
Machine and Deep learning for Graphs - an
introduction

M. Vazirgiannis

Data Science and Mining Team (DASCIM), LIX
École Polytechnique

and AUEB
http://www.lix.polytechnique.fr/dascim

Google Scholar: https://bit.ly/2rwmvQU
Twitter: @mvazirg

November, 2020

1 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

http://www.lix.polytechnique.fr/dascim
https://bit.ly/2rwmvQU

Outline

1 Intro to graphs - ML for graphs tasks

2 Graph Kernels

3 Deep Learning for Graphs - Node Embeddings

2 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graphs Are Everywhere

●

●

●

●

●

●

●

●●●

●

●

●

●

mathemat

aspect

computer−aid

share

trade

problem

statist

analysi

price

probabilist

characterist

seri

method
model

Edge weights

1
2
3
4
5

Mathematical aspects of
computer-aided share trading.
We consider problems of
statistical analysis of share
prices and propose
probabilistic characteristics to
describe the price series. We
discuss three methods of
mathematical modelling of
price series with given
probabilistic characteristics.

Why graphs?

3 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

Let G = (V ,E) be a simple unweighted, undirected graph where V is the set
of vertices and E the set of edges

G
V = {1,2,3,4,5}

E = {(1,2), (1,3)(1,4), (2,4), (3,5)}

4 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

The neighbourhood N (v) of vertex v is the set of all vertices adjacent to v ,
N (v) = {u : (v ,u) ∈ E} where (v ,u) is an edge between v and u

G

N (1) = {2,3,4}

N (5) = {3}

5 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

A walk in a graph G is a sequence of vertices v1, v2, . . . , vk+1 where vi ∈ V
and (vi , vi+1) ∈ E for 1 ≤ i ≤ k

G

Walk: 1→ 2→ 4→ 1→ 3

6 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

A walk in which vi 6= vj ⇔ i 6= j is called a path

G

Path: 4→ 1→ 3→ 5

7 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

A cycle is a path with (vk+1, v1) ∈ E

G

Cycle: 1→ 2→ 4

8 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

A subtree is an acyclic subgraph in which there is a path between any two
vertices

G

9 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

A labeled graph is a graph with labels on vertices. Given a set of labels L,
` : V → L is a function that assigns labels to the vertices of the graph

G
L = {α, β, γ}

`(1) = α `(4) = γ
10 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Preliminaries

An attributed graph is a graph with attributes on vertices. Each vertex v ∈ V
is annotated with a feature vector hv

1

2
4

3

5

[0.2, 1.4, 0.8]

[0.5, 0.2,−0.9]

[−0.4, 0.3,−0.1]

[0.3, 1.1, 0.9]

[0.6,−1.1, 1.4]

G
h1, . . . ,h5 ∈ R3

h1 = [0.2,1.4,0.8]> h3 = [−0.4,0.3,−0.1]>

11 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Machine Learning on Graphs

Machine learning tasks on graphs:

Node classification: given a graph with labels on some nodes, provide a
high quality labeling for the rest of the nodes

Graph clustering: given a graph, group its vertices into clusters taking
into account its edge structure in such a way that there are many edges
within each cluster and relatively few between the clusters

Link Prediction: given a pair of vertices, predict if they should be linked
with an edge

Graph classification: given a set of graphs with known class labels for
some of them, decide to which class the rest of the graphs belong

12 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Classification

Input data G ∈ X

Output y ∈ {−1,1}

Training set D = {(G1, y1), . . . , (Gn, yn)}

Goal: estimate a function f : X → R to predict y from f (x)
13 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Comparison

Definition (Graph Comparison Problem)
Given two graphs G1 and G2 from the space of graphs G, the problem of
graph comparison is to find a mapping

s : G × G → R

such that s(G1,G2) quantifies the similarity of G1 and G2.

Graph comparison is a topic of high significance

- It is the central problem for all learning tasks on graphs such as
clustering and classification

- Most machine learning algorithms make decisions based on the
similarities or distances between pairs of instances (e.g. k -nn)

14 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Not an Easy Problem

Although graph comparison seems a tractable problem, it is very complex

Many problems related to it are NP-complete

subgraph isomorphism

finding largest common subgraph

We are interested in algorithms capable of measuring the similarity between
two graphs in polynomial time

15 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graphs to Vectors

To analyze and extract knowledge from graphs, one needs to perform
machine learning tasks

Most machine learning algorithms require the input to be represented as
a fixed-length feature vector

There is no straightforward way to transform graphs to such a
representation

→

?
16 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

What is a Kernel?

