
Generic form of
Feedforward Neural Networks

Feedforward Neural Network (II) 35

Designing feedforward neural networks

Feedforward Neural Network (I) 36

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ2

𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ2×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ2

𝑥𝑥1 → ℎ1
(0)

𝑥𝑥2 → ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) ← 𝑦𝑦1

𝑎𝑎1
(3)

• The number of layers
• The numbers of dimensions of hidden layers
• An activation function for each layer
• A loss function

Σ 𝑔𝑔(3) ℎ2
(3) ← 𝑦𝑦2

𝑎𝑎1
(3)

Cross entropy loss
• For binary classification
𝑙𝑙(𝑎𝑎, 𝑦𝑦) = −𝑦𝑦 log𝜎𝜎(𝑎𝑎) − (1 − 𝑦𝑦) log 1 − 𝜎𝜎 𝑎𝑎

• For multi-class classification
𝑙𝑙 𝒂𝒂,𝑦𝑦 = −𝑎𝑎𝑦𝑦 + log�

𝑘𝑘

exp(𝑎𝑎𝑘𝑘)

• Cross entropy
𝐻𝐻 𝑝𝑝, 𝑞𝑞 = −�

𝑘𝑘

𝑝𝑝 𝑘𝑘 log 𝑞𝑞 𝑘𝑘

Feedforward Neural Network (II) 37

True probability distribution
(1 for true category; 0 otherwise)

Predicted probability distribution

Mean Squared Error (MSE) loss
• Used for regression

𝑙𝑙 𝒂𝒂,𝒚𝒚 =
1
2

𝒚𝒚 − 𝒂𝒂 2
2

Feedforward Neural Network (II) 38

Training multi-layer neural networks
and back propagation

Feedforward Neural Network (I) 49

Generic notation for multi-layer NNs

Feedforward Neural Network (I) 50

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(1)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(2)

Σ 𝑔𝑔(3)

First layer:ℝ2 → ℝ3

𝒉𝒉(1) = 𝑔𝑔(1) 𝒂𝒂 1

𝒂𝒂(1) = 𝑊𝑊(1)𝒉𝒉(0)

𝑊𝑊(1) ∈ ℝ3×2,𝒂𝒂 1 ,𝒉𝒉 1 ∈ ℝ3

Second layer:ℝ3 → ℝ2

𝒉𝒉(2) = 𝑔𝑔(2) 𝒂𝒂 2

𝒂𝒂(2) = 𝑊𝑊(2)𝒉𝒉(1)

𝑊𝑊(2) ∈ ℝ2×3,𝒂𝒂 2 ,𝒉𝒉 2 ∈ ℝ2

Final layer:ℝ2 → ℝ
𝒉𝒉(3) = 𝑔𝑔(3) 𝒂𝒂 3

𝒂𝒂(3) = 𝑊𝑊(3)𝒉𝒉(2)

𝑊𝑊(3) ∈ ℝ1×2,𝒂𝒂 3 ,𝒉𝒉 3 ∈ ℝ

𝑥𝑥1 = ℎ1
(0)

𝑥𝑥2 = ℎ2
(0)

ℎ1
(1)

ℎ2
(1)

ℎ3
(1)

𝑎𝑎1
(1)

𝑎𝑎2
(1)

𝑎𝑎3
(1)

𝑎𝑎1
(2)

𝑎𝑎2
(2)

ℎ1
(2)

ℎ2
(2)

ℎ1
(3) = �𝒚𝒚

𝑎𝑎1
(3)

• The 𝑙𝑙–th layer (𝑙𝑙 ∈ 1, … , 𝐿𝐿) consists of:
• Input: 𝒉𝒉(𝑙𝑙−1) ∈ ℝ𝑑𝑑𝑙𝑙−1 (𝒉𝒉(0) = 𝒙𝒙)
• Output: 𝒉𝒉(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙 (𝒉𝒉(𝐿𝐿) = �𝒚𝒚)
• Weight: 𝑊𝑊(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙×𝑑𝑑𝑙𝑙−1

• Activation function: 𝑔𝑔(𝑙𝑙)

