Κανονική περίοδος

Ιστότοπος: Helios Archive 2021-22
Μάθημα: Μηχανική Παραμορφώσιμου Στερεού I και Εργαστήριο
Βιβλίο: Κανονική περίοδος
Εκτυπώθηκε από: Επισκέπτης (Guest user)
Ημερομηνία: Πέμπτη, 28 Νοεμβρίου 2024, 4:13 πμ

Περιγραφή

Αφορά τις σπουδάστριες και τους σπουδαστές: 

  • Που δεν έχουν λάβει μέρος:
    • Σε προηγούμενη εξεταστική περίοδο. 
    • Στις δύο ενδιάμεσες εξετάσεις του τρέχοντος εξαμήνου.
  • Που έχουν λάβει μέρος:
    • Σε προηγούμενη εξεταστική περίοδο και πήραν βαθμό μικρότερο του πέντε (5).
    • Τουλάχιστον σε μια από τις δύο ενδιάμεσες εξετάσεις του τρέχοντος εξαμήνου και πήραν βαθμό μικρότερο του πέντε (5).
    • Στις δύο (2) ενδιάμεσες εξετάσεις του τρέχοντος εξαμήνου, πήραν βαθμό μεγαλύτερο ή ίσο του πέντε (5) σε κάθε μια απ' αυτές και επιθυμούν να βελτιώσουν το βαθμό τους στο μάθημα.

1. Γενικές πληροφορίες

  • Πραγματοποιείται με ανοιχτά βιβλία και σημειώσεις.
  • Εξετάζεται ολόκληρη η ύλη που διδάχθηκε στο τρέχον εαρινό εξάμηνο.
  • Οι σπουδάστριες και οι σπουδαστές που έχουν πάρει βαθμό μεγαλύτερο ή ίσο του πέντε (5) και στις δύο ενδιάμεσες εξετάσεις του τρέχοντος εαρινού εξαμήνου, απαλλάσσονται από την υποχρέωση συμμετοχής τους στην τελική γραπτή εξέταση της κανονικής περιόδου. Ο βαθμός της τελικής γραπτής εξέτασης κανονικής περιόδου γι αυτούς, θα προκύψει από το μέσο όρο των βαθμών που πήραν στις δύο ενδιάμεσες εξετάσεις. Εάν το επιθυμούν, μπορούν να συμμετάσχουν στην τελική γραπτή εξέταση της κανονικής περιόδου για να βελτιώσουν το βαθμό τους, εξεταζόμενοι στην ύλη ολόκληρου του εξαμήνου. Στην τελευταία περίπτωση, θα ληφθεί υπ' όψη η καλύτερη επίδοση μεταξύ του μέσου όρου των βαθμών των δύο ενδιάμεσων εξετάσεων και του βαθμού της τελικής γραπτής εξέτασης κανονικής περιόδου.

2. Εξεταστέα ύλη

Αναφέρονται οι θεματικές ενότητες, τα κεφάλαια από το προτεινόμενο σύγγραμμα των Goodno - Gere, τα κεφάλαια από το βιβλίο των Beer - Johnston - DeWolf - Mazurek, ένα κεφάλαιο από το βιβλίο του Popov και το υλικό από σημειώσεις.

2.1. Θεματικές ενότητες

Εφελκυσμός, θλίψη και διάτμηση
  • Ορθή τάση και ορθή παραμόρφωση. 
  • Μηχανικές ιδιότητες των υλικών. 
  • Ελαστικότητα, πλαστικότητα και ερπυσμός. 
  • Γραμμική ελαστικότητα, νόμος του Hooke και λόγος του Poisson.
  • Διατμητική τάση και διατμητική παραμόρφωση.
  • Επιτρεπόμενες τάσεις και επιτρεπόμενα φορτία.
  • Σχεδιασμός ως προς αξονικά φορτία και ως προς απ' ευθείας διάτμηση.
Φορείς υπό αξονική καταπόνηση
  • Μεταβολή μήκους φορέων υπό αξονική καταπόνηση.
  • Μεταβολή μήκους υπό ανομοιόμορφες συνθήκες.
  • Υπερστατικές κατασκευές.
  • Επίδραση θερμοκρασίας, ατελειών και προέντασης.
  • Τάσεις σε κεκλιμένες τομές.
  • Ενέργεια παραμόρφωσης λόγω αξονικής φόρτισης.
  • Κρουστική φόρτιση.
  • Επαναληπτική φόρτιση και κόπωση.
  • Συγκέντρωση τάσεων.
  • Μη γραμμική συμπεριφορά.
  • Ελαστοπλαστική ανάλυση.
Ροπές αδράνειας επίπεδων επιφανειών
  • Θεώρημα παραλλήλων αξόνων. 
  • Πολική ροπή αδράνειας. 
  • Γινόμενο αδράνειας. 
  • Στροφή αξόνων. 
  • Κύριες ροπές αδράνειας.
Στρέψη ατράκτων κυκλικής διατομής

