
Feedforward Neural Network (I)

ΕΙΣΑΓΩΓΗ

στην

ΕΠΙΒΛΕΠΟΜΕΝΗ ΜΑΘΗΣΗ

(Supervised Learning)

• We have a supervision data

• (instances)

• Find parameters such that they can predict

training instances as correctly as possible

• We assume generalization

• If the parameters predict training instances well,

they will work for unseen instances

Feedforward Neural Network (I)

Perceptron (Single layer NN)

• For simplicity, we include a bias term

• Redefine () =

in hereafter
() =

• Then, ()

, ,…, ,1 ,

= + + +

, ,…, ,

+ (original form)

• We introduce a new notation to distinguish a computed

output from the gold output in the supervision data

• = { , ,…, , } (instances)

• We distinguish two kinds of outputs hereafter

• : the output computed (predicted) by the model (perceptron) for the input

• : the true (gold) output for the input in the supervision data

• Training: find such that,

Feedforward Neural Network (I)

1.

2. Repeat:

a random sample from3.

4.

5. if

6.

7.

8.

9.

if

then:

then:

else:

10. Until no instance updates

𝜂 ∈ 0,1 is the learning rate

Feedforward Neural Network (I)

• Convert the truth table into training data

• Initialize the weight vector

• Apply the perceptron algorithm to find

• Fix in the exercise

0 0 0

0 1 1

1 0 1

1 1 1

=

0 0 1 ,0 ,

0 1 1 ,1 ,

1 0 1 ,1 ,

11 1 ,1

Feedforward Neural Network (I)

• Data:

• Initialization:

• Iteration #1: choose

• Classification:

• Update:

= = 0 = 0

+ = 111

• Iteration #2: choose

• Classification: = = 1 = 1

• Update: = 11 0

• Terminate (the weight classifies all instances correctly)
• = 0 0 1 :

• = 0 1 1 :

• = 1 0 1 :

• = 1 1 1 :

= 11 0 0 0 1 = 0

= 11 0 0 11 = 1

= 11 0 1 0 1 = 1

= 11 0 111 = 1

We chose the

instances in

the order that

minimizes the

required

number of

updates

Feedforward Neural Network (I)

misclassifies• Suppose the parameter

• If then:

• Update the weight vector +

• If we classify again with the updated weights :

• If

• = + = +

• The dot product was increased (more likely to be classified as 1)

then:

• Update the weight vector

• If we classify

• =

again with the updated weights :

=

• The dot product was decreased (more likely to be classified as 0)

• The algorithm updates the parameter

direction where it will classify

to the

more correctly

Feedforward Neural Network (I)

Sigmoid function: (0,1)

() =
1

1 +

Step function:

() =

{0,1}

> 0)1 (if

0 (otherwise)

• Yields binary outputs

• Unusable for multi-class classification

• Indifferentiable at zero

• With zero gradients

• Yields continuous scores

• Usable for multi-class classification

• Differentiable at all points

• With mostly non-zero gradients

• Useful for gradient descent

lim () = 1

lim () = 0

Feedforward Neural Network (I)

Sigmoid or Logistic vs Rectified Linear
Unit (ReLU) Activation Functions

- Most popular because it is simple to
compute and very robust to noisy inputs.

- Squashes real numbers between 0 and 1
- They have nice derivatives, which make learning
easy.
- Currently not used as much because result in
gradients too close to 0 stopping learning.

• Single layer NN with sigmoid function

• Given an input , it computes an output

by using the parameter

• This is also known as logistic regression

• We can interpret as the conditional probability

where an input is classified to (positive category)

• Rule to classify an input to :

> 0.5
1

>
1

1 + 2
> 0

• The classification rule is the same as the linear models

Feedforward Neural Network (I)

• The same parameter in the previous example

• The outputs are acceptable, but

•

• Room for improving

positives (true) and

is not so high (62.2%)

so that it yields (100%) for

(0%) for negatives (false)

= = ()

0 0 0 -1.5 0.182

0 1 0 -0.5 0.378

1 0 0 -0.5 0.378

1 1 1 0.5 0.622

Feedforward Neural Network (I)

• We introduce instance-wise likelihood, to measure
how well the parameters reproduce

=
1

(if = 1)

(otherwise)

= = ()

0 0 0 -1.5 0.182 1 = 0.818

0 1 0 -0.5 0.378 1 = 0.622

1 0 0 -0.5 0.378 1 = 0.622

1 1 1 0.5 0.622 = 0.622

1

1

1

1

Parameters of AND:

• Likelihood is a probability representing the ‘fitness’ of
the parameters to the training data
• We want to increase the likelihood by changing

Feedforward Neural Network (I)

• We assume that all instances in the training data

are i.i.d. (independent and identically distributed)

• We define likelihood as a joint probability on data,

is• When the training data

fixed, likelihood is a function of the parameters

• Let us maximize by changing

• This is called Maximum Likelihood Estimation (MLE)