Definition (Kernel Function)
The function k : X × X → R is a kernel if it is:

1 symetric: k(x , y) = k(y , x)

2 positive semi-definite: ∀x1, x2, . . . , xn ∈ X , the Gram Matrix K defined by
Kij = k(xi , xj) is positive semi-definite

- If a function satisfies the above two conditions on a set X , it is known
that there exists a map φ : X → H into a Hilbert space H, such that:

k(x , y) = 〈φ(x), φ(y)〉

for all (x , y) ∈ X 2 where 〈·, ·〉 is the inner product in H

- Informally, k(x , y) is a measure of similarity between x and y

17 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Outline

1 Intro to graphs - ML for graphs tasks

2 Graph Kernels

3 Deep Learning for Graphs - Node Embeddings

18 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Classification

Input data x ∈ X

Output y ∈ {−1,1}

Training set S = {(x1, y1), . . . , (xn, yn)}

Goal: estimate a function f : X → R to predict y from f(x)
19 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Comparison

Graph classification very related to graph comparison

Example

f (,)

+

−nnk

= graph
classification

Although graph comparison seems a tractable problem, it is very complex

We are interested in algorithms capable of measuring the similarity between
two graphs in polynomial time

20 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Kernels

Definition (Graph Kernel)
A graph kernel k : G × G → R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings φ : X → H of a pair of
graphs into a Hilbert space

- Makes the whole family of kernel methods applicable to graphs
G1

G2

G3

G

H
φ(G1)

φ(G2)
φ(G3)

21 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Kernel Trick

Many machine learning algorithms can be expressed only in terms of
inner products between vectors

Let φ(G1), φ(G2) be vector representations of graphs G1,G2 in a very
high (possibly infinite) dimensional feature space

Computing the explicit mappings φ(G1), φ(G2) and their inner product
〈φ(x), φ(y)〉 for the pair of graphs can be computationally demanding

The kernel trick avoids the explicit mapping by directly computing the
inner product 〈φ(x), φ(y)〉 via the kernel function

22 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Example

Let X = R2 and
x = [x1, x2]

>, y = [y1, y2]
> ∈ X

For any x = [x1, x2]
> let φ be a map

φ : R2 → R3 defined as:

φ(x) = [x2
1 ,
√

2x1x2, x2
2]
>

Let also k : X × X → R a kernel
defined as k(x , y) = 〈x , y〉2. Then

k(x , y) = 〈x , y〉2

= (x1y1 + x2y2)
2

= x2
1 y2

1 + 2x1y1x2y2 + x2
2 y2

2

= 〈φ(x), φ(y)〉

Hence, using the kernel we can compute the inner product 〈φ(x), φ(y)〉
without computing φ(x) and φ(y)

23 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Applications

Bioinformatics [Borgwardt et al., Bioinformatics 21(suppl 1); Borgwardt et al., PSB’07;
Sato et al., BMC bioinformatics 9(1)]

Chemoinformatics [Swamidass et al., Bioinformatics 21(suppl 1); Ralaivola et al.,
Neural Networks 18(8); Mahé et al., JCIM 45(4); Ceroni et al., Bioinformatics 23(16);
Mahé and Vert, Machine Learning 75(1)]

Computer Vision [Harchaoui and Bach, CVPR’07; Bach, ICML’08; Wang and Sahbi.
CVPR’13; Stumm et al., CVPR’16]

Cybersecurity [Anderson et al., JCV 7(4); Gascon et al., AISec’13; Narayanan et al.,
IJCNN’16]

Natural Language Processing [Glavas and Snajder, ACL’13; Bleik et al., TCBB
10(5); Nikolentzos et al., EMNLP’17]

Social Networks [Yanardag and Vishwanathan, KDD’15]

...
24 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Protein Function Prediction

For each protein, create a graph that contains information about its

structure

sequence

chemical properties

Perform graph classification to predict the
function of proteins

[Borgwardt et al., Bioinformatics 21(suppl 1)]
25 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Chemical Compound Classification

Represent each chemical compound as a graph

⇒

Perform graph classification to predict if a
chemical compound displays the desired
behavior against the specific biomolecular
target or not

[Mahé et al., JCIM 45(4)]

26 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Malware Detection

Given a computer program, create its control flow graph

Perform graph classification to predict if
there is malicious code inside the program or
not

[Anderson et al., JCV 7(4)]
27 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph-Of-Words

Each document is represented as a graph
G = (V ,E) consisting of a set V of vertices
and a set E of edges between them

vertices→ unique terms

edges→ co-occurrences within a
fixed-size sliding window

no edge weight

no edge direction

Graph representation more flexible than n-grams. Takes into account

word inversion

subset matching

e. g., “article about news” vs. “news article”

[Rousseau and Vazirgiannis., CIKM’13]
28 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Substructures-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:

walks

shortest paths

cyclic patterns

subtree patterns

graphlets

...