  • Στρεπτικές παραμορφώσεις ατράκτων κυκλικής διατομής
  • Άτρακτοι κυκλικής διατομής από γραμμικά ελαστικά υλικά.
  • Μη ομοιόμορφη στρέψη. 
  • Τάσεις και παραμορφώσεις στην καθαρή διάτμηση.
  • Σχέση μεταξύ του μέτρου ελαστικότητας και του μέτρου διάτμησης.
  • Μετάδοση ισχύος από περιστρεφόμενους άξονες.
  • Υπερστατικοί άξονες υπό στρέψη. 
  • Ενέργεια παραμόρφωσης λόγω στρέψης.
  • Ενέργεια παραμόρφωσης στην καθαρή διάτμηση.
  • Συγκεντρώσεις τάσεων κατά τη στρέψη.

Κάμψη δοκών
  • Καθαρή κάμψη και μη - καθαρή κάμψη.
  • Καμπυλότητα δοκού.
  • Διαμήκεις ορθές παραμορφώσεις δοκών.
  • Ορθές τάσεις σε δοκούς που αποτελούνται από γραμμικά ελαστικά υλικά.
  • Σχεδιασμός δοκών με βάση τις ορθές τάσεις λόγω κάμψης.
  • Μη πρισματικές δοκοί.
  • Διατμητικές τάσεις λόγω κάμψης σε δοκούς ορθογώνιας διατομής.
  • Διατμητικές τάσεις λόγω κάμψης σε δοκούς κυκλικής διατομής.
Ανάλυση τάσεων και παραμορφώσεων
  • Επίπεδη ένταση.
  • Κύριες τάσεις και μέγιστες διατμητικές τάσεις.
  • Κύκλος Mohr για την επίπεδη ένταση. 
  • Νόμος Hooke για την επίπεδη ένταση.
  • Τρισδιάστατη εντατική κατάσταση. 
  • Επίπεδη παραμόρφωση και μετασχηματισμοί παραμορφώσεων στο επίπεδο.
Εφαρμογές της επίπεδης έντασης
  • Σφαιρικά λεπτότοιχα δοχεία πίεσης.
  • Κυλινδρικά λεπτότοιχα δοχεία πίεσης.
  • Μέγιστες τάσεις σε δοκούς. 
  • Τάσεις σε δοκούς λόγω συνδυασμένων φορτίσεων.
  • Κριτήρια διαρροής και θραύσης.

2.2. Κεφάλαια από το βιβλίο των Goodno - Gere

  • Κεφάλαιο 1
  • Κεφάλαιο 2
  • Κεφάλαιο 3: Ενότητες 3.1 - 3.9, 3.12
  • Κεφάλαιο 4 (θεωρείται γνωστό από τη Στατική Στερεού Σώματος)
  • Κεφάλαιο 5: Ενότητες 5.1 - 5.9
  • Κεφάλαιο 7
  • Κεφάλαιο 8
  • Κεφάλαιο 12: Ενότητα 12.4

2.3. Κεφάλαια από το βιβλίο των Beer - Johnston - DeWolf - Mazurek

  • Κεφάλαιο 1
  • Κεφάλαιο 2: Ενότητες 2.1 - 2.4, 2.7, 2.8, 2.10 - 2.13
  • Κεφάλαιο 3: Ενότητες 3.1 - 3.5
  • Κεφάλαιο 4: Ενότητες 4.1 - 4.3
  • Κεφάλαιο 5: Ενότητες 5.1 - 5.2 (γνωστές από τη Στατική Στερεού Σώματος), 5.3
  • Κεφάλαιο 6: 6.1 - 6.2
  • Κεφάλαιο 7
  • Κεφάλαιο 8
  • Παράρτημα Α

2.4. Κεφάλαιο από το βιβλίο του E.G Popov

Κεφάλαιο 12: Περιέχεται στο αρχείο «Κριτήρια διαρροής και θραύσης.pdf», του φακέλου «Κεφάλαια που είναι εντός της διδακτέας ύλης αλλά δεν περιέχονται στο προτεινόμενο σύγγραμμα», της ενότητας «Εκπαιδευτικό Υλικό» της ιστοσελίδας του μαθήματος.

