




















































































































  Action Selection Policies

As mentioned above, there are three common policies used for action selection. The aim of these policies is to balance the 
trade-off between exploitation and exploration, by not always exploiting what has been learnt so far.

ε-greedy - most of the time the action with the highest estimated reward is chosen, called the greediest action. 
Every once in a while, say with a small probability ε, an action is selected at random. The action is selected 
uniformly, independent of the action-value estimates. This method ensures that if enough trials are done, each 
action will be tried an infinite number of times, thus ensuring optimal actions are discovered.
ε-soft - very similar to ε-greedy. The best action is selected with probability 1 - ε and the rest of the time a random 
action is chosen uniformly.
softmax - one drawback of ε-greedy and ε-soft is that they select random actions uniformly. The worst possible 
action is just as likely to be selected as the second best. Softmax remedies this by assigning a rank or weight to 
each of the actions, according to their action-value estimate. A random action is selected with regards to the weight 
associated with each action, meaning the worst actions are unlikely to be chosen. This is a good approach to take 
where the worst actions are very unfavourable.

It is not clear which of these policies produces the best results overall. The nature of the task will have some bearing on how 
well each policy influences learning. If the problem we are trying to solve is of a game playing nature, against a human 
opponent, human factors may also be influential.



Q-Learning

Q-Learning is an Off-Policy algorithm for Temporal Difference learning. It can be proven that given sufficient training under any ε-soft policy, the algorithm converges with probability 1 to a 
close approximation of the action-value function for an arbitrary target policy. Q-Learning learns the optimal policy even when actions are selected according to a more exploratory or even 
random policy. The procedural form of the algorithm is:

The parameters used in the Q-value update process are:

α - the learning rate, set between 0 and 1. Setting it to 0 means that the Q-values are never updated, hence nothing is learned. Setting a high value such as 0.9 means that 
learning can occur quickly.
 γ - discount factor, also set between 0 and 1. This models the fact that future rewards are worth less than immediate rewards. Mathematically, the discount factor needs to be 
set less than 0 for the algorithm to converge.
 maxα- the maximum reward that is attainable in the state following the current one. i.e the reward for taking the optimal action thereafter.

This procedural approach can be translated into plain english steps as follows:

1. Initialize the Q-values table, Q(s, a).
2. Observe the current state, s.
3. Choose an action, a, for that state based on one of the action selection policies explained on the previous slide (ε-soft, ε-greedy or softmax).
4. Take the action, and observe the reward, r, as well as the new state, s'.
5. Update the Q-value for the state using the observed reward and the maximum reward possible for the next state. The updating is done according to the formulla and parameters 

described above.
6. Set the state to the new state, and repeat the process until a terminal state is reached.



 Sarsa

The Sarsa algorithm is an On-Policy algorithm for TD-Learning. The major difference between it and Q-Learning, is that 
the maximum reward for the next state is not necessarily used for updating the Q-values. Instead, a new action, and 
therefore reward, is selected using the same policy that determined the original action. The name Sarsa actually comes 
from the fact that the updates are done using the quintuple Q(s, a, r, s', a'). Where: s, a are the original state and action, 
r is the reward observed in the following state and s', a' are the new state-action pair. The procedural form of Sarsa 
algorithm is comparable to that of Q-Learning:

As you can see, there are two action selection steps needed, for determining the next state-action pair along with the 
first. The parameters γ and α have the same meaning as they do in Q-Learning.



The world consists of a small grid. The goal-state of the world is the square marked G on the lower right-hand corner, 
and the start is the S square in the lower left-hand corner. There is a reward of negative 100 associated with moving off 
the cliff and negative 1 when in the top row of the world. Q-Learning correctly learns the optimal path along the edge of 
the cliff, but falls off every now and then due to the ε-greedy action selection. Sarsa learns the safe path, along the top 
row of the grid because it takes the action selection method into account when learning. Because Sarsa learns the safe 
path, it actually receives a higher average reward per trial than Q-Learning even though it does not walk the optimal 
path. 

Q-Learning vs SARSA

The reason that Q-learning is off-policy is that it updates its Q-values using the Q-value of the next state s′ and the greedy action a′. In other 
words, it estimates the return (total discounted future reward) for state-action pairs assuming a greedy policy were followed despite the fact 
that it's not necessary following a greedy policy.

The reason that SARSA is on-policy is that it updates its Q-values using the Q-value of the next state s′ and the current policy's action a′′. It 
estimates the return for state-action pairs assuming the current policy continues to be followed.



Incremental Average Computation

The terms of the average are arranged in a way to have both A(n+1) and A(n).

Notice that 1/(n+1) represents the term alpha in the State-Value and Action-Value functions.



OpenAI Gym

https://gym.openai.com/
































RL Libraries (short list)

pyqlearning

spinup

RL Baselines3 Zoo

TF Agents 

keras-rl2

https://code.accel-brain.com/Reinforcement-Learning/
https://spinningup.openai.com/en/latest/index.html
https://github.com/DLR-RM/rl-baselines3-zoo
https://www.tensorflow.org/agents
https://github.com/wau/keras-rl2