• Activation: 𝒂𝒂(𝑙𝑙) ∈ ℝ𝑑𝑑𝑙𝑙

𝑊𝑊(𝑙𝑙) = 𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙

Please accept the notational conflict between
an instance-wise loss 𝑙𝑙𝑛𝑛 and a layer number 𝑙𝑙𝒉𝒉(𝑙𝑙) = 𝑔𝑔(𝑙𝑙)(𝑊𝑊(𝑙𝑙)𝒉𝒉(𝑙𝑙−1))

𝑤𝑤𝑖𝑖𝑖𝑖
𝑙𝑙 : weight from the 𝑗𝑗-th neuron

to the 𝑖𝑖-th neuron of the 𝑙𝑙-th layer

How to train weights in MLPs
• We have no explicit supervision signals for the internal

(hidden) inputs/outputs 𝒉𝒉(2), … ,𝒉𝒉(𝐿𝐿−1)

• Having said that, SGD only needs the value of gradient
𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) in MLPs

• Can we compute the value of 𝜕𝜕𝑙𝑙𝑛𝑛
𝜕𝜕𝑤𝑤𝑖𝑖𝑖𝑖

(𝑙𝑙) for every weight 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙)?

• Yes! Backpropagation can do that!!

Feedforward Neural Network (I) 51

Backpropagation
• Commonly used in deep neural networks

• Formulas for backpropagation look complicated

• However:
• We can understand backpropagation easily if we know

the concept of computation graph
• Most deep learning frameworks implement

backpropagation by using automatic differentiation

• Let’s see computation graph and automatic
differentiation first

Feedforward Neural Network (I) 52

Feedforward Neural Network (I) 56

Rules for reverse-mode AD

Feedforward Neural Network (I) 56

+

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦

𝛿𝛿

𝛿𝛿

𝛿𝛿

×

𝑥𝑥

𝑦𝑦

𝑧𝑧 = 𝑥𝑥𝑦𝑦

𝛿𝛿

𝑦𝑦 ⋅ 𝛿𝛿

𝑥𝑥 ⋅ 𝛿𝛿

𝑓𝑓(𝑥𝑥)
𝑧𝑧 = 𝑓𝑓(𝑥𝑥)

𝛿𝛿𝜕𝜕𝑓𝑓 𝑥𝑥
𝜕𝜕𝑥𝑥

⋅ 𝛿𝛿

𝑥𝑥

𝑥𝑥

𝛿𝛿1 + 𝛿𝛿2

𝛿𝛿1

𝛿𝛿2

𝑥𝑥

𝑥𝑥

Add

Multiply

Function application

Branch

Computation graph: 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/

Feedforward Neural Network (I) 53

𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝑧𝑧)

The value of a variable (above an arrow)

Forward pass

http://cs231n.github.io/optimization-2/

Automatic Differentiation (AD): 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑧𝑧 = 𝑥𝑥 + 𝑦𝑦 𝑧𝑧
http://cs231n.github.io/optimization-2/

Feedforward Neural Network (I) 54

𝑥𝑥

𝑦𝑦

𝑧𝑧

+

×
𝑓𝑓

𝛼𝛼

= −2

= 5

= −4

= 3

= −12

(𝛼𝛼 = 𝑥𝑥 + 𝑦𝑦)

(𝑓𝑓 = 𝛼𝛼𝑧𝑧)

The value of a variable (above an arrow)
The gradient of the output 𝑓𝑓 with respect to the variable (below an arrow)

1

3

−4

−4

−4

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

× 1 = 𝛼𝛼 = 3

𝜕𝜕𝑓𝑓
𝜕𝜕𝛼𝛼

× 1 = 𝑧𝑧 = −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑥𝑥

× −4

𝜕𝜕𝛼𝛼
𝜕𝜕𝑦𝑦

× −4

Compare with:
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 𝑧𝑧 = −4
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 𝑥𝑥 + 𝑦𝑦 = 3

Backward pass
(Reverse mode AD)

http://cs231n.github.io/optimization-2/

Automatic differentiation (Baydin+ 2018)
• AD computes derivations by using the chain rule

• Function values computed in the forward pass
• Derivations computed with respect to:

• Every variable (in reverse-mode accumulation)
• A specific variable (in forward-mode accumulation)

