Classes of materials: Metals and alloys, ceramics, polymers and composite materials. Technological evolution and trends, properties and cost comparison, main applications.
Structure-properties relationships: Nature of chemical bonding, crystal structure and imperfections, dislocations. Solidification of metals. Mechanical properties and their dependence on the microstructure. Hardness, tensile strength, ductility, toughness, strain hardening, recovery and recrystallization. Fracture mechanisms, elements of fractography. Impact strength, transition from ductile to brittle fracture.
Other properties: Fatigue and fretting fatigue. Creep. Wear resistance. Corrosion and high temperature oxidation. Protection against corrosion (coatings, anodic and cathodic protection).
Study of some common alloys: Iron and steel, cast iron, aluminium and light alloys, copper alloys.
Production and processing methods and their relation to mechanical properties: Casting, hot and cold forming, powder metallurgy. Defects, inclusions, texture and anisotropy.
Welding: Welding methods, welding joints, welding defects and non destructive methods.
Construction steels: Plain carbon and low-alloy steels. High elastic limit steels, dual phase steels, controlled rolling and microalloyed steels. Stainless steels. Steels for low temperature applications.
Reinforced concrete steels: Types and relevant mechanical properties. Resistance to high temperatures. Weldability and welding techniques.


Διδακτικές μονάδες: 6