
Generic form of
Feedforward Neural Networks
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Designing feedforward neural networks

Feedforward Neural Network (I) 36

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ2

𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ2×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ2

𝑥𝑥1 → ℎ1
(0)

𝑥𝑥2 → ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) ← 𝑦𝑦1

𝑎𝑎1
(3)

• The number of layers
• The numbers of dimensions of hidden layers
• An activation function for each layer
• A loss function

Σ 𝑔𝑔(3) ℎ2
(3) ← 𝑦𝑦2

𝑎𝑎1
(3)



Cross entropy loss
• For binary classification
𝑙𝑙(𝑎𝑎, 𝑦𝑦) = −𝑦𝑦 log𝜎𝜎(𝑎𝑎) − (1 − 𝑦𝑦) log 1 − 𝜎𝜎 𝑎𝑎

• For multi-class classification
𝑙𝑙 𝒂𝒂,𝑦𝑦 = −𝑎𝑎𝑦𝑦 + log�

𝑘𝑘

exp(𝑎𝑎𝑘𝑘)

• Cross entropy
𝐻𝐻 𝑝𝑝, 𝑞𝑞 = −�

𝑘𝑘

𝑝𝑝 𝑘𝑘 log 𝑞𝑞 𝑘𝑘
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True probability distribution
(1 for true category; 0 otherwise)

Predicted probability distribution



Mean Squared Error (MSE) loss
• Used for regression

𝑙𝑙 𝒂𝒂,𝒚𝒚 =
1
2

𝒚𝒚 − 𝒂𝒂 2
2
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Training multi-layer neural networks
and back propagation
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Generic notation for multi-layer NNs
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Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ
𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ1×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ

𝑥𝑥1 = ℎ1
(0)

𝑥𝑥2 = ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) = �𝒚𝒚

𝑎𝑎1
(3)

• The 𝑙𝑙–th layer (𝑙𝑙 ∈ 1, … , 𝐿𝐿 ) consists of:
• Input: 𝒉𝒉(𝑙𝑙−1) ∈ ℝ𝑑𝑑𝑙𝑙−1 (𝒉𝒉(0) = 𝒙𝒙)
• Output: 𝒉𝒉(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙 (𝒉𝒉(𝐿𝐿) = �𝒚𝒚)
• Weight: 𝑊𝑊(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙×𝑑𝑑𝑙𝑙−1

• Activation function: 𝑔𝑔(𝑙𝑙)

• Activation: 𝒂𝒂(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙

𝑊𝑊(𝑙𝑙) = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙

Please accept the notational conflict between 
an instance-wise loss 𝑙𝑙𝑛𝑛 and a layer number 𝑙𝑙𝒉𝒉(𝑙𝑙) = 𝑔𝑔(𝑙𝑙)(𝑊𝑊(𝑙𝑙)𝒉𝒉(𝑙𝑙−1))

𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙 : weight from the 𝑗𝑗-th neuron 

to the 𝑖𝑖-th neuron of the 𝑙𝑙-th layer



How to train weights in MLPs
• We have no explicit supervision signals for the internal 

(hidden) inputs/outputs 𝒉𝒉(2), … ,𝒉𝒉(𝐿𝐿−1)

• Having said that, SGD only needs the value of gradient 
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) in MLPs

• Can we compute the value of 𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙)?

• Yes! Backpropagation can do that!!
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Backpropagation
• Commonly used in deep neural networks

• Formulas for backpropagation look complicated

• However:
• We can understand backpropagation easily if we know 

the concept of computation graph
• Most deep learning frameworks implement 

backpropagation by using automatic differentiation

• Let’s see computation graph and automatic 
differentiation first
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Rules for reverse-mode AD
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+

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦

𝛿𝛿

𝛿𝛿

𝛿𝛿

×

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥𝑦𝑦

𝛿𝛿

𝑦𝑦 ⋅ 𝛿𝛿

𝑥𝑥 ⋅ 𝛿𝛿

𝑓𝑓(𝑥𝑥)
𝑧𝑧 = 𝑓𝑓(𝑥𝑥)

𝛿𝛿𝜕𝜕𝑓𝑓 𝑥𝑥
𝜕𝜕𝑥𝑥

⋅ 𝛿𝛿

𝑥𝑥

𝑥𝑥

𝛿𝛿1 + 𝛿𝛿2

𝛿𝛿1

𝛿𝛿2

𝑥𝑥

𝑥𝑥

Add

Multiply

Function application

Branch



Computation graph: 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/

Feedforward Neural Network (I) 53

𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝑧𝑧)

The value of a variable (above an arrow)

Forward pass

http://cs231n.github.io/optimization-2/


Automatic Differentiation (AD): 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/
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𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝑧𝑧)

The value of a variable (above an arrow)
The gradient of the output 𝑓𝑓 with respect to the variable (below an arrow)