• Do not confuse with these:
• Numerical differentiation: for example, 𝜕𝜕𝑓𝑓(𝑥𝑥)

𝜕𝜕𝑥𝑥
= 𝑓𝑓 𝑥𝑥+𝛿𝛿 −𝑓𝑓(𝑥𝑥)

𝛿𝛿

• Symbolic differentiation: e.g., Mathematica, sympy

Feedforward Neural Network (I) 55

Exercise: AD on computation graph
• Write a computation graph for 𝑙𝑙𝒙𝒙 𝑤𝑤 ,

𝑙𝑙𝒙𝒙 𝑤𝑤 = − log𝜎𝜎 𝒘𝒘 ⋅ 𝒙𝒙 = − log
1

1 + 𝑒𝑒−𝒘𝒘⋅𝒙𝒙

• Consider 𝒙𝒙 = 1,1,1 ⊺ and 𝒘𝒘 = 1,1,−1.5 ⊺

• Compute the value of 𝑙𝑙𝒙𝒙 𝒘𝒘

• Compute gradients 𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘

Feedforward Neural Network (I) 57

Computing 𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝒘𝒘

using AD

Feedforward Neural Network (I) 58

𝑤𝑤1

𝑥𝑥1

×

+

+ × −1 exp +1 1/𝜋𝜋

𝛽𝛽

𝛾𝛾

𝜁𝜁

𝜅𝜅

𝜆𝜆

𝜇𝜇 𝜈𝜈 𝜉𝜉 𝜋𝜋 𝜛𝜛

−1.5

0.62251.60650.6065−0.50.5

-1.5

log

𝑙𝑙
𝜌𝜌

𝛼𝛼

𝑤𝑤2

𝑥𝑥2

×
𝜀𝜀

𝛿𝛿

𝑤𝑤3

𝑥𝑥3

×
𝜗𝜗

𝜃𝜃

1

1

1

1

1

1

1

2

𝛾𝛾 = 𝛼𝛼𝛽𝛽

𝜁𝜁 = 𝛿𝛿𝜀𝜀

𝜅𝜅 = 𝜃𝜃𝜗𝜗

𝜆𝜆 = 𝛾𝛾 + 𝜁𝜁

𝜇𝜇 = 𝜆𝜆 + 𝜅𝜅

⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛼𝛼 = 𝛽𝛽 ⁄𝜕𝜕𝛾𝛾 𝜕𝜕 𝛽𝛽 = 𝛼𝛼
⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝛿𝛿 = 𝜀𝜀 ⁄𝜕𝜕𝜁𝜁 𝜕𝜕 𝜀𝜀 = 𝛿𝛿
⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜃𝜃 = 𝜗𝜗 ⁄𝜕𝜕𝜅𝜅 𝜕𝜕 𝜗𝜗 = 𝜃𝜃
⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝛾𝛾 = 1 ⁄𝜕𝜕𝜆𝜆 𝜕𝜕 𝜁𝜁 = 1
⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜆𝜆 = 1 ⁄𝜕𝜕𝜇𝜇 𝜕𝜕 𝜅𝜅 = 1

𝑣𝑣 = −𝜇𝜇 ⁄𝜕𝜕𝑣𝑣 𝜕𝜕 𝜇𝜇 = −1

𝜉𝜉 = 𝑒𝑒𝜈𝜈 ⁄𝜕𝜕𝜉𝜉 𝜕𝜕𝜈𝜈 = 𝑒𝑒𝜈𝜈

𝜋𝜋 = 𝜉𝜉 + 1 ⁄𝜕𝜕𝜋𝜋 𝜕𝜕𝜉𝜉 = 1
𝜛𝜛 = 1/𝜋𝜋 ⁄𝜕𝜕𝜛𝜛 𝜕𝜕𝜋𝜋 = −(1/𝜋𝜋)2

𝜌𝜌 = log𝜛𝜛 ⁄𝜕𝜕𝜌𝜌 𝜕𝜕𝜛𝜛 = 1/𝜛𝜛

−0.4740

𝑙𝑙 = −𝜌𝜌 ⁄𝜕𝜕𝑙𝑙 𝜕𝜕𝜌𝜌 = −1

−1−1.60650.62240.62240.3775−0.3775

𝜕𝜕𝑙𝑙
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

𝜕𝜕𝜋𝜋
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝜈𝜈

𝜕𝜕𝜈𝜈
𝜕𝜕𝜇𝜇

𝜕𝜕𝜇𝜇
𝜕𝜕𝜅𝜅

𝜕𝜕𝜇𝜇
𝜕𝜕𝜆𝜆

𝜕𝜕𝜆𝜆
𝜕𝜕𝜁𝜁

𝜕𝜕𝜆𝜆
𝜕𝜕𝛾𝛾

𝜕𝜕𝛾𝛾
𝜕𝜕𝛼𝛼

𝜕𝜕𝛾𝛾
𝜕𝜕𝛽𝛽

𝜕𝜕𝜁𝜁
𝜕𝜕𝛿𝛿

𝜕𝜕𝜁𝜁
𝜕𝜕𝜀𝜀

𝜕𝜕𝜅𝜅
𝜕𝜕𝜃𝜃

𝜕𝜕𝜅𝜅
𝜕𝜕𝜗𝜗

−0.3775

0.5663

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

−0.3775

0.4740

𝜕𝜕𝜌𝜌
𝜕𝜕𝜛𝜛

× −1

= − 1
𝜛𝜛

= − 1
0.6225

= −1.6065

𝜕𝜕𝜛𝜛
𝜕𝜕𝜋𝜋

× −1.6065

= − 1
1.6065

2
× −1.6065

= 0.6224

𝑤𝑤1 ⟵ 𝑤𝑤1 + 𝜂𝜂
𝜕𝜕𝑙𝑙𝒙𝒙 𝒘𝒘
𝜕𝜕𝑤𝑤1

= 𝑤𝑤1 + 0.3775𝜂𝜂

× −1

No need to derive backpropagation
• Manual derivation of gradients is tedious and error-prone

• Debugging a mistake in gradients is extremely difficult

• AD is employed in most deep learning frameworks
• We only need implement an algorithm for a forward pass, i.e., how

to compute an output from an input
• We can concentrate on designing a structure of neural network
• This boosted the speed of research and development
• The idea of AD is not new (since 1959)

• Deriving a formula for backpropagation is legacy

Feedforward Neural Network (I) 69

Summary and notes
• We design:

• A neural network model 𝑓𝑓(𝒙𝒙;𝜃𝜃) (with parameters 𝜃𝜃)
• A loss function: 𝐸𝐸𝐷𝐷 𝜃𝜃 = ∑𝑛𝑛=1𝑁𝑁 ℒ 𝑓𝑓 𝒙𝒙𝑛𝑛; 𝜃𝜃 ,𝑦𝑦𝑛𝑛

• ℒ is an instance-wise loss function
• 𝐷𝐷 presents a set of training data 𝐷𝐷 = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁

• We find a minimizer 𝜃𝜃∗ for 𝐸𝐸𝐷𝐷 𝜃𝜃 by using SGD
• An update formula for every parameter 𝑤𝑤 ∈ 𝜃𝜃 is derived in

a generic manner based on automatic differentiation

• Step function is inappropriate for backpropagation
• Gradients will not flow because 𝑔𝑔′ 𝑎𝑎 = 0 at 𝑎𝑎 ≠ 0

Feedforward Neural Network (I) 73

Activation functions

Feedforward Neural Network (II) 39

Step

Feedforward Neural Network (II) 40

• Pros
• Yields a binary output

• Cons (never use this)
• Zero gradients

• SGD cannot update parameters because 𝜕𝜕𝑙𝑙
𝜕𝜕𝑤𝑤

= 0

Step function: ℝ → {0,1}

𝑔𝑔(𝑥𝑥) = �1 (if 𝑥𝑥 > 0)
0 (otherwise)

𝑔𝑔
𝑥𝑥 𝑔𝑔(𝑥𝑥)

𝛿𝛿0

Sigmoid

Feedforward Neural Network (II) 41

• Pros
• Yields an output within (0,1)

• Cons
• Not zero-centered
• Zero (vanishing) gradients when |𝑥𝑥| is large

Sigmoid: ℝ → (0,1)

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥

𝑔𝑔
𝑥𝑥 𝜎𝜎(𝑥𝑥)

𝛿𝛿𝜎𝜎𝑓(𝑥𝑥)

Hyperbolic tangent (tanh)

• Pros
• Yields an output within (−1,1)
• Zero-centered

• Cons
• Zero (vanishing) gradients when |𝑥𝑥| is large

Feedforward Neural Network (II) 42

tanh: ℝ → (−1,1)

tanh 𝑥𝑥 =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
= 2𝜎𝜎 2𝑥𝑥 − 1

Rectified Linear Unit (ReLU)

Feedforward Neural Network (II) 43

ReLU: ℝ → ℝ≥0
ReLU 𝑥𝑥 = max(0, 𝑥𝑥)

• Pros
• Gradients do not vanish when 𝑥𝑥 > 0
• Light-weight (no 𝑒𝑒𝑥𝑥) computation
• Faster convergence (e.g., 6x faster on CIFAR-10)

• Cons
• Not zero centered
• Dead neurons when 𝑥𝑥 ≤ 0

Leaky ReLU

Feedforward Neural Network (II) 44

Leaky ReLU: ℝ → ℝ
LeakyReLU𝛼𝛼 𝑥𝑥 = max(𝛼𝛼𝑥𝑥, 𝑥𝑥)

• Pros
• Gradients do not vanish
• Light-weight (no 𝑒𝑒𝑥𝑥) computation

• Cons
• Not zero centered
• Not so much improvement over ReLU in practice

Typical definition of a DNN

Feedforward Neural Network (II) 44

 What made Deep Neural Networks
possible and efficient?

Factors from the natural evolution of computation
- Better computers and software allow bigger networks with higher
capacity to solve more difficult problems
- With bigger datasets available we must use stochastic methods like
SGD

Algorithmic factors
- Cross-entropy is a better loss function than MSE for sigmoid,
softmax
- ReLU in hidden layers is a better activation function than sigmoid
and tanh for deeper networks
- Automatic differentiation is now a feature of all DL frameworks

Feedforward Neural Network (II) 44

 What is the difference between a
neural network and a deep neural
network, and why do the deep
ones work better?

Short answer: DNN simply seem to perform better! Read
the first answer in the following link:
https://stats.stackexchange.com/questions/182734/what-is-the-differe
nce-between-a-neural-network-and-a-deep-neural-network-and-w

https://stats.stackexchange.com/questions/182734/what-is-the-differe

	Feedforward neural network (II): Multi-class classification
	Highlights of this lecture
	Handwritten recognition (MNIST; LeCun+ 1998)
	Image representation
	Multi-class classification and perceptron algorithm
	General form: linear multi-class classification
	Represent an image with a vector
	Linear multi-class classification
	Training for multi-class classifier
	Perceptron algorithm for multi-class (Collins, 2002)
	Multi-class Perceptron implemented in numpy
	Summary and notes
	Multi-class classification with softmax function
	Training multi-class classifiers with SGD
	Softmax function: Definition
	Softmax function: Interpretation
	Single-layer NNs for multi-class classification
	An example with softmax function
	Supervision data for multi-class
	Instance-wise likelihood
	Likelihood on the training data
	Training as a minimization problem
	Training as a minimization problem
	Stochastic Gradient Descent (SGD)
	Exercise: compute the gradient
	Answer: compute the gradients
	SGD for training SLP
	Intuitive example of SGD updates (휂 푡 =1)
	Multi-class classification in numpy
	Computing the loss with mini-batch
	Mini-batch training
	Multi-class classification in pytorch
	Regularization
	Summary and notes
	Generic form of Feedforward Neural Networks
	Designing feedforward neural networks
	Cross entropy loss
	Mean Squared Error (MSE) loss
	Activation functions
	Step
	Sigmoid
	Hyperbolic tangent (tanh)
	Rectified Linear Unit (ReLU)
	Leaky ReLU
	Dropout
	Dropout (Srivastava+ 2014)
	Dropout at training phrase
	Dropout at inference phase
	Dropout in formulas
	Dropout in pytorch
	How was 'Dropout' conceived?
	References

