are continuous real values, then sigmoidal
transfer functions no longer makes sense. Thus, a simple
linear transfer function f(x) = x is appropriate.

Local Minima
Cost functions can quite easily have more than one minimum:

If we start off in the vicinity of the local minimum, we may end
up at the local minimum rather than the global minimum.
Starting with a range of different initial weight sets increases
our chances of finding the global minimum.

When to Stop Training
The Sigmoid(x) function reach its extreme values of 0 and 1
when x = ± .
Network achieves its binary targets when at least some of its
weights reach ± .
Given finite gradient descent step sizes, our networks will
never reach their binary targets.
Even if we off-set the targets (to 0.1 and 0.9 say) we will
generally require an infinite number of increasingly small
gradient descent steps to achieve those targets.
Clearly, if the training algorithm can never actually reach the
minimum, we have to stop the training process when it is

Stop the training when the sum squared error function becomes less
than a particular small value (0.2 say).

How Many Hidden Units?
Best number of hidden units depends on

Number of training patterns
Numbers of input and output units
Amount of noise in the training data
Complexity of the function or classification to be learned
Type of hidden unit activation function
Training algorithm

Too few hidden units will generally leave high training and
generalisation errors due to under-fitting.
Too many hidden units will result in low training errors, but
will make the training unnecessarily slow, and will result in
poor generalisation unless some other technique (such as
regularisation) is used to prevent over-fitting.
A sensible strategy is to try a range of numbers of hidden
units and see which works best.

Different Learning Rates for
Different Layers?

A network usually learns most efficiently if all its neurons are
learning at roughly the same speed.
A number of factors affect the choices:

Later network layers (nearer the outputs) have larger local gradients
(deltas) than the earlier layers (nearer the inputs).
Activations of units with many connections feeding into or out of them
change faster than units with fewer connections.
Activations required for linear units will be different for Sigmoidal
units.
Empirical evidence showed better to have different learning rates for
the thresholds/biases.

In practice, it is often quicker to just use the same rates for
all the weights and thresholds, rather than spending time
trying to work out appropriate differences.
Solution: use evolutionary strategies to determine good
learning rates.

Outline
1. Recap from previous lectures
2. Multi-layer Perceptron
3. Generalized Delta Rule (a.k.a. Backpropagation

algorithm)
4. Practical considerations of MLP
5. Worked examples

Example

Three-layer feedforward
neural network
Layer 1: 3 units
Layer 2: 2 units
Layer 3: 1 unit
Connectivity: all-to-all

a3
a4

a5

x1 x2 x0

Input patterns: x1 = 1, x2 = 0
Bias input: x0 = 1
Weights: w13 = 3, w14 = 6, w03 =

1, w04 = -6, w23 = 4, w24 = 5,
w05 = -3.93, w35 = 2, w45 = 4

Unit output:

Combined input:

Target output: ytarget = 1

a3
a4

a5

x1 x2 x0

For unit j = 3:

 a3 = 1*1 + 3*1 + 4*0 = 4
 y3 = f(a3) = f(4) = 0.982

For unit j =4:

 a4 = 1*(-6) + 1*6 + 0*5 = 0
 y4 = f(a4) = f(0) = 0.5

For unit j=5
 a5 = 1*(-3.93) + 0.982*2 + 4*0.5 = 0.04
 y3 = f(a3) = f(0.04) = 0.51

So, the error between the NETWORK OUTPUT and the TARGET
OUTPUT is: (ytarget y) = (1-0.51) = 0.49

Weight Update Rule
Generally, weight change from any unit j to unit k by gradient descent (i.e. weight

change by small increment in negative direction to the gradient) is now called
Generalized Delta Rule (GDR or Backpropagation):

So, the weight change from the input layer unit i to hidden layer unit j is:

where

The weight change from the hidden layer unit j to the output layer unit k is:

where

Backward pass

w03= 3x0 = 0.1*0.0043*1=0.00043

3=y3(1-y3)w35 5=0.982*(1-0.982)*2*(1-0.51)*0.51*(1-
0.51)=0.0043

w04= 4x0 = 0.1*0.1225*1=0.01225

4=y4(1-y4)w45 5=0.5*(1-0.5)*4*(1-0.51)*0.51*(1-
0.51)=0.1225

w13= 3x1 = 0.1*0.0043*1 = 0.00043

3=y3(1-y3)w35 5=0.982*(1-0.982)*2*(1-0.51)*0.51*(1-
0.51)=0.0043

w14= 4x1=0.1*0.1225*1=0.01225

4=y4(1-y4)w45 5=0.5*(1-0.5)*4*(1-0.51)*0.51*(1-
0.51)=0.1225

w23= 3x2 = 0.1*0.0043*0 = 0

3=y3(1-y3)w35 5=0.982*(1-0.982)*2*(1-0.51)*0.51*(1-
0.51)=0.0043

w24= 4x2=0.1*0.1225*0=0

4=y4(1-y4)w45 5=0.5*(1-0.5)*4*(1-0.51)*0.51*(1-
0.51)=0.1225

w35= 5y3=0.1*0.1225*0.982=0.012

5=(ytarget-y5)y5(1-y5)=(1-0.51)*0.51*(1-0.51)=0.1225

w45= 5y4=0.1*0.1225*0.5=0.0061

5=(ytarget-y5)y5(1-y5)=(1-0.51)*0.51*(1-0.51)=0.1225

Similarly for all weights wij:
i j wij j yi Updated

wij

0 3 1 0.0043 1.0 1.0004
1 3 3 0.0043 1.0 3.0004
2 3 4 0.0043 0.0 4.0000
0 4 -6 0.1225 1.0 -5.9878
1 4 6 0.1225 1.0 6.0123
2 4 5 0.1225 0.0 5.0000
0 5 -3.92 0.1225 1.0 -3.9078
3 5 2 0.1225 0.9820 2.0120
4 5 4 0.1225 0.5 4.0061

Verification that it works!
On the next forward pass:
The new activations are:
y3 = f(4.0008) = 0.9820
y4 = f(0.0245) = 0.5061
y5 = f(0.0955) = 0.5239

Thus the new error

(ytarget y5) = (1-0.5239) = 0.476

has been reduced by 0.014
(from 0.490 to 0.476)

a3
a4

a5

x1 x2

x0

0.5239

0.5061
0.982

ytarget = 1

x0 =1

x1 =1 x2 =0