1

3

−4

−4

−4

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

× 1 = 𝛼𝛼 = 3

𝜕𝜕𝑓𝑓
𝜕𝜕𝛼𝛼

× 1 = 𝑧𝑧 = −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑥𝑥

× −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑦𝑦

× −4

Compare with:
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑥𝑥 + 𝑦𝑦 = 3

Backward pass
(Reverse mode AD)

http://cs231n.github.io/optimization-2/


Automatic differentiation (Baydin+ 2018)
• AD computes derivations by using the chain rule

• Function values computed in the forward pass
• Derivations computed with respect to:

• Every variable (in reverse-mode accumulation)
• A specific variable (in forward-mode accumulation)

• Do not confuse with these:
• Numerical differentiation: for example, 𝜕𝜕𝑓𝑓(𝑥𝑥)

𝜕𝜕𝑥𝑥
= 𝑓𝑓 𝑥𝑥+𝛿𝛿 −𝑓𝑓(𝑥𝑥)

𝛿𝛿

• Symbolic differentiation: e.g., Mathematica, sympy
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Exercise: AD on computation graph
• Write a computation graph for 𝑙𝑙𝒙𝒙 𝑤𝑤 ,

𝑙𝑙𝒙𝒙 𝑤𝑤 = − log𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 = − log
1

1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙

• Consider 𝒙𝒙 = 1,1,1 ⊺ and 𝒘𝒘 = 1,1,−1.5 ⊺

• Compute the value of 𝑙𝑙𝒙𝒙 𝒘𝒘

• Compute gradients 𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘
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Computing  𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘

using AD
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𝑤𝑤1

𝑥𝑥1

×

+

+ × −1 exp +1 1/𝜋𝜋

𝛽𝛽

𝛾𝛾

𝜁𝜁

𝜅𝜅

𝜆𝜆

𝜇𝜇 𝜈𝜈 𝜉𝜉 𝜋𝜋 𝜛𝜛

−1.5

0.62251.60650.6065−0.50.5

-1.5

log

𝑙𝑙
𝜌𝜌

𝛼𝛼

𝑤𝑤2

𝑥𝑥2

×
𝜀𝜀

𝛿𝛿

𝑤𝑤3

𝑥𝑥3

×
𝜗𝜗

𝜃𝜃

1

1

1

1

1

1

1

2

𝛾𝛾 = 𝛼𝛼𝛽𝛽

𝜁𝜁 = 𝛿𝛿𝜀𝜀

𝜅𝜅 = 𝜃𝜃𝜗𝜗

𝜆𝜆 = 𝛾𝛾 + 𝜁𝜁

𝜇𝜇 = 𝜆𝜆 + 𝜅𝜅

⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛼𝛼 = 𝛽𝛽 ⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛽𝛽 = 𝛼𝛼
⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝛿𝛿 = 𝜀𝜀 ⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝜀𝜀 = 𝛿𝛿
⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜃𝜃 = 𝜗𝜗 ⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜗𝜗 = 𝜃𝜃
⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝛾𝛾 = 1 ⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝜁𝜁 = 1
⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜆𝜆 = 1 ⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜅𝜅 = 1

𝑣𝑣 = −𝜇𝜇 ⁄𝜕𝜕𝑣𝑣 𝜕𝜕 𝜇𝜇 = −1

𝜉𝜉 = 𝑒𝑒𝜈𝜈 ⁄𝜕𝜕𝜉𝜉 𝜕𝜕𝜈𝜈 = 𝑒𝑒𝜈𝜈

𝜋𝜋 = 𝜉𝜉 + 1 ⁄𝜕𝜕𝜋𝜋 𝜕𝜕𝜉𝜉 = 1
𝜛𝜛 = 1/𝜋𝜋 ⁄𝜕𝜕𝜛𝜛 𝜕𝜕𝜋𝜋 = −(1/𝜋𝜋)2

𝜌𝜌 = log𝜛𝜛 ⁄𝜕𝜕𝜌𝜌 𝜕𝜕𝜛𝜛 = 1/𝜛𝜛

−0.4740

𝑙𝑙 = −𝜌𝜌 ⁄𝜕𝜕𝑙𝑙 𝜕𝜕𝜌𝜌 = −1

−1−1.60650.62240.62240.3775−0.3775

𝜕𝜕𝑙𝑙
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

𝜕𝜕𝜋𝜋
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝜈𝜈

𝜕𝜕𝜈𝜈
𝜕𝜕𝜇𝜇

𝜕𝜕𝜇𝜇
𝜕𝜕𝜅𝜅

𝜕𝜕𝜇𝜇
𝜕𝜕𝜆𝜆

𝜕𝜕𝜆𝜆
𝜕𝜕𝜁𝜁

𝜕𝜕𝜆𝜆
𝜕𝜕𝛾𝛾

𝜕𝜕𝛾𝛾
𝜕𝜕𝛼𝛼

𝜕𝜕𝛾𝛾
𝜕𝜕𝛽𝛽

𝜕𝜕𝜁𝜁
𝜕𝜕𝛿𝛿

𝜕𝜕𝜁𝜁
𝜕𝜕𝜀𝜀

𝜕𝜕𝜅𝜅
𝜕𝜕𝜃𝜃

𝜕𝜕𝜅𝜅
𝜕𝜕𝜗𝜗

−0.3775

0.5663

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

0.4740

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

× −1

= − 1
𝜛𝜛

= − 1
0.6225

= −1.6065

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

× −1.6065

= − 1
1.6065

2
× −1.6065

= 0.6224

𝑤𝑤1 ⟵ 𝑤𝑤1 + 𝜂𝜂
𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝑤𝑤1

= 𝑤𝑤1 + 0.3775𝜂𝜂

× −1



No need to derive backpropagation
• Manual derivation of gradients is tedious and error-prone