These kernels are instance of the R-convolution framework
29 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graphlet Kernel

The graphlet kernel compares graphs by counting graphlets

A graphlet corresponds to a small subgraph

- typically of 3,4 or 5 vertices

Below is the set of graphlets of size 4:

G1 G2 G3 G4 G5 G6

G7 G8 G9 G10 G11

[Shervashidze et al., AISTATS’09]

30 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graphlet Kernel

Let G = {graphlet1,graphlet2, . . . ,graphletr} be the set of size-k graphlets

Let also fG ∈ N r be a vector such that its i-th entry is fG,i = #(graphleti v G)

The graphlet kernel is defined as:

k(G1,G2) = 〈fG1 , fG2〉

Problems:

There are
(n

k

)
size-k subgraphs in a graph

Exaustive enumeration of graphlets is very expensive

Requires O(nk) time

For labeled graphs, the number of graphlets increases further

31 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Example

G1 G2

The vector representations of the graphs above according to the set of
graphlets of size 4 is:

fG1 = [0,0,2,0,1,2,0,0,0,0,0]>

fG2 = [0,0,0,2,1,5,0,4,0,3,0]>

Hence, the value of the kernel is:

k(G1,G2) = 〈fG1 , fG2〉 = 11

32 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Shortest Path Kernel

Compares the length of shortest-paths of two graphs

- and their endpoints in labeled graphs

Floyd-transformation

Transforms the original graphs into shortest-paths graphs

Compute the shortest-paths between all pairs of vertices of the input
graph G using some algorithm (i. e. Floyd-Warshall)

Create a shortest-path graph S which contains the same set of nodes as
the input graph G

All nodes which are connected by a walk in G are linked with an edge in
S

Each edge in S is labeled by the shortest distance between its endpoints
in G

[Borgwardt and Kriegel. ICDM’05]

33 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Example

Floyd-transformation

→

G S
34 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Shortest Path Kernel

Given the Floyd-transformed graphs S1 = (V1,E1) and S2 = (V2,E2) of G1 and G2,
the shortest path kernel is defined as:

k(G1,G2) =
∑

e1∈E1

∑
e2∈E2

kedge(e1, e2)

where kedge is a kernel on edges

For unlabeled graphs, it can be:

kedge(e1, e2) = δ(`(e1), `(e2)) =

{
1 if `(e1) = `(e2),
0 otherwise

where `(e) gives the label of edge e

For labeled graphs, it can be:

kedge(e1, e2) =

{
1 if `(e1) = `(e2) ∧ `(e1

1) = `(e1
2) ∧ `(e2

1) = `(e2
2),

0 otherwise

where e1, e2 are the two endpoints of e

35 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Example

Floyd-transformations

⇒

G1 S1

⇒

G2 S2
36 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Example

In S1 we have:

- 4 edges with label 1

- 4 edges with label 2

- 2 edges with label 3

In S2 we have:

- 4 edges with label 1

- 2 edges with label 2

Hence, the value of the kernel is:

k(G1,G2) =
∑

e1∈E1

∑
e2∈E2

kedge(e1,e2) = 4 · 4 + 4 · 2 = 24

37 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Shortest Path Kernel

Computing the shortest path kernel includes:

- Computing shortest paths for all pairs of vertices in the two graphs:
O(n3)

- Comparing all pairs of shortest paths from the two graphs: O(n4)

Hence, runtime is O(n4)

Problems:

- Very high complexity for large graphs

- Shortest-path graphs may lead to memory problems on large graphs

38 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

GraKel: A python library for graph kernels

Python library for graph similarity computations

Contains practically all known graph kernels

Compatible with scikit learn

Open source - can be extended

Project repository https://ysig.github.io/GraKeL/dev/

Large scale survey on kernels:
”Graph Kernels: a Survey”, G.Nikolentzos,M.Vazirgiannis, https://arxiv.org/abs/1904.12218

39 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Evaluation

Standard datasets from graph classification containing:

unlabeled graphs

node-labeled graphs

node-attributed graphs

Classification using:

SVM→ precompute kernel matrix

Hyperparameters of both SVM (i. e. C) and graph kernels optimized on training
set using cross-validation

Perform 10 times 10-fold cross validation and report:

Average accuracy over the 10 repetitions

Standard deviation over the 10 repetitions

40 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Classification (Node-Labeled Graphs)

KERNELS
DATASETS

MUTAG ENZYMES NCI1 PTC-MR

VERTEX HISTOGRAM 71.87 (± 1.83) 16.87 (± 1.56) 56.09 (± 0.35) 58.09 (± 0.62)
RANDOM WALK 82.24 (± 2.87) 12.90 (± 1.42) TIMEOUT 51.26 (± 2.30)
SHORTEST PATH 82.54 (± 1.00) 40.13 (± 1.34) 72.25 (± 0.28) 59.26 (± 2.34)
WL SUBTREE 84.00 (± 1.25) 53.15 (± 1.22) 85.03 (± 0.20) 63.28 (± 1.34)
WL SHORTEST PATH 82.29 (± 1.93) 28.23 (± 1.00) 61.43 (± 0.32) 55.51 (± 1.68)
WL PYRAMID MATCH 88.60 (± 0.95) 57.72 (± 0.84) 85.31 (± 0.42) 64.52 (± 1.36)
NEIGHBORHOOD HASH 87.74 (± 1.17) 43.43 (± 1.45) 74.81 (± 0.37) 60.50 (± 2.10)
NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE 82.46 (± 1.55) 41.97 (± 1.66) 74.36 (± 0.31) 60.04 (± 1.15)
ORDERED DAGS DECOMPOSITION 79.01 (± 2.04) 31.87 (± 1.35) 75.03 (± 0.45) 59.08 (± 1.85)
PYRAMID MATCH 84.72 (± 1.67) 42.67 (± 1.78) 73.11 (± 0.49) 57.99 (± 2.45)
GRAPHHOPPER 82.11 (± 2.13) 36.47 (± 2.13) 71.36 (± 0.13) 55.64 (± 2.03)
SUBGRAPH MATCHING 84.04 (± 1.55) 35.68 (± 0.80) TIMEOUT 57.91 (± 1.73)
PROPAGATION 77.23 (± 1.22) 44.48 (± 1.63) 82.12 (± 0.22) 59.30 (± 1.24)
MULTISCALE LAPLACIAN 86.11 (± 1.60) 53.08 (± 1.53) 79.40 (± 0.47) 59.95 (± 1.71)
CORE WL 85.90 (± 1.44) 52.37 (± 1.29) 85.12 (± 0.21) 63.03 (± 1.67)
CORE SHORTEST PATH 85.13 (± 2.46) 41.55 (± 1.66) 73.87 (± 0.19) 58.21 (± 1.87)

KERNELS
DATASETS AVG.

D&D PROTEINS AIDS RANK

VERTEX HISTOGRAM 74.83 (± 0.40) 70.93 (± 0.28) 79.78 (± 0.13) 13.7
RANDOM WALK OUT-OF-MEM 69.31 (± 0.29) 79.52 (± 0.58) 15.0
SHORTEST PATH 78.93 (± 0.53) 75.92 (± 0.35) 99.41 (± 0.12) 6.7
WL SUBTREE 78.88 (± 0.46) 75.45 (± 0.33) 98.51 (± 0.05) 4.8
WL SHORTEST PATH 75.66 (± 0.42) 71.88 (± 0.22) 99.36 (± 0.02) 11.8
WL PYRAMID MATCH OUT-OF-MEM 75.63 (± 0.49) 99.37 (± 0.04) 2.1
NEIGHBORHOOD HASH 76.02 (± 0.94) 75.55 (± 1.00) 99.54 (± 0.02) 5.0
NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE 78.76 (± 0.56) 73.17 (± 0.76) 98.04 (± 0.20) 8.0
ORDERED DAGS DECOMPOSITION 75.82 (± 0.54) 70.49 (± 0.64) 90.75 (± 0.30) 11.4
PYRAMID MATCH 76.98 (± 0.84) 71.90 (± 0.79) 99.56 (± 0.08) 8.2
GRAPHHOPPER TIMEOUT 74.19 (± 0.42) 99.57 (± 0.02) 9.6
SUBGRAPH MATCHING OUT-OF-MEM OUT-OF-MEM 91.96 (± 0.18) 11.2
PROPAGATION 78.43 (± 0.55) 72.71 (± 0.62) 96.51 (± 0.38) 8.4
MULTISCALE LAPLACIAN 78.28 (± 0.99) 73.89 (± 0.93) 98.48 (± 0.12) 6.0
CORE WL 78.91 (± 0.50) 75.46 (± 0.38) 98.70 (± 0.09) 4.1
CORE SHORTEST PATH 79.33 (± 0.65) 76.31 (± 0.40) 99.47 (± 0.05) 5.5

[Nikolentzos et al., arXiv:1904.12218]
41 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Graph Classification (Unlabeled Graphs)

KERNELS

DATASETS
AVG.