• The maximizer reproduces the training data well

Feedforward Neural Network (I)

• Products of values often cause underflow

• Use log-likelihood, the logarithm of the likelihood, instead

= log = log = log

• In mathematical optimization, we usually consider a

minimization problem instead of maximization

• We define an objective function by using the

negative of the log-likelihood

= = log

• is called a loss function or error function

Feedforward Neural Network (I)

,• Given the training data

find as the minimization problem,

= log =
log

log 1

(if = 1)

(otherwise)
= log (1) log(1)

Feedforward Neural Network (I)

• The objective function is the sum of losses of instances,

• We can use Stochastic Gradient Descent (SGD) and its

variants (e.g., Adam) for minimizing

• SGD Algorithm (is the number of updates)

1. Initialize with random values

2. for to :

3.

4. a random sample from

5.

Feedforward Neural Network (I)

Dataset Preparation

Training Dataset

Training Dataset:

The actual dataset that we use to train the model.

The model sees and learns from this data.

Validation Dataset

Validation Dataset:

The validation set is used to evaluate a given model.

We use this data to fine-tune the model hyperparameters.
Hence the model occasionally sees this data, but it never does “Learn”
from this.

The validation set is also known as the Development set. This makes sense
since this dataset helps during the “development” stage of the model.

Testing Dataset

Testing Dataset:

The sample of data used to provide an evaluation of the final model
fit on the training dataset.

It is only used once a model is completely trained (using the train
and validation sets).

The test set is generally well curated. It contains carefully
sampled data that span the various classes that the model would
face, when used in the real world.

• Insufficient quantity of training data

• Non-representative training data

• Poor-quality data

• Irrelevant features

• Overfitting the training data

• Underfitting the training data

Main Problems during training

- task is to predict if an image shows a balloon or not
- train a model using a dataset containing many blue coloured
balloons (and other irrelevant objects)
- test the model on the original dataset: it gives 99% accuracy!
- test the model on a new (“unseen”) dataset containing yellow
coloured balloons: it gives 20% accuracy!

Our model doesn’t generalise well from our training data to
unseen data. This is known as overfitting.

Overfitting Problem (I)

Overfitting Problem (II)

A model that has learned the noise instead of the signal is
considered “overfit” because it fits the training dataset but
has poor fit with new datasets.

Overfitting happens when the ANN is said to be over-
trained so that the model captures the exact relationship
between the specific input-output used during training
phase.

Overfitting Example

The model has the ability to distinguish swan and other birds. Due to the fact
that all training images are white swans, the model learns that all swans are white,
hence it cannot predict accurately swans of other colours.

Underfitting Problem

Underfitting happens when a machine learning model is not
complex enough to accurately capture relationships
between the input features and the target variable.

Underfitting appears when the network is not able to
capture the underlying function mapping input – output
data, either due to the small size of the training dataset or
the poor architecture of the model.

Underfitting Example

The learned features of the swan are too few, so the criterion for
distinguishing whether the images are swan or not is not clear. It is
difficult to predict accurately.

More on generalization ability (1)

More on generalization ability (2)

• MLE often causes over-fitting
• When the training data is linearly separable

• Subject to be affected by noises in the training data

• We use regularization (MAP estimation)
• We introduce a penalty term when becomes large

• The loss function with an L2 regularization term:

= +

• is the hyper parameter to control the trade-off between
over/under fitting

48Feedforward Neural Network (I)

Cross-validation (1)

Cross-validation (2)

Beyond accuracy:
Confusion matrix

PERFORMANCE METRICS

Confusion matrix or Error matrix (1)

Confusion matrix or Error matrix (2)

Confusion matrix or Error matrix (3)

Confusion matrix or Error matrix (4)

Confusion matrix or Error matrix (5)

Confusion matrix or Error matrix (6)

Confusion matrix or Error matrix (7)

Confusion matrix or Error matrix (8)

F1 score (Twice the Inverse of sum of
Inverses of precision and recall)

• F1 score penalises extremely low precision and recall
Predicted Actual Performance
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Malignant Benign Wrong
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct
Benign Benign Correct
Benign Benign Correct
Malignant Benign Wrong
Benign Benign Correct
Benign Benign Correct
Malignant Benign Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct

Predicted Actual Performance
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Malignant Wrong
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Benign Benign Correct
Malignant Malignant Correct

Practical prediction
Precision: 0.500
Recall: 0.750

Mean: 0.625
F1 score: 0.60

Negative-based
Precision:1.000
Recall: 0.250

Mean: 0.625
F1 score: 0.40

Receiver Operating
Characteristic (ROC) Graph

TPR/FPR Reminder

Receiver Operating Characteristic

ROC Graph (1)

Receiver Operating Characteristic

ROC Graph (2)

Receiver Operating Characteristic

ROC Graph (3)

ROC Area