• Debugging a mistake in gradients is extremely difficult

• AD is employed in most deep learning frameworks
• We only need implement an algorithm for a forward pass, i.e., how 

to compute an output from an input
• We can concentrate on designing a structure of neural network
• This boosted the speed of research and development
• The idea of AD is not new (since 1959)

• Deriving a formula for backpropagation is legacy
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Summary and notes
• We design:

• A neural network model 𝑓𝑓(𝒙𝒙;𝜃𝜃) (with parameters 𝜃𝜃)
• A loss function: 𝐸𝐸𝐷𝐷 𝜃𝜃 = ∑𝑛𝑛=1𝑁𝑁 ℒ 𝑓𝑓 𝒙𝒙𝑛𝑛; 𝜃𝜃 ,𝑦𝑦𝑛𝑛

• ℒ is an instance-wise loss function
• 𝐷𝐷 presents a set of training data 𝐷𝐷 = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁

• We find a minimizer 𝜃𝜃∗ for 𝐸𝐸𝐷𝐷 𝜃𝜃 by using SGD
• An update formula for every parameter 𝑤𝑤 ∈ 𝜃𝜃 is derived in 

a generic manner based on automatic differentiation

• Step function is inappropriate for backpropagation
• Gradients will not flow because 𝑔𝑔′ 𝑎𝑎 = 0 at 𝑎𝑎 ≠ 0
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Activation functions
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Step
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• Pros
• Yields a binary output

• Cons (never use this)
• Zero gradients

• SGD cannot update parameters because 𝜕𝜕𝑙𝑙
𝜕𝜕𝑤𝑤

= 0

Step function: ℝ → {0,1}

𝑔𝑔(𝑥𝑥) = �1 (if 𝑥𝑥 > 0)
0 (otherwise)

𝑔𝑔
𝑥𝑥 𝑔𝑔(𝑥𝑥)

𝛿𝛿0



Sigmoid
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• Pros
• Yields an output within (0,1)

• Cons
• Not zero-centered
• Zero (vanishing) gradients when |𝑥𝑥| is large

Sigmoid: ℝ → (0,1)

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥

𝑔𝑔
𝑥𝑥 𝜎𝜎(𝑥𝑥)

𝛿𝛿𝜎𝜎𝑓(𝑥𝑥)



Hyperbolic tangent (tanh)

• Pros
• Yields an output within (−1,1)
• Zero-centered

• Cons
• Zero (vanishing) gradients when |𝑥𝑥| is large
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tanh: ℝ → (−1,1)

tanh 𝑥𝑥 =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
= 2𝜎𝜎 2𝑥𝑥 − 1



Rectified Linear Unit (ReLU)
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ReLU: ℝ → ℝ≥0
ReLU 𝑥𝑥 = max(0, 𝑥𝑥)

• Pros
• Gradients do not vanish when 𝑥𝑥 > 0
• Light-weight (no 𝑒𝑒𝑥𝑥) computation
• Faster convergence (e.g., 6x faster on CIFAR-10)

• Cons
• Not zero centered
• Dead neurons when 𝑥𝑥 ≤ 0



Leaky ReLU
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Leaky ReLU: ℝ → ℝ
LeakyReLU𝛼𝛼 𝑥𝑥 = max(𝛼𝛼𝑥𝑥, 𝑥𝑥)

• Pros
• Gradients do not vanish
• Light-weight (no 𝑒𝑒𝑥𝑥) computation

• Cons
• Not zero centered
• Not so much improvement over ReLU in practice



Typical definition of a DNN
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  What made Deep Neural Networks 
possible and efficient?

Factors from the natural evolution of computation
- Better computers and software allow bigger networks with higher 
capacity to solve more difficult problems
- With bigger datasets available we must use stochastic methods like 
SGD

Algorithmic factors
- Cross-entropy is a better loss function than MSE for sigmoid, 
softmax
- ReLU in hidden layers is a better activation function than sigmoid 
and tanh for deeper networks
- Automatic differentiation is now a feature of all DL frameworks
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  What is the difference between a 
neural network and a deep neural 
network, and why do the deep 
ones work better?

Short answer: DNN simply seem to perform better! Read 
the first answer in the following link:
https://stats.stackexchange.com/questions/182734/what-is-the-differe 
nce-between-a-neural-network-and-a-deep-neural-network-and-w

https://stats.stackexchange.com/questions/182734/what-is-the-differe
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