IMDB IMDB REDDIT REDDIT REDDIT
COLLAB RANK

BINARY MULTI BINARY MULTI-5K MULTI-12K
VERTEX HISTOGRAM 46.54 (± 0.80) 29.59 (± 0.40) 47.32 (± 0.66) 17.92 (± 0.42) 21.73 (± 0.00) 52.00 (± 0.00) 12.4
RANDOM WALK 63.87 (± 1.06) 45.75 (± 1.03) TIMEOUT TIMEOUT OUT-OF-MEM 68.00 (± 0.07) 7.6
SHORTEST PATH 55.18 (± 1.23) 39.37 (± 0.84) 81.67 (± 0.23) 47.90 (± 0.13) TIMEOUT 58.80 (± 0.08) 8.3
GRAPHLET 65.19 (± 0.97) 39.82 (± 0.89) 76.80 (± 0.27) 34.06 (± 0.38) 23.08 (± 0.11) 70.63 (± 0.25) 7.0
WL SUBTREE 72.47 (± 0.50) 50.76 (± 0.30) 67.96 (± 1.01) OUT-OF-MEM OUT-OF-MEM 78.12 (± 0.17) 4.2
WL SHORTEST PATH 55.87 (± 1.19) 39.63 (± 0.68) TIMEOUT TIMEOUT TIMEOUT 58.80 (± 0.06) 10.8
NEIGHBORHOOD HASH 73.34 (± 0.98) 50.68 (± 0.50) 81.65 (± 0.28) 49.36 (± 0.18) 39.62 (± 0.19) 79.99 (± 0.39) 2.3
NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE 68.81 (± 0.71) 45.10 (± 0.63) TIMEOUT TIMEOUT TIMEOUT TIMEOUT 7.5
LOVÁSZ-ϑ 49.21 (± 1.33) 39.33 (± 0.95) TIMEOUT TIMEOUT TIMEOUT TIMEOUT 15.0
SVM-ϑ 51.35 (± 1.54) 38.40 (± 0.60) 74.54 (± 0.27) 29.65 (± 0.53) 23.04 (± 0.18) 55.72 (± 0.31) 10.1
ORDERED DAGS DECOMPOSITION 64.70 (± 0.73) 46.80 (± 0.51) 50.61 (± 1.06) 42.99 (± 0.09) 29.83 (± 0.08) 52.00 (± 0.00) 7.5
PYRAMID MATCH 66.67 (± 1.45) 45.25 (± 0.79) 86.77 (± 0.42) 48.22 (± 0.29) 41.15 (± 0.17) 74.57 (± 0.34) 4.1
GRAPHHOPPER 57.69 (± 1.31) 40.04 (± 0.91) TIMEOUT TIMEOUT TIMEOUT 60.21 (± 0.10) 9.3
SUBGRAPH MATCHING TIMEOUT TIMEOUT OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM TIMEOUT –
PROPAGATION 51.15 (± 1.67) 33.15 (± 1.08) 63.41 (± 0.77) 34.32 (± 0.61) 24.07 (± 0.11) 58.67 (± 0.15) 10.1
MULTISCALE LAPLACIAN 70.94 (± 0.93) 47.92 (± 0.87) 89.44 (± 0.30) 35.01 (± 0.65) OUT-OF-MEM 75.29 (± 0.49) 3.8
CORE WL 73.31 (± 1.06) 50.79 (± 0.54) 72.82 (± 1.05) OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM 3.8
CORE SHORTEST PATH 69.37 (± 0.68) 50.79 (± 0.57) 90.76 (± 0.14) TIMEOUT OUT-OF-MEM TIMEOUT 2.5

[Nikolentzos et al., arXiv:1904.12218]

42 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Outline

1 Intro to graphs - ML for graphs tasks

2 Graph Kernels

3 Deep Learning for Graphs - Node Embeddings

43 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Deep Learning for Graphs - Node Embeddings

Traditional Node Representation
Representation: row of adjacency matrix

→

0 1 . . . 0
1 0 . . . 1
...