2.5. Σημειώσεις

Το αρχείο «Κύκλος Mohr.pdf», του φακέλου «Ορισμένες σημειώσεις από τις παραδόσεις», της ενότητας «Εκπαιδευτικό Υλικό» της ιστοσελίδας του μαθήματος.

4. Ημερομηνία και ώρα διεξαγωγής

Η εξέταση κανονικής περιόδου του μαθήματος θα πραγματοποιηθεί τη Δευτέρα 20 Ιουνίου 2022, στις 12:00.

5. Τόπος διεξαγωγής

Η εξέταση θα πραγματοποιηθεί στο Κτίριο Δ Μηχανολόγων. 

6. Κατανομή εξεταζομένων ανά αίθουσα

ATAY, ΑΔΑΜΗΣ - ΘΑΝΑΣΟΣ Αίθουσα Δ.209
ΘΕΡΙΟΥΔΑΚΗΣ - ΚΡΙΜΙΩΤΗΣ Αμφιθέατρο Δ
ΚΡΟΥΣΚΟΣ - ΠΑΝΤΕΛΟΠΟΥΛΟΥΑίθουσα Δ.105
ΠΑΝΤΟΣ - ΣΚΑΛΙΣΤΗΡΑ Αίθουσα Δ.106
ΣΚΡΕΤΑΣ - ΤΣΙΤΩΝΑΚΗ Αίθουσα Δ.201
ΤΣΟΛΑΚΗΣ - ΧΡΥΣΟΦΟΣ Αίθουσα Δ.202

7. Βαθμολογία

Κατάλογος Γραμματείας
Κωδικός Βαθμός
8087021
8102607
8104043
8106036
8109602
8111029
8112020
8112023
8112041 5
8112404
8113062
8113503
8113633
8113712
8114086
8114091
8115038
8115048
8115085
8115634
8116047 5
8116503
8116901 2
8116903
8116906
8117028
8117039 5
8117051
8117064
8117083
8117085
8117101
8117433
8117800
8117804 2
8117806
8118044
8118057
8118061
8118073
8118271
8118434
8118705
8118802 2
8118806
8119007
8119032 1
8119037
8119048
8119066
8119070 3
8119082
8119102
8119103
8119272
8119405
8119504 1
8119712
8120016 5
8120019
8120024
8120041 9
8120048 9
8120056 5
8120065 1
8120074
8120080
8120254 2
8120258
8120279
8120432
8120503
8120715
8120801 6
8120803 2
8121001 2
8121002 3
8121003 8
8121004
8121005
8121006
8121007
8121008 10
8121009 3
8121010 3
8121011 7
8121012 8
8121013 2
8121014
8121015 2
8121016 3
8121017
8121018
8121019
8121020
8121021
8121022 2
8121023 2
8121024 6
8121025 2
8121026
8121027 2
8121028 3
8121029 6
8121030 7
8121031 7
8121032 3
8121033 2
8121034 5
8121035
8121036 3
8121037 10
8121038 5
8121040 10
8121041
8121042 9
8121043
8121044
8121045 2
8121046 3
8121047
8121048 7
8121049
8121050 10
8121051 2
8121052
8121053 8
8121054 3
8121055
8121056 8
8121057 6
8121058 5
8121060
8121061 8
8121062 6
8121063 3
8121064
8121065
8121066
8121067 2
8121069 6
8121070 2
8121072 7
8121073 2
8121074 5
8121076 3
8121077
8121078 3
8121079 2
8121080 2
8121081 8
8121082 5
8121083
8121084 3
8121085
8121086 3
8121271
8121272 3
8121273
8121275
8121279
8121301
8121303
8121401
8121404
8121433
8121501 2
8121502 2
8121504
8121505 2
8121701 2
8121705 2
8121711 3
8121712 3
8121713 2
8121714 5
8121715 2
8121717 3
8121731 3
8121800
8121801
8121802 3
8121804
8121805
8121806 3
8121901



Συμπληρωματικός κατάλογος (κωδικοί που δεν περιέχονται στον κατάλογο της Γραμματείας)

ΚΩΔΙΚΟΣ ΒΑΘΜΟΣ
8121059 2
8121071 8
8121075 3
8121718 2


8. Επίδειξη γραπτών

Πέμπτη 14/7, 9:00πμ - 11:00πμ
στο «Σύνδεσμο τηλεδιασκέψεων» της ενότητας «Τηλεδιασκέψεις» της ιστοσελίδας του μαθήματος.