...
...

...
0 1 . . . 0

44 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Deep Learning for Graphs - Node Embeddings

Traditional Node Representation
Representation: row of adjacency matrix

→

0 1 . . . 0
1 0 . . . 1
...

...
...

...
0 1 . . . 0

44 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Deep Learning for Graphs - Node Embeddings

Traditional Node Representation
Representation: row of adjacency matrix

→

0 1 . . . 0
1 0 . . . 1
...

...
...

...
0 1 . . . 0

However, such a representation suffers from:

data sparsity

high dimensionality

...
44 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Node Embedding Methods

Map vertices of a graph into a low-dimensional space:

dimensionality d � |V |

similar vertices are embedded close to each other in the
low-dimensional space

45 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Early Methods

Focused mainly on matrix-factorization approaches (e. g., Laplacian
eigenmaps)

Laplacian eigenmaps projects two nodes i and j close to each other
when the weight of the edge between the two nodes Aij is high

Embeddings are obtained by the following objective function:

y∗ = argmin
∑
i 6=j

(yi − yj)
2Aij = argmin yT Ly

where L is the graph Laplacian

The solution is obtained by taking the eigenvectors corresponding to the
d smallest eigenvalues of the normalized Laplacian matrix

[1] Belkin and Niyogi. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering. In NIPS’02

46 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Recent Methods

Most methods belong to the following groups:

1 Random walk based methods: employ random walks to capture
structural relationships between nodes

2 Edge modeling methods: directly learn node embeddings using
structural information from the graph

3 Matrix factorization methods: generate a matrix that represents the
relationships between vertices and use matrix factorization to obtain
embeddings

4 Deep learning methods: apply deep learning techniques to learn highly
non-linear node representations

47 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Proximities

First-order proximity: observed links in the network

Second-order proximity: shared neighborhood structures

Vertices 6 and 7 have a high first-order proximity since they are
connected through a strong tie→ they should be placed closely in the
embedding space

Vertices 5 and 6 have a high second-order proximity since they share
similar neighbors→ they should also be placed closely

48 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Proximities

k -order proximities for k = 1, . . . ,4

Second-order and high-order proximities capture similarity between
vertices with similar structural roles

Higher-order proximities capture more global structure

49 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

DeepWalk

Inspired by recent advances in language modeling [1]

→

v5→v8→v32→v28→v6→v10→v9

v3→v5→v28→v8→v9→v10→v25

v20→v10→v12→v6→v8→v4→v5

v23→v5→v32→v10→v8→v3→v1

v4→v3→v1→v5→v1→v12→v10

...

Simulates a series of short random walks

Main Idea: Short random walks = Sentences

[1] Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. In NIPS’13

[2] Perozzi et al. DeepWalk: Online Learning of Social Representations. In KDD’14

50 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

DeepWalk

Inspired by recent advances in language modeling [1]

Simulates a series of short random walks

Main Idea: Short random walks = Sentences

[1] Mikolov et al. Distributed Representations of Words and Phrases and their Compositionality. In NIPS’13

[2] Perozzi et al. DeepWalk: Online Learning of Social Representations. In KDD’14

50 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Skipgram

Skipgram is a recently-proposed language model that:

uses one word to predict the context

context is composed of words appearing to both the right and left of the
given word

removes the ordering constraint on the problem (i. e. does not take into
account the offset of context words from the given word)

In our setting:

Slide a window of length 2w + 1
over the random walk

Use the representation of central
vertex to predict its neighbors

51 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Skipgram

This yields the optimization problem:

argminf − 1
T

T∑
i=1

logP({vi−w , . . . , vi+w} \ vi |f (vi))

vi : central vertex
vi−w , . . . , vi+w : neighbors of central vertex
f (v): embedding of vertex v
Skipgram approximates the above conditional probability using the following
independence assumption:

minimizef − 1
T

T∑
i=1

i+w∑
j=i−w

j 6=i

logP(vj |f (vi))

We can learn such a posterior distribution using several choices of
classifiers

However, most of them (e. g., logistic regression) would produce a huge
number of labels (i. e. |V | labels)

Instead, we approximate the distribution using the Hierarchical Softmax

52 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Hierarchical Softmax

Reduces complexity from O(|V |) to O(log |V |)
using a binary tree

Assigns the vertices to the leaves of a
binary tree

New problem: Maximizing the probability
of a specific path in the hierarchy

If the path to vertex vj is identified by a sequence of tree nodes (b0, b1, . . . , bd∗elog |V |)
then

P(vj |f (vi)) =

d∗elog |V |∏
l=1

P(bl |f (vi))

where
P(bl |f (vi)) = 1/(1 + e−f (vi)

>f ′(bl)) = σ(f (vi)
>f ′(bl))

and f ′(bl) ∈ Rd is the representation assigned to tree node bl ’s parent

53 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

node2vec

Like DeepWalk, node2vec is also a random walk based method

DeepWalk uses a rigid search strategy

Conversely, node2vec simulates a family of biased random walks which

explore diverse neighborhoods of a given vertex

allow it to learn representations that organize vertices based on

- their network roles

- the communities they belong to

[1] Grover and Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD’16

54 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme
scenarios in terms of the search space

Goal: Given a source node u, sample its neighborhood N (u) where |N (u)| = k

55 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme
scenarios in terms of the search space

In most applications, we are interested in two kinds of similarities between vertices:
1 homophily: nodes that are highly interconnected and belong to similar

communities should be embedded closely together (e. g., s1 and u)
2 structural equivalence: nodes that have similar structural roles should be

embedded closely together (e. g., u and s6)

55 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Two Extreme Sampling Strategies

The breadth-first sampling (BFS) and depth-first sampling (DFS) represent extreme
scenarios in terms of the search space

BFS and DFS strategies play a key role in producing representations that reflect these
two properties:

The neighborhoods sampled by BFS lead to embeddings that correspond
closely to structural equivalence

The neighborhoods sampled by DFS reflect a macro-view of the neighborhood
which is essential in inferring communities based on homophily

55 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Random Walks of node2vec

Given a source node, node2vec simulates a random walk of fixed length l

v1 → v2 → v3 → . . .→ vl

The i th node in the walk is generated as follows:

P(ci = x |ci−1 = v) =

{
πvx
Z , if (v , x) ∈ E

0, otherwise

where πvx is the unnormalized transition probability between v and x , and Z is a
normalizing factor

To capture both structural equivalence and homophily, node2vec uses a
neighborhood sampling strategy which

is based on a flexible biased random walk procedure

allows it to smoothly interpolate between BFS and DFS

56 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Random Walks of node2vec

The random walk shown below just traversed edge (t , v) and now resides at
node v

The unnormalized transition probability is πvx = wvxαpq(t , x), where:

αpq(t , x) =

1
p if dtx = 0
1 if dtx = 1
1
q if dtx = 2

where dtx denotes the shortest path distance between t and x
57 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Random Walks of node2vec

The random walk shown below just traversed edge (t , v) and now resides at
node v

The return parameter p controls the likelihood of immediately revisiting a node
in the walk

if p is high, we are less likely to sample an already-visited node in the
following two steps

if p is low, it would keep the walk in the local neighborhood of the starting
node

57 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Random Walks of node2vec

The random walk shown below just traversed edge (t , v) and now resides at
node v

The in-out parameter q allows the search to differentiate between “inward” and
“outward” nodes.

if q is high, the random walk is biased towards nodes close to node t

if q is low, the walk is more inclined to visit nodes which are further away
from the node t

57 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Optimization

After defining the neighborhood N (v) ⊂ V of each node v , node2vec uses the
Skipgram architecture:

minimizef −
∑
v∈V

log
∏

u∈N (v)

P(u|f (v))

where conditional likelihood is modelled as a softmax unit parametrized by a dot
product of their features:

P(u|f (v)) = ef ′(u)>f (v)∑|V |
k=1 ef ′(vk)>f (v)

and f ′(u) ∈ Rd is the representation of node u when considered as context

The objective function thus becomes:

minimizef ,f ′ −
∑
v∈V

(
− log

∑
u∈V

ef ′(u)>f (v) +
∑

u∈N (v)

f ′(u)>f (v)
)

Since learning the above posterior distribution is very expensive, node2vec
approximates it using negative sampling

58 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Structural Identity

Nodes in networks have specific roles

- e. g., individuals, web pages, proteins, etc

Structural identity

- identification of nodes based on network structure (no other attribute)

- often related to role played by node

Automorphism: strong structural equivalence

Red, Green: structurally identical
Purple, Brown: structurally similar

59 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

struc2vec

Learns node representations based on structural identity

- structurally similar nodes close in space

Key ideas:

Structural similarity does not depend on hop distance

- neighbor nodes can be different, far away nodes can be similar

Structural identity as a hierarchical concept

- depth of similarity varies

Flexible four step procedure

- operational aspect of steps are flexible

[1] Ribeiro et al. struc2vec: Learning Node Representations from Structural Identity. In KDD’17

60 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Step 1: Structural Similarity

Hierarchical measure for structural similarity between two nodes

Rk (v): set of nodes at distance k from v (ring)

s(S): ordered degree sequence of set S

s(R0(u)) = 4
s(R0(v)) = 3

s(R1(u)) = 1, 3, 4, 4
s(R1(v)) = 4, 4, 4

s(R2(u)) = 2, 2, 2, 2
s(R2(v)) = 1, 2, 2, 2, 2

61 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Step 1: Structural Similarity

g(D1,D2): distance between two ordered sequences

cost of pairwise alignment: max(a,b)/min(a,b)− 1

optimal alignment by Dynamic Time Warping in our framework

s(R0(u)) = 4
s(R0(v)) = 3

g(·, ·) = 0.33

s(R1(u)) = 1, 3, 4, 4
s(R1(v)) = 4, 4, 4

g(·, ·) = 3.33

s(R2(u)) = 2, 2, 2, 2
s(R2(v)) = 1, 2, 2, 2, 2

g(·, ·) = 1

fk (v , u): structural distance between nodes v and u considering first k rings

fk (v , u) = fk−1(v , u) + g(s(Rk (v)), s(Rk (u)))

f0(v , u) = 0.33 f1(v , u) = 3.66 f2(v , u) = 4.66

62 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Step 2: Multi-layer graph

Encodes structural similarity between all
node pairs

Each layer is a weighted complete graph

- corresponds to similarity hierarchies

Edge weights in layer k

- wk (v , u) = e−fk (v,u)

Connect corresponding nodes in adjacent
layers

63 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Step 3: Generate Context

Context generated by biased random walk

walking on multi-layer graph

Walk in current layer with probability p

choose neighbor according to edge weight

RW prefers more similar nodes

Change layer with probability 1− p

choose up/down according to edge weight

RW prefers layer with less similar neighbors

64 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Step 3: Learn Representation

For each node, generate set of independent
and relative short random walks

- context for node→ sentences of a
language

Train a neural network to learn latent
representation for nodes

- maximize probability of nodes within
context

- Skip-gram (Hierarchical Softmax)
adopted

65 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Barbell Network

struc2vec embeds isomorphic nodes very close to each other in space

66 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

GCN

Given the adjacency matrix A of a graph, GCN first computes:

Â = D̃−
1
2 Ã D̃−

1
2

where
Ã = A + I
D̃: a diagonal matrix such that D̃ii =

∑
j Ãij

Then, the output of the model is:

Z = softmax(Â ReLU(Â X W0) W1)

where
X: matrix whose rows contain the attributes of the nodes
W0,W1: trainable weight matrices

[1] Kipf and Welling. Semi-supervised Classification with Graph Convolutional Networks. In ICLR’17

67 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

GCN

To learn node embeddings, GCN minimizes the following loss function:

L = −
∑
i∈I

|C|∑
j=1

Yij log Ŷij

I: indices of the nodes of the training set
C: set of class labels

68 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Experimental Evaluation

Experimental comparison conducted in [1]

Compared algorithms:

DeepWalk

ICA [2]

Planetoid

GCN

Task: node classification

[1] Kipf and Welling. Semi-supervised Classification with Graph Convolutional Networks. In ICLR’17

[2] Lu and Getoor. Link-based classification. In ICML’03

69 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Datasets

Label rate: number of labeled nodes that are used for training divided by the total
number of nodes

Citation network datasets:

nodes are documents and edges are citation links

each node has an attribute (the bag-of-words representation of its abstract)

NELL is a bipartite graph dataset extracted from a knowledge graph

70 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

Results

Classification accuracies of the 4 methods

Observation: DeepWalk→ unsupervised learning of embeddings

↪→ fails to compete against the supervised approaches

71 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

THANK YOU !
Acknowledgements

Dr. I. Nikolentzos

http://www.lix.polytechnique.fr/dascim/

Relevant Tutorial: Machine Learning on Graphs with Kernels@ CIKM 2019,
http://www.cikm2019.net/tutorials.html

72 / 1 M. Vazirgiannis Machine and Deep learning for Graphs - an introduction

http://www.lix.polytechnique.fr/dascim